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Abstract
For each positive integer r, let Sr denote the rth Schemmel totient function, a
multiplicative arithmetic function defined by

Sr(p↵) =

(
0, if p  r;
p↵�1(p� r), if p > r

for all primes p and positive integers ↵. The function S1 is simply Euler’s totient
function �. Masser and Shiu have established several fascinating results concerning
sparsely totient numbers, positive integers n satisfying �(n) < �(m) for all integers
m > n. We define a sparsely Schemmel totient number of order r to be a positive
integer n such that Sr(n) > 0 and Sr(n) < Sr(m) for all m > n with Sr(m) > 0.
We then generalize some of the results of Masser and Shiu.

1. Introduction

Throughout this paper, we will let N and P denote the set of positive integers and
the set of prime numbers, respectively. For any prime p and positive integer n, we
will let !(n) denote the number of distinct prime factors of n, and we will let �p(n)
denote the exponent of p in the prime factorization of n. Furthermore, we will let
n# denote the product of all the prime numbers less than or equal to n (with the
convention 1# = 1), and we will let pi denote the ith prime number.

The Euler totient function �(n) counts the number of positive integers less than
or equal to n that are relatively prime to n. In 1869, V. Schemmel introduced a
class of functions Sr, now known as Schemmel totient functions, that generalize
Euler’s totient function. Sr(n) counts the number of positive integers k  n such
that gcd(k + j, n) = 1 for all j 2 {0, 1, . . . , r � 1}. Clearly, S1 = �. It has been
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shown [6] that Sr is a multiplicative function that satisfies

Sr(p↵) =

(
0, if p  r

p↵�1(p� r), if p > r

for all primes p and positive integers ↵. It follows easily from this formula that, for
any positive integers r, u, v, we have

Sr(u)Sr(v)  Sr(uv)  min(uSr(v), vSr(u)). (1)

For any positive integer r, we will let Br denote the set of positive integers whose
smallest prime factor is greater than r, and we will convene to let 1 2 Br. Equiva-
lently,

Br = {n 2 N : Sr(n) > 0}.

Masser and Shiu have studied the set F of positive integers n that satisfy �(n) <
�(m) for all m > n [5]. These integers are known as sparsely totient numbers, and
they motivate the following definition.

Definition 1.1. Let r be a positive integer. A positive integer n is a sparsely
Schemmel totient number of order r if n 2 Br and Sr(n) < Sr(m) for all m 2 Br

with m > n. We will let Fr be the set of all sparsely Schemmel totient numbers of
order r.

Remark 1.1. Lee-Wah Yip has shown that if r is a positive integer, then there

exists a positive constant c1(r) such that Sr(n) � c1(r)n
(log log 3n)r

for all n 2 Br [8].

In fact, this result follows quite easily from Mertens’s estimates. Therefore, each
set Fr is infinite.

The aim of this paper is to modify some of the proofs that Masser and Shiu used
to establish results concerning sparsely totient numbers in order to illustrate how
those results generalize to results concerning sparsely Schemmel totient numbers.

2. A Fundamental Construction

The fundamental result in Masser and Shiu’s paper, upon which all subsequent
theorems rely, is a construction of a certain subset of F , so we will give a similar
construction of subsets of the sets Fr.

Lemma 1. Fix some positive integer r, and suppose x1, x2, . . . , xs, y1, y2, . . . , ys,X,
Y are real numbers such that r < xi  yi for all i 2 {1, 2, . . . , s}. If Y �
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max(x1, x2, . . . , xs) and X
sY

i=1

xi < Y
sY

i=1

yi, then

(X � r)
sY

i=1

(xi � r) < (Y � r)
sY

i=1

(yi � r).

Proof. The proof is by induction on s, so we will assume that s � 2 and that the
lemma is true if we replace s with s� 1. Note that

sY
i=1

(xi � r)  (Y � r)
s�1Y
i=1

(yi � r),

so the proof is simple if X < ys. Therefore, we will assume that X � ys. If we

write the inequality X
sY

i=1

xi < Y
sY

i=1

yi as
Xxs

ys

s�1Y
i=1

xi < Y
s�1Y
i=1

yi, then the induction

hypothesis tells us that

✓
Xxs

ys
� r

◆ s�1Y
i=1

(xi � r) < (Y � r)
s�1Y
i=1

(yi � r). (2)

Multiplying each side of (2) by ys � r, we see that it su�ces to show, in order to
complete the induction step, that

✓
Xxs

ys
� r

◆
(ys � r) � (X � r)(xs � r). (3)

We may rewrite (3) as r

✓
Xxs

ys
+ ys

◆
 r(X + xs), or, equivalently, ys � xs 

X

✓
1� xs

ys

◆
. This inequality holds because X � ys, so we have completed the

induction step of the proof.
For the case s = 1, we note again that the proof is trivial if X < y1, so we

will assume that X � y1. This implies that y1 � x1  X

✓
1� x1

y1

◆
, which we may

rewrite as y1 +
Xx1

y1
 X + x1. Multiplying this last inequality by �r and adding

Xx1 + r2 to each side, we get

Xx1 � r

✓
y1 +

Xx1

y1

◆
+ r2 � Xx1 � r(X + x1) + r2,

so (y1 � r)
✓

Xx1

y1
� r

◆
� (x1 � r)(X � r). As x1X < y1Y by hypothesis, we find

that (y1 � r)(Y � r) > (x1 � r)(X � r).
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In what follows, we will let ⇡(r) denote the number of primes less than or equal
to r.

