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Abstract
In this short note, we closely follow the approach of Green and Tao to extend the
best known bound for recurrence modulo 1 from squares to the largest possible class
of polynomials. The paper concludes with a brief discussion of a consequence of
this result for polynomial structures in sumsets and limitations of the method.

1. Introduction

We begin by recalling the well-known Kronecker approximation theorem:

Theorem A (Kronecker Approximation Theorem). Given ↵1, . . . ,↵d 2 R
and N 2 N, there exists an integer 1  n  N such that

kn↵jk ⌧ N�1/d for all 1  j  d.

Remark on Notation: In Theorem A above, and in the rest of this paper, we use
the standard notations k↵k to denote, for a given ↵ 2 R, the distance from ↵ to
the nearest integer and the Vinogradov symbol ⌧ to denote “less than a constant
times”.

Kronecker’s theorem is of course an almost immediate consequence of the pigeon-
hole principle: one simply partitions the torus (R/Z)d into N “boxes” of side length
at most 2N�1/d and considers the orbit of (n↵1, . . . , n↵d). In [3], Green and Tao
presented a proof of the following quadratic analogue of the above theorem, due to
Schmidt [9].

1NL was partially supported by Simons Foundation Collaboration Grant for Mathematicians
245792.



INTEGERS: 15A (2015) 2

Theorem B (Simultaneous Quadratic Recurrence, Proposition A.2 in [3]).
Given ↵1, . . . ,↵d 2 R and N 2 N, there exists an integer 1  n  N such that

kn2↵jk ⌧ dN�c/d2
for all 1  j  d.

The argument presented by Green and Tao in [3] was later extended (in a straight-
forward manner) by the second author and Magyar in [6] to any system of polyno-
mials without constant term.

Theorem C (Simultaneous Polynomial Recurrence, consequence of Propo-
sition B.2 in [6]). Given any system of polynomials h1, . . . , hd of degree at most
k with real coe�cients and no constant term and N 2 N, there exists an integer
1  n  N such that

khj(n)k ⌧ k2dN�ck�C/d2
for all 1  j  d,

where C, c > 0 and the implied constant are absolute.

Such a recurrence result does not hold for every polynomial. Specifically, if
h 2 Z[x] has no root modulo q for some q 2 N, then kh(n)/qk � 1/q for all n 2 Z,
a local obstruction which leads to the following definition.

Definition 1. We say that h 2 Z[x] is intersective if for every q 2 N, there exists
r 2 Z with q | h(r). Equivalently, h is intersective if it has a root in the p-adic
integers for every prime p.

Intersective polynomials include all polynomials with an integer root, but also
include certain polynomials without rational roots, such as (x3 � 19)(x2 + x + 1).

2. Recurrence for Intersective Polynomials

The purpose of this note is to extend the argument of Green and Tao [3] to establish
the following quantitative improvement of a result of Lê and Spencer [4].

Theorem 1. Given ↵1, . . . ,↵d 2 R, an intersective polynomial h 2 Z[x] of degree
k, and N 2 N, there exists an integer 1  n  N with h(n) 6= 0 and

kh(n)↵jk ⌧ dN�ck/d2
for all 1  j  d,

where c > 0 is absolute and the the implied constant depends only on h.

In [4], the right hand side is replaced with N�✓ for some ✓ = ✓(k, d) > 0. Here
we follow Green and Tao’s [3] refinement of Schmidt’s [9] lattice method nearly
verbatim, beginning with the following definitions.
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Definition 2. Suppose that ⇤ ✓ Rd is a full-rank lattice. For any t > 0 and
x = (x1, . . . , xd) 2 Rd, we define the theta function

⇥⇤(t, x) :=
X
m2⇤

e�⇡t|x�m|2 .

Further, we define

A⇤ := ⇥⇤⇤(1, 0) =
X
⇠2⇤⇤

e�⇡|⇠|2 = det(⇤)
X
m2⇤

e�⇡|m|2 ,

where ⇤⇤ = {⇠ 2 Rd : ⇠ ·m 2 Z for all m 2 ⇤} and the last equality follows from the
Poisson summation formula. Finally, for a polynomial h 2 Z[x], ↵ = (↵1, . . . ,↵d) 2
Rd, and N > 0, we define

Fh,⇤,↵(N) := det(⇤)E1nN⇥⇤(1, h(n)↵).

