A QUANTITATIVE RESULT ON DIOPHANTINE APPROXIMATION FOR INTERSECTIVE POLYNOMIALS

Neil Lyall ${ }^{1}$
Department of Mathematics, The University of Georgia, Athens, Georgia lyall@math.uga.edu

Alex Rice
Department of Mathematics, University of Rochester, Rochester, New York
alex.rice@rochester.edu

Received: 3/1/14, Accepted: 11/30/14, Published: 6/15/15

Abstract

In this short note, we closely follow the approach of Green and Tao to extend the best known bound for recurrence modulo 1 from squares to the largest possible class of polynomials. The paper concludes with a brief discussion of a consequence of this result for polynomial structures in sumsets and limitations of the method.

1. Introduction

We begin by recalling the well-known Kronecker approximation theorem:
Theorem A (Kronecker Approximation Theorem). Given $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$ and $N \in \mathbb{N}$, there exists an integer $1 \leq n \leq N$ such that

$$
\left\|n \alpha_{j}\right\| \ll N^{-1 / d} \text { for all } 1 \leq j \leq d
$$

Remark on Notation: In Theorem A above, and in the rest of this paper, we use the standard notations $\|\alpha\|$ to denote, for a given $\alpha \in \mathbb{R}$, the distance from α to the nearest integer and the Vinogradov symbol \ll to denote "less than a constant times".

Kronecker's theorem is of course an almost immediate consequence of the pigeonhole principle: one simply partitions the torus $(\mathbb{R} / \mathbb{Z})^{d}$ into N "boxes" of side length at most $2 N^{-1 / d}$ and considers the orbit of $\left(n \alpha_{1}, \ldots, n \alpha_{d}\right)$. In [3], Green and Tao presented a proof of the following quadratic analogue of the above theorem, due to Schmidt [9].

[^0]Theorem B (Simultaneous Quadratic Recurrence, Proposition A. 2 in [3]). Given $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$ and $N \in \mathbb{N}$, there exists an integer $1 \leq n \leq N$ such that

$$
\left\|n^{2} \alpha_{j}\right\| \ll d N^{-c / d^{2}} \quad \text { for all } 1 \leq j \leq d
$$

The argument presented by Green and Tao in [3] was later extended (in a straightforward manner) by the second author and Magyar in [6] to any system of polynomials without constant term.

Theorem C (Simultaneous Polynomial Recurrence, consequence of Proposition B. 2 in [6]). Given any system of polynomials h_{1}, \ldots, h_{d} of degree at most k with real coefficients and no constant term and $N \in \mathbb{N}$, there exists an integer $1 \leq n \leq N$ such that

$$
\left\|h_{j}(n)\right\| \ll k^{2} d N^{-c k^{-C} / d^{2}} \quad \text { for all } \quad 1 \leq j \leq d
$$

where $C, c>0$ and the implied constant are absolute.
Such a recurrence result does not hold for every polynomial. Specifically, if $h \in \mathbb{Z}[x]$ has no root modulo q for some $q \in \mathbb{N}$, then $\|h(n) / q\| \geq 1 / q$ for all $n \in \mathbb{Z}$, a local obstruction which leads to the following definition.

Definition 1. We say that $h \in \mathbb{Z}[x]$ is intersective if for every $q \in \mathbb{N}$, there exists $r \in \mathbb{Z}$ with $q \mid h(r)$. Equivalently, h is intersective if it has a root in the p-adic integers for every prime p.

Intersective polynomials include all polynomials with an integer root, but also include certain polynomials without rational roots, such as $\left(x^{3}-19\right)\left(x^{2}+x+1\right)$.

2. Recurrence for Intersective Polynomials

The purpose of this note is to extend the argument of Green and Tao [3] to establish the following quantitative improvement of a result of Lê and Spencer [4].

Theorem 1. Given $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$, an intersective polynomial $h \in \mathbb{Z}[x]$ of degree k, and $N \in \mathbb{N}$, there exists an integer $1 \leq n \leq N$ with $h(n) \neq 0$ and

$$
\left\|h(n) \alpha_{j}\right\| \ll d N^{-c^{k} / d^{2}} \text { for all } 1 \leq j \leq d
$$

where $c>0$ is absolute and the the implied constant depends only on h.
In [4], the right hand side is replaced with $N^{-\theta}$ for some $\theta=\theta(k, d)>0$. Here we follow Green and Tao's [3] refinement of Schmidt's [9] lattice method nearly verbatim, beginning with the following definitions.