Theorem 1. Let r be a positive integer, and let ` and k be nonnegative integers
such that k � ⇡(r) + 2. Suppose d is an element of Br such that d < pk+1 � r and

d(pk+` � r) < (d + 1)(pk � r). If we set n = dpk+`

k�1Y
i=⇡(r)+1

pi, then n 2 Fr.

Proof. First, note that n 2 Br. Setting u = d and v = pk+`

k�1Y
i=⇡(r)+1

pi in (1) yields

Sr(n)  d(pk+` � r)
k�1Y

i=⇡(r)+1

(pi � r). (4)

Using the hypothesis d(pk+` � r) < (d + 1)(pk � r), we get

Sr(n) < (d + 1)
kY

i=⇡(r)+1

(pi � r), (5)

from which the hypothesis d < pk+1 � r yields

Sr(n) <
k+1Y

i=⇡(r)+1

(pi � r). (6)

Now, choose some arbitrary m 2 Br with m > n. We will show that Sr(m) > Sr(n).
There is a unique integer t > ⇡(r) such that

tY
i=⇡(r)+1

pi  m <
t+1Y

i=⇡(r)+1

pi.

Clearly, !(m)  t�⇡(r), so
Sr(m)

m
�

tY
i=⇡(r)+1

✓
1� r

pi

◆
. This implies that Sr(m) �

tY
i=⇡(r)+1

(pi � r). If t � k + 1, then we may use (6) to conclude that Sr(n) <

Sr(m). Therefore, let us assume that t  k. Then !(m)  k � ⇡(r). Sup-

pose !(m)  k � 1 � ⇡(r) so that
Sr(m)

m
�

k�1Y
i=⇡(r)+1

✓
1� r

pi

◆
. From (4), we

have
Sr(n)

n
<

k�1Y
i=⇡(r)+1

✓
1� r

pi

◆
, so

Sr(n)
n

<
Sr(m)

m
. Because m > n, we see that

Sr(n) < Sr(m).
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Now, assume !(m) = k�⇡(r). Then we may write m = µ

k�⇡(r)Y
i=1

qi, where µ is a

positive integer whose prime factors are all in the set {q1, q2, . . . , qk�⇡(r)} and, for
all i, j 2 {1, 2, . . . , k � ⇡(r)} with i < j, qi is a prime and p⇡(r)+i  qi < qj . This

means that Sr(m) = µ

k�⇡(r)Y
i=1

(qi � r). If µ � d+1, then we may use (5) to find that

Sr(n) < µ
kY

i=⇡(r)+1

(pi � r) = µ

k�⇡(r)Y
i=1

(p⇡(r)+i � r)  Sr(m). Hence, we may assume

that µ  d. Because m > n, we have
k�⇡(r)Y

i=1

qi >
d

µ
pk+`

k�1Y
i=⇡(r)+1

pi. (7)

For each i 2 {1, 2, . . . , k � 1 � ⇡(r)}, let xi = p⇡(r)+i, and let yi = qi. If we set

s = k� 1� ⇡(r), X =
d

µ
pk+`, and Y = qk�⇡(r), then we may use Lemma 1 and (7)

to conclude that
k�⇡(r)Y

i=1

(qi � r) >

✓
d

µ
pk+` � r

◆ k�1Y
i=⇡(r)+1

(pi � r).

Thus, because µ  d, we have

Sr(m) = µ

k�⇡(r)Y
i=1

(qi � r) > (dpk+` � rµ)
k�1Y

i=⇡(r)+1

(pi � r)

� d(pk+` � r)
k�1Y

i=⇡(r)+1

(pi � r).

Recalling (4), we have Sr(m) > Sr(n), so the proof is complete.