For the remainder of the discussion, we fix an intersective polynomial h 2 Z[x] of
degree k, and we let K = 210k. We use C and c to denote su�ciently large and small
absolute constants, respectively, and we allow any implied constants to depend on
h. By definition h has a root at every modulus, but we need to fix a particular root
at each modulus in a consistent way, which we accomplish below.

Definition 3. For each prime p, we fix p-adic integers zp with h(zp) = 0. By
reducing and applying the Chinese Remainder Theorem, the choices of zp determine,
for each natural number q, a unique integer rq 2 (�q, 0], which consequently satisfies
q | h(rq). We define the function � on N by letting �(p) = pm for each prime p, where
m is the multiplicity of zp as a root of h, and then extending it to be completely
multiplicative.
For each q 2 N, we define the auxiliary polynomial, hq, by

hq(x) = h(rq + qx)/�(q),

noting that each auxiliary polynomial maintains integral coe�cients.

As in [3], we make use of the following properties of F , only one of which needs to
be tangibly modified due to the presence of a general intersective polynomial.

Lemma 1 (Properties of Fhq,⇤,↵). If ⇤ ✓ Rd, ↵ 2 Rd, and q,N 2 N, then

(i) (Contraction of N) Fhq,⇤,↵(N)� cFhq,⇤,↵(cN) for any c 2 (10/N, 1).

(ii) (Dilation of ↵) Fhq,⇤,↵(N)� 1
q0Fhqq0 ,⇤,�(q0)↵(N/q0) for any q0  N/10.

(iii) (Stability) If ↵̃ 2 Rd with |↵� ↵̃| < ✏/ max
1nN

|hq(n)| and ✏ 2 (0, 1), then

Fhq,⇤,↵(N)� Fhq,(1+✏)⇤,(1+✏)↵̃(N).
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Proof. Property (i) follows immediately from the definition of F and the positivity
of ⇥, and property (iii) is exactly as in Lemma A.5 in [3]. For property (ii), by
positivity of ⇥, complete multiplicativity of �, and the fact that rq ⌘ rqq0 mod qq0,
we have

Fhq,⇤,↵(N) = det(⇤)Erq+qnrq+qN
n⌘rq mod q

(1, h(n)↵/�(q))

� det(⇤)Erq+qnrq+qN
n⌘rqq0 mod qq0

(1, h(n)↵/�(q))

� 1
q0

det(⇤)E1nN/q0⇥⇤

⇣
1,

h(rqq0 + qq0n)
�(qq0)

�(q0)↵
⌘

=
1
q0

Fhqq0 ,⇤,�(q0)↵(N/q0),

as required.

The key to the argument is the following “alternative lemma.”

Lemma 2 (Schmidt’s Alternative). If ⇤ ✓ Rd is a full-rank lattice, ↵ 2 Rd,
and q  N1/K , then one of the following holds:

(i) Fhq,⇤,↵(N) � 1/2

(ii) There exists q0 ⌧ dACk
⇤ and a primitive ⇠ 2 ⇤⇤ \ {0} such that

|⇠|⌧
p

d +
p

log A⇤

and
kq0⇠ · ↵k ⌧ ACk

⇤ N�k.

The proof of Lemma 2 is identical to that of the corresponding lemma in [3], once
armed with the following result, which follows from Weyl’s Inequality and observa-
tions of Lucier [5] on auxiliary polynomials.

Lemma 3. If � 2 (0, 1), q  N1/K , and |E1nN e2⇡ihq(n)✓| � �, then there exists
q0 ⌧ ��k such that kq0✓k ⌧ (�N)�k.

Additionally, a proof of Lemma 3 is contained in Section 6.4 of [7]. Precisely as in
[3], the alternative lemma gives the following inductive lower bound on F .