Definition 2. Suppose that $\Lambda \subseteq \mathbb{R}^{d}$ is a full-rank lattice. For any $t>0$ and $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, we define the theta function

$$
\Theta_{\Lambda}(t, x):=\sum_{m \in \Lambda} e^{-\pi t|x-m|^{2}}
$$

Further, we define

$$
A_{\Lambda}:=\Theta_{\Lambda^{*}}(1,0)=\sum_{\xi \in \Lambda^{*}} e^{-\pi|\xi|^{2}}=\operatorname{det}(\Lambda) \sum_{m \in \Lambda} e^{-\pi|m|^{2}}
$$

where $\Lambda^{*}=\left\{\xi \in \mathbb{R}^{d}: \xi \cdot m \in \mathbb{Z}\right.$ for all $\left.m \in \Lambda\right\}$ and the last equality follows from the Poisson summation formula. Finally, for a polynomial $h \in \mathbb{Z}[x], \alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in$ \mathbb{R}^{d}, and $N>0$, we define

$$
F_{h, \Lambda, \alpha}(N):=\operatorname{det}(\Lambda) \mathbb{E}_{1 \leq n \leq N} \Theta_{\Lambda}(1, h(n) \alpha)
$$

For the remainder of the discussion, we fix an intersective polynomial $h \in \mathbb{Z}[x]$ of degree k, and we let $K=2^{10 k}$. We use C and c to denote sufficiently large and small absolute constants, respectively, and we allow any implied constants to depend on h. By definition h has a root at every modulus, but we need to fix a particular root at each modulus in a consistent way, which we accomplish below.

Definition 3. For each prime p, we fix p-adic integers z_{p} with $h\left(z_{p}\right)=0$. By reducing and applying the Chinese Remainder Theorem, the choices of z_{p} determine, for each natural number q, a unique integer $r_{q} \in(-q, 0]$, which consequently satisfies $q \mid h\left(r_{q}\right)$. We define the function λ on \mathbb{N} by letting $\lambda(p)=p^{m}$ for each prime p, where m is the multiplicity of z_{p} as a root of h, and then extending it to be completely multiplicative.
For each $q \in \mathbb{N}$, we define the auxiliary polynomial, h_{q}, by

$$
h_{q}(x)=h\left(r_{q}+q x\right) / \lambda(q),
$$

noting that each auxiliary polynomial maintains integral coefficients.
As in [3], we make use of the following properties of F, only one of which needs to be tangibly modified due to the presence of a general intersective polynomial.

Lemma 1 (Properties of $\boldsymbol{F}_{\boldsymbol{h}_{\boldsymbol{q}}, \boldsymbol{\Lambda}, \boldsymbol{\alpha}}$). If $\Lambda \subseteq \mathbb{R}^{d}, \alpha \in \mathbb{R}^{d}$, and $q, N \in \mathbb{N}$, then
(i) (Contraction of $N) F_{h_{q}, \Lambda, \alpha}(N) \gg c F_{h_{q}, \Lambda, \alpha}(c N)$ for any $c \in(10 / N, 1)$.
(ii) (Dilation of α) $F_{h_{q}, \Lambda, \alpha}(N) \gg \frac{1}{q^{\prime}} F_{h_{q q^{\prime}}, \Lambda, \lambda\left(q^{\prime}\right) \alpha}\left(N / q^{\prime}\right)$ for any $q^{\prime} \leq N / 10$.
(iii) (Stability) If $\tilde{\alpha} \in \mathbb{R}^{d}$ with $|\alpha-\tilde{\alpha}|<\epsilon / \max _{1 \leq n \leq N}\left|h_{q}(n)\right|$ and $\epsilon \in(0,1)$, then

$$
F_{h_{q}, \Lambda, \alpha}(N) \gg F_{h_{q},(1+\epsilon) \Lambda,(1+\epsilon) \tilde{\alpha}}(N)
$$