Corollary 1 (Inductive lower bound on Fh,⇤,↵). If ⇤ ✓ Rd is a full-rank
lattice, ↵ 2 Rd, N > (dA⇤)C0k for a suitably large absolute constant C0, and
q < N1/K , then one of the following holds:
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(i) Fhq,⇤,↵(N) � 1/2

(ii) There exists ↵0 2 Rd�1, a full-rank lattice ⇤0 ✓ Rd�1, N 0 � (dA⇤)�CkN , and
q0 ⌧ (dA⇤)Ck with

A⇤0 ⌧ (
p

d +
p

log A⇤)A⇤ (1)

and
Fhq,⇤,↵(N)� (dA⇤)�CkFhqq0 ,⇤

0,↵0(N 0). (2)

Finally, we use Corollary 1 to obtain a lower bound on Fh,⇤,↵ that is su�cient to
prove Theorem 1.

Corollary 2. If ↵ 2 Rd, ⇤ ✓ Rd is a full-rank lattice with det(⇤) � 1, and
N > (dA⇤)C1kKd for a suitably large absolute constant C1, then

Fh,⇤,↵(N)� (dA⇤)�Ckd.

Proof. Setting ↵0 = ↵, ⇤0 = ⇤, and N0 = N , we repeatedly apply Corollary 1,
obtaining vectors ↵j 2 Rd�j , lattices ⇤j ✓ Rd�j , and integers qj , Nj for j = 0, 1, . . . .
Assuming that Nj > (dA⇤j )C0k and qj  N1/K

j throughout the iteration, which we
will show to be the case shortly, we must either pass through case (i) of Proposition
1 at some point, or the iteration continues all the way to dimension 0. The worst
bounds come from the latter scenario, and we note that Fhqd

,⇤d,↵d(Nd) = 1. Using
(1) and the crude inequality

p
d +

p
log X ⌧ dX1/d, we see that A⇤j ⌧ AC

⇤0

throughout the iteration. Since Nj+1 � (dA⇤j )�CkNj and qj+1 ⌧ (dA⇤j )Ckqj , we
see that Nj > (dA⇤j )C0k and qj  N1/K

j throughout, provided N � (dA⇤)C1kKd

for suitably large C1. From (2), the result follows.

2.1. Proof of Theorem 1

Fix real numbers ↵1, . . . ,↵d 2 R and an intersective polynomial h 2 Z[x] of de-
gree k. Let R be a quantity to be chosen later, and apply Corollary 2 with
↵ = (R↵1, . . . , R↵d) and ⇤ = RZd. By definition we have

A⇤ = Rd
⇣ X

m2RZ
e�⇡m2

⌘
 (CR)d,

so if R � C2d and N > C2RC2kKd2
for suitably large C2, Corollary 2 implies

Fh,⇤,↵(N)� R�Ckd2
.



INTEGERS: 15A (2015) 6

Since det(⇤) = Rd, it follows from the definition of Fh,⇤,↵ that

E1nN

X
m2RZd

e�⇡|h(n)↵�m|2 � R�Ckd2

The contribution from all n with h(n) = 0 is ⌧ (CR)d/N , which is negligible if
N > C2RC2kKd2

. In this case we conclude that there exists n 2 {1, . . . , N} with
h(n) 6= 0 and X

m2RZd

e�⇡|h(n)↵�m|2 � R�Ckd2
(3)

Fixing such an n, if we had |h(n)↵ �m| >
p

R for all m 2 RZd, then we would
have

e�⇡|h(n)↵�m|2  e�⇡R2/2e�⇡|h(n)↵�m|2/2 (4)

for all m 2 RZd. By the Poisson summation formula, we have the identity
X
m2⇤

e�⇡t|h(n)↵�m|2 =
1

td/2 det(⇤)

X
⇠2⇤⇤

e�⇡|⇠|2/te2⇡i⇠·h(n)↵. (5)

Applying (4) and (5), we conclude that

X
m2RZd

e�⇡|h(n)↵�m|2  e�⇡R2/2 2d/2

det(⇤)

X
⇠2⇤⇤

e�2⇡|⇠|2e2⇡i⇠·h(n)↵  e�⇡R2/22d/2 A⇤

det(⇤)
,

which is ⌧ e�⇡R2/2(CR)d, which contradicts (3) if R > C2d. Therefore, under this
assumption on R, it must be the case that there exists m 2 RZd with |h(n)↵�m| p

R, which clearly implies that kh(n)↵ik  1/
p

R for all 1  j  d.
If N � C3dC3kKd2

for suitably large C3, then the theorem follows by choosing
R = d�1Nc/d2kK for a su�ciently small absolute constant c > 0. If instead N <
C3dC3kKd2

, then the theorem is trivial.