Proof. Property (i) follows immediately from the definition of F and the positivity of Θ, and property (iii) is exactly as in Lemma A. 5 in [3]. For property (ii), by positivity of Θ, complete multiplicativity of λ, and the fact that $r_{q} \equiv r_{q q^{\prime}} \bmod q q^{\prime}$, we have

$$
\begin{aligned}
F_{h_{q}, \Lambda, \alpha}(N) & =\operatorname{det}(\Lambda) \mathbb{E}_{r_{q}+q \leq n \leq r_{q}+q N}(1, h(n) \alpha / \lambda(q)) \\
& \geq \operatorname{det}(\Lambda) \mathbb{E}_{\substack{r_{q}+q \leq n \leq r_{q}+q N \\
n \equiv r_{q q^{\prime}}}}^{\bmod q q^{\prime}}(1, h(n) \alpha / \lambda(q)) \\
& \gg \frac{1}{q^{\prime}} \operatorname{det}(\Lambda) \mathbb{E}_{1 \leq n \leq N / q^{\prime}} \Theta_{\Lambda}\left(1, \frac{h\left(r_{q q^{\prime}}+q q^{\prime} n\right)}{\lambda\left(q q^{\prime}\right)} \lambda\left(q^{\prime}\right) \alpha\right) \\
& =\frac{1}{q^{\prime}} F_{h_{q q^{\prime}}, \Lambda, \lambda\left(q^{\prime}\right) \alpha}\left(N / q^{\prime}\right),
\end{aligned}
$$

as required.
The key to the argument is the following "alternative lemma."

Lemma 2 (Schmidt's Alternative). If $\Lambda \subseteq \mathbb{R}^{d}$ is a full-rank lattice, $\alpha \in \mathbb{R}^{d}$, and $q \leq N^{1 / K}$, then one of the following holds:
(i) $F_{h_{q}, \Lambda, \alpha}(N) \geq 1 / 2$
(ii) There exists $q^{\prime} \ll d A_{\Lambda}^{C k}$ and a primitive $\xi \in \Lambda^{*} \backslash\{0\}$ such that

$$
|\xi| \ll \sqrt{d}+\sqrt{\log A_{\Lambda}}
$$

and

$$
\left\|q^{\prime} \xi \cdot \alpha\right\| \ll A_{\Lambda}^{C k} N^{-k}
$$

The proof of Lemma 2 is identical to that of the corresponding lemma in [3], once armed with the following result, which follows from Weyl's Inequality and observations of Lucier [5] on auxiliary polynomials.

Lemma 3. If $\delta \in(0,1), q \leq N^{1 / K}$, and $\left|\mathbb{E}_{1 \leq n \leq N} e^{2 \pi i h_{q}(n) \theta}\right| \geq \delta$, then there exists $q^{\prime} \ll \delta^{-k}$ such that $\left\|q^{\prime} \theta\right\| \ll(\delta N)^{-k}$.

Additionally, a proof of Lemma 3 is contained in Section 6.4 of [7]. Precisely as in [3], the alternative lemma gives the following inductive lower bound on F.

Corollary 1 (Inductive lower bound on $\boldsymbol{F}_{\boldsymbol{h}, \Lambda, \alpha}$). If $\Lambda \subseteq \mathbb{R}^{d}$ is a full-rank lattice, $\alpha \in \mathbb{R}^{d}, N>\left(d A_{\Lambda}\right)^{C_{0} k}$ for a suitably large absolute constant C_{0}, and $q<N^{1 / K}$, then one of the following holds:
(i) $F_{h_{q}, \Lambda, \alpha}(N) \geq 1 / 2$
(ii) There exists $\alpha^{\prime} \in \mathbb{R}^{d-1}$, a full-rank lattice $\Lambda^{\prime} \subseteq \mathbb{R}^{d-1}, N^{\prime} \gg\left(d A_{\Lambda}\right)^{-C k} N$, and $q^{\prime} \ll\left(d A_{\Lambda}\right)^{C k}$ with

$$
\begin{equation*}
A_{\Lambda^{\prime}} \ll\left(\sqrt{d}+\sqrt{\log A_{\Lambda}}\right) A_{\Lambda} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{h_{q}, \Lambda, \alpha}(N) \gg\left(d A_{\Lambda}\right)^{-C k} F_{h_{q q^{\prime}}, \Lambda^{\prime}, \alpha^{\prime}}\left(N^{\prime}\right) . \tag{2}
\end{equation*}
$$

Finally, we use Corollary 1 to obtain a lower bound on $F_{h, \Lambda, \alpha}$ that is sufficient to prove Theorem 1.