3. Consequences and Limitations

3.1. Consequences for Sumsets Following Croot- Laba-Sisask

Croot, Laba, and Sisask [1] displayed, using machinery from [2] and [8], that for
sets A,B ✓ Z of small doubling, there exists a low rank, large radius Bohr set T
with the property that a shift of any (not too large) subset of T is contained in
the sumset A + B = {a + b : a 2 A, b 2 B}. The theorems discussed in this paper
imply the existence of particular polynomial configurations in Bohr sets, and hence
can be incorporated with the techniques found in [1] to establish corresponding
sumset results. Specifically, by replacing the Kronecker Approximation Theorem
with Theorem 1 and C, respectively, in the proof of Theorem 1.4 in [1], one obtains
the following results.
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Theorem 2. Suppose h 2 Z[x] is an intersective polynomial of degree k, and A,B 2
Z with

|A + B|  KA|A|,KB|B|.

Then A + B contains an arithmetic progression

{x + h(n)` : 1  `  L}

with x,2 Z, n 2 N, h(n) 6= 0 and

L� exp
⇣
ck

⇣ log |A + B|
K2

B(log 2KA)6
⌘1/3

� C log(KA log |A|)
⌘
,

where C, c > 0 are absolute constants, and the implied constant depends only on h.

Theorem 3. Suppose h1, . . . , hm 2 Z[x] with hi(0) = 0 and deg(hi)  k for 1 
i  `, and A,B 2 Z with

|A + B|  KA|A|,KB|B|.

Then A + B contains a configuration of the form

{x + hi(n)` : 1  i  m, 1  `  L}

with x 2 Z, n 2 N, hi(n) 6= 0 for 1  i  m, and

L� exp
⇣
ck�C

⇣ log |A + B|
m2K2

B(log 2KA)6
⌘1/3

� C log(mkKA log |A|)
⌘
,

where C, c > 0 and the implied constant are absolute.

Noting that if A,B ✓ [1, N ] with |A| = ↵N and |B| = �N , then one can take
KA = 2↵�1 and KB = 2��1, yielding special cases of Theorems 2 and 3 phrased in
terms of densities.

3.2. Limitations Toward Simultaneous Recurrence

Upon inspection of Theorems C and 1, and correspondingly Theorems 2 and 3,
the natural question arises of the possibility of common refinements. Specifically,
if ↵1, . . . ,↵d 2 R and h1, · · · , hm 2 Z[x] is a jointly intersective collection of poly-
nomials, meaning the polynomials share a common root at each modulus, can one
simultaneously control khi(n)↵jk for 1  i  m and 1  j  d? In a qualitative
sense, Lê and Spencer [4] answered this question in the a�rmative, but in this con-
text obstructions arise to the application of the methods found in [6] to establish a
bound such as that found in Theorem 1.
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For example, suppose h1(x) = b0 + b1x + b2x2 and h2(x) = c0 + c1x + c3x3. This
system of polynomials is a “nice” system as defined in [4], but to apply the methods
of [6] it is necessary to firmly control Gauss sums of the form

NX
n=1

e2⇡i(h1(n)a1+h2(n)a2)/q =
NX

n=1

e
2⇡i

⇣
b0a1+c0a2+(b1a1+c1a2)n+b2a1n2+c3a2n3

⌘
/q

.

Control of this sum is lost if b1a1 + c2a2, b2a1, c3a2, and q all share a large common
factor. While the argument allows us to control (b1, b2), (c1, c3), and (a1, a2, q),
this does not prohibit the aforementioned fatal scenario. While it is likely that an
analog of Theorem C holds for a jointly intersective collection of polynomials, it
appears that new insight is required.
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