Corollary 2. If $\alpha \in \mathbb{R}^{d}, \Lambda \subseteq \mathbb{R}^{d}$ is a full-rank lattice with $\operatorname{det}(\Lambda) \geq 1$, and $N>\left(d A_{\Lambda}\right)^{C_{1} k K d}$ for a suitably large absolute constant C_{1}, then

$$
F_{h, \Lambda, \alpha}(N) \gg\left(d A_{\Lambda}\right)^{-C k d}
$$

Proof. Setting $\alpha_{0}=\alpha, \Lambda_{0}=\Lambda$, and $N_{0}=N$, we repeatedly apply Corollary 1, obtaining vectors $\alpha_{j} \in \mathbb{R}^{d-j}$, lattices $\Lambda_{j} \subseteq \mathbb{R}^{d-j}$, and integers q_{j}, N_{j} for $j=0,1, \ldots$. Assuming that $N_{j}>\left(d A_{\Lambda_{j}}\right)^{C_{0} k}$ and $q_{j} \leq N_{j}^{1 / K}$ throughout the iteration, which we will show to be the case shortly, we must either pass through case (i) of Proposition 1 at some point, or the iteration continues all the way to dimension 0 . The worst bounds come from the latter scenario, and we note that $F_{h_{q_{d}}, \Lambda_{d}, \alpha_{d}}\left(N_{d}\right)=1$. Using (1) and the crude inequality $\sqrt{d}+\sqrt{\log X} \ll d X^{1 / d}$, we see that $A_{\Lambda_{j}} \ll A_{\Lambda_{0}}^{C}$ throughout the iteration. Since $N_{j+1} \geq\left(d A_{\Lambda_{j}}\right)^{-C k} N_{j}$ and $q_{j+1} \ll\left(d A_{\Lambda_{j}}\right)^{C k} q_{j}$, we see that $N_{j}>\left(d A_{\Lambda_{j}}\right)^{C_{0} k}$ and $q_{j} \leq N_{j}^{1 / K}$ throughout, provided $N \geq\left(d A_{\Lambda}\right)^{C_{1} k K d}$ for suitably large C_{1}. From (2), the result follows.

2.1. Proof of Theorem 1

Fix real numbers $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$ and an intersective polynomial $h \in \mathbb{Z}[x]$ of degree k. Let R be a quantity to be chosen later, and apply Corollary 2 with $\alpha=\left(R \alpha_{1}, \ldots, R \alpha_{d}\right)$ and $\Lambda=R \mathbb{Z}^{d}$. By definition we have

$$
A_{\Lambda}=R^{d}\left(\sum_{m \in R \mathbb{Z}} e^{-\pi m^{2}}\right) \leq(C R)^{d}
$$

so if $R \geq C_{2} d$ and $N>C_{2} R^{C_{2} k K d^{2}}$ for suitably large C_{2}, Corollary 2 implies

$$
F_{h, \Lambda, \alpha}(N) \gg R^{-C k d^{2}}
$$

Since $\operatorname{det}(\Lambda)=R^{d}$, it follows from the definition of $F_{h, \Lambda, \alpha}$ that

$$
\mathbb{E}_{1 \leq n \leq N} \sum_{m \in R \mathbb{Z}^{d}} e^{-\pi|h(n) \alpha-m|^{2}} \gg R^{-C k d^{2}}
$$

The contribution from all n with $h(n)=0$ is $\ll(C R)^{d} / N$, which is negligible if $N>C_{2} R^{C_{2} k K d^{2}}$. In this case we conclude that there exists $n \in\{1, \ldots, N\}$ with $h(n) \neq 0$ and

$$
\begin{equation*}
\sum_{m \in R \mathbb{Z}^{d}} e^{-\pi|h(n) \alpha-m|^{2}} \gg R^{-C k d^{2}} \tag{3}
\end{equation*}
$$

Fixing such an n, if we had $|h(n) \alpha-m|>\sqrt{R}$ for all $m \in R \mathbb{Z}^{d}$, then we would have

$$
\begin{equation*}
e^{-\pi|h(n) \alpha-m|^{2}} \leq e^{-\pi R^{2} / 2} e^{-\pi|h(n) \alpha-m|^{2} / 2} \tag{4}
\end{equation*}
$$

for all $m \in R \mathbb{Z}^{d}$. By the Poisson summation formula, we have the identity

$$
\begin{equation*}
\sum_{m \in \Lambda} e^{-\pi t|h(n) \alpha-m|^{2}}=\frac{1}{t^{d / 2} \operatorname{det}(\Lambda)} \sum_{\xi \in \Lambda^{*}} e^{-\pi|\xi|^{2} / t} e^{2 \pi i \xi \cdot h(n) \alpha} \tag{5}
\end{equation*}
$$

Applying (4) and (5), we conclude that

$$
\sum_{m \in R \mathbb{Z}^{d}} e^{-\pi|h(n) \alpha-m|^{2}} \leq e^{-\pi R^{2} / 2} \frac{2^{d / 2}}{\operatorname{det}(\Lambda)} \sum_{\xi \in \Lambda^{*}} e^{-2 \pi|\xi|^{2}} e^{2 \pi i \xi \cdot h(n) \alpha} \leq e^{-\pi R^{2} / 2} 2^{d / 2} \frac{A_{\Lambda}}{\operatorname{det}(\Lambda)}
$$

which is $\ll e^{-\pi R^{2} / 2}(C R)^{d}$, which contradicts (3) if $R>C_{2} d$. Therefore, under this assumption on R, it must be the case that there exists $m \in R \mathbb{Z}^{d}$ with $|h(n) \alpha-m| \leq$ \sqrt{R}, which clearly implies that $\left\|h(n) \alpha_{i}\right\| \leq 1 / \sqrt{R}$ for all $1 \leq j \leq d$.
If $N \geq C_{3} d^{C_{3} k K d^{2}}$ for suitably large C_{3}, then the theorem follows by choosing $R=d^{-1} N^{c / d^{2} k K}$ for a sufficiently small absolute constant $c>0$. If instead $N<$ $C_{3} d^{C_{3} k K d^{2}}$, then the theorem is trivial.

3. Consequences and Limitations

3.1. Consequences for Sumsets Following Croot-Łaba-Sisask

Croot, Laba, and Sisask [1] displayed, using machinery from [2] and [8], that for sets $A, B \subseteq \mathbb{Z}$ of small doubling, there exists a low rank, large radius Bohr set T with the property that a shift of any (not too large) subset of T is contained in the sumset $A+B=\{a+b: a \in A, b \in B\}$. The theorems discussed in this paper imply the existence of particular polynomial configurations in Bohr sets, and hence can be incorporated with the techniques found in [1] to establish corresponding sumset results. Specifically, by replacing the Kronecker Approximation Theorem with Theorem 1 and C, respectively, in the proof of Theorem 1.4 in [1], one obtains the following results.

Theorem 2. Suppose $h \in \mathbb{Z}[x]$ is an intersective polynomial of degree k, and $A, B \in$ \mathbb{Z} with

$$
|A+B| \leq K_{A}|A|, K_{B}|B|
$$

Then $A+B$ contains an arithmetic progression

$$
\{x+h(n) \ell: 1 \leq \ell \leq L\}
$$

with $x, \in \mathbb{Z}, n \in \mathbb{N}, h(n) \neq 0$ and

$$
L \gg \exp \left(c^{k}\left(\frac{\log |A+B|}{K_{B}^{2}\left(\log 2 K_{A}\right)^{6}}\right)^{1 / 3}-C \log \left(K_{A} \log |A|\right)\right)
$$

where $C, c>0$ are absolute constants, and the implied constant depends only on h.
Theorem 3. Suppose $h_{1}, \ldots, h_{m} \in \mathbb{Z}[x]$ with $h_{i}(0)=0$ and $\operatorname{deg}\left(h_{i}\right) \leq k$ for $1 \leq$ $i \leq \ell$, and $A, B \in \mathbb{Z}$ with

$$
|A+B| \leq K_{A}|A|, K_{B}|B|
$$

Then $A+B$ contains a configuration of the form

$$
\left\{x+h_{i}(n) \ell: 1 \leq i \leq m, 1 \leq \ell \leq L\right\}
$$

with $x \in \mathbb{Z}, n \in \mathbb{N}, h_{i}(n) \neq 0$ for $1 \leq i \leq m$, and

$$
L \gg \exp \left(c k^{-C}\left(\frac{\log |A+B|}{m^{2} K_{B}^{2}\left(\log 2 K_{A}\right)^{6}}\right)^{1 / 3}-C \log \left(m k K_{A} \log |A|\right)\right)
$$

where $C, c>0$ and the implied constant are absolute.
Noting that if $A, B \subseteq[1, N]$ with $|A|=\alpha N$ and $|B|=\beta N$, then one can take $K_{A}=2 \alpha^{-1}$ and $K_{B}=2 \beta^{-1}$, yielding special cases of Theorems 2 and 3 phrased in terms of densities.

3.2. Limitations Toward Simultaneous Recurrence

Upon inspection of Theorems C and 1, and correspondingly Theorems 2 and 3, the natural question arises of the possibility of common refinements. Specifically, if $\alpha_{1}, \ldots, \alpha_{d} \in \mathbb{R}$ and $h_{1}, \cdots, h_{m} \in \mathbb{Z}[x]$ is a jointly intersective collection of polynomials, meaning the polynomials share a common root at each modulus, can one simultaneously control $\left\|h_{i}(n) \alpha_{j}\right\|$ for $1 \leq i \leq m$ and $1 \leq j \leq d$? In a qualitative sense, Lê and Spencer [4] answered this question in the affirmative, but in this context obstructions arise to the application of the methods found in [6] to establish a bound such as that found in Theorem 1.

For example, suppose $h_{1}(x)=b_{0}+b_{1} x+b_{2} x^{2}$ and $h_{2}(x)=c_{0}+c_{1} x+c_{3} x^{3}$. This system of polynomials is a "nice" system as defined in [4], but to apply the methods of [6] it is necessary to firmly control Gauss sums of the form

$$
\sum_{n=1}^{N} e^{2 \pi i\left(h_{1}(n) a_{1}+h_{2}(n) a_{2}\right) / q}=\sum_{n=1}^{N} e^{2 \pi i\left(b_{0} a_{1}+c_{0} a_{2}+\left(b_{1} a_{1}+c_{1} a_{2}\right) n+b_{2} a_{1} n^{2}+c_{3} a_{2} n^{3}\right) / q}
$$

Control of this sum is lost if $b_{1} a_{1}+c_{2} a_{2}, b_{2} a_{1}, c_{3} a_{2}$, and q all share a large common factor. While the argument allows us to control $\left(b_{1}, b_{2}\right),\left(c_{1}, c_{3}\right)$, and $\left(a_{1}, a_{2}, q\right)$, this does not prohibit the aforementioned fatal scenario. While it is likely that an analog of Theorem C holds for a jointly intersective collection of polynomials, it appears that new insight is required.

References

[1] E. Croot, I. Łaba, O. Sisask, Arithmetic progressions in sumsets and L^{p} almost periodicity, Combinatorics, Probability, and Computing 22 (2013), 351-365.
[2] E. Croot, O. Sisask, A probabilistic technique for finding almost-periods of convolutions, Geom. Funct. Anal. 20 (2010), 1367-1396.
[3] B. Green, T. Tao, New bounds for Szemerédi's theorem II. A new bound for $r_{4}(N)$, Analytic number theory, 180-204, Cambridge Univ. Press, 2009.
[4] T. H. Lê, C. Spencer, Intersective polynomials and Diophantine approximation, Int. Math. Res. Notices (2012) doi:10.1093/imrn/rns242.
[5] J. Lucier, Intersective Sets Given by a Polynomial, Acta Arith. 123 (2006), 57-95.
[6] N. Lyall, À. Magyar, Simultaneous polynomial recurrence, Bull. Lond. Math. Soc. 43 (2011), no. 4, 765-785.
[7] A. Rice, Improvements and extensions of two theorems of Sárközy, Ph. D. thesis, University of Georgia, 2012. http://alexricemath.com/wp-content/uploads/2013/06/AlexThesis.pdf.
[8] T. Sanders, On the Bogolyubov-Ruzsa lemma, Anal. PDE 5 (2012), no. 3, 627-655.
[9] W. M. Schmidt, Small fractional parts of polynomials, CBMS Regional Conference Series in Math., 32, Amer. Math. Soc., 1977.
[10] R. C. Vaughan, The Hardy-Littlewood method, Cambridge University Press, Second Edition, 1997.

[^0]: ${ }^{1}$ NL was partially supported by Simons Foundation Collaboration Grant for Mathematicians 245792.