3. Prime Divisors of Sparsely Schemmel Totient Numbers

In their paper, Masser and Shiu casually mention that 2 is the only sparsely totient
prime power [5], but their brief proof utilizes the fact that, for r = 1, r +1 is prime.
We will see that if r + 1 is prime, then r + 1 is indeed the only sparsely Schemmel
totient number of order r that is a prime power. However, if r + 1 is composite,
there could easily be multiple sparsely Schemmel totient numbers of order r that
are prime powers. The following results will provide an upper bound (in terms of
r) for the values of sparsely Shemmel totient prime powers of order r.
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r Sparsely Schemmel Totient Numbers of Order r
2 3, 15*, 21*, 45*, 105*, 165*, 195, 315*, 345, 525*, 585, 735*, 1155*,

1365*, 1785*, 1995*, 2145, 2415, 2625, 3465*, 4095*, 4305, 4515, 5775*,
5985, 6825, 8085, 8925, 9555, 10395*, 15015*, 19635*, 21945*, 23205,
25935, 26565*, 28875, 31395, 33495, 33915, 35805, 45045*, 47355, 49665,
50505, 58905, 65835, 75075*, 77805, 79695, 82005, 84315, 98175

3 1, 5, 7, 35*, 55, 65, 85, 95, 175*, 245*, 385*, 455*, 595*, 665, 805, 875,
1015, 1085, 1295, 1435, 1925*, 2275, 2695*, 3185, 5005*, 6545*, 7315*,
7735, 8855, 10465, 11165, 11935, 13195, 14245, 15785, 16555, 16835,
18095, 18655, 18865, 25025*, 25795, 27335, 35035*, 36575, 38675, 45815,
55055*, 65065*, 85085*, 95095*

4 5, 35*, 55, 65, 85, 175*, 385*, 455*, 595*, 665, 805, 1015, 1085, 1295,
1925*, 2275, 2695*, 5005*, 6545*, 7315*, 7735, 8855, 10465, 11165,
11935, 13195, 14245, 15785, 16555, 16835, 18095, 25025*, 35035*, 36575,
38675, 45815, 55055*, 85085*, 95095*

5 1, 7, 11, 13, 77*, 91*, 119, 133, 161, 203, 217, 259, 287, 301, 539*,
1001*, 1309*, 1463*, 1547, 1771, 2233, 2387, 2849, 3157, 3311, 3619,
4081, 4543, 7007*, 9163, 11011*, 17017*, 19019*, 23023*, 24871, 29029,
31031, 33649, 37037, 41041, 43043, 47047, 53053, 59059, 61061, 67067,
71071, 73073, 79079, 83083

6 7, 77*, 91*, 119, 133, 161, 203, 217, 259, 1001*, 1309*, 1463*, 1547,
1771, 2233, 2387, 2849, 3157, 3311, 3619, 4081, 7007*, 17017*, 19019*,
23023*, 24871, 29029, 31031, 37037, 41041, 43043, 47047, 53053, 59059,
61061, 67067, 71071, 73073, 79079

Table 1: This table lists all Sparsely Schemmel totient numbers of order r that are
less than 105 for each r 2 {2, 3, 4, 5}. A table of Sparsely totient numbers (r = 1) is
given in [5]. Those numbers constructed by Theorem 1 are marked with asterisks.

Lemma 2. If j 2 N\{1, 2, 4}, then
pj+1

pj
 7

5
.

Proof. Pierre Dusart [2] has shown that, for x � 396 738, there must be at least one

prime in the interval

x, x +

x

25 log2 x

�
. Therefore, whenever pj > 396 738, we may

set x = pj + 1 to get pj+1  (pj + 1) +
pj + 1

25 log2(pj + 1)
<

7
5
pj . Using Mathematica

9.0 [7], we may quickly search through all the primes less than 396 738 to conclude
the desired result.

Lemma 3. Let p be a prime, and let r, ↵, and � be positive integers such that
↵ > 1 and p - �. If p↵� 2 Fr, then p↵�1� 2 Fr.

Proof. Suppose, for the sake of finding a contradiction, that p↵�1� 62 Fr and p↵� 2
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Fr. Because p↵� 2 Fr ✓ Br, we know that p↵�1� 2 Br. Then, because p↵�1� 62 Fr,
there must exist some m 2 Br such that m > p↵�1� and Sr(m)  Sr(p↵�1�) =
p↵�2(p � r)Sr(�). However, this implies that pm > p↵� and Sr(pm)  pSr(m) 
p↵�1(p� r)Sr(�) = Sr(p↵�), which contradicts the fact that p↵� 2 Fr.

Theorem 2. If p is a prime and r is a positive integer, then p 2 Fr if and only if
r < p < (p⇡(r)+1 � r)(p⇡(r)+2 � r) + r.

Proof. First, suppose r < p < (p⇡(r)+1 � r)(p⇡(r)+2 � r) + r, and let m be an
arbitrary element of Br that is greater than p. We will show that Sr(m) > p � r.

If !(m) � 2, then Sr(m) �
!(m)Y
i=1

(p⇡(r)+i � r) � (p⇡(r)+1 � r)(p⇡(r)+2 � r) > p �

r. Therefore, we may assume that !(m) = 1 so that we may write m = q� for
some prime q > r and positive integer �. Furthermore, we may assume � > 1
because if � = 1, then Sr(m) = q � r = m � r > p � r. If r 62 {1, 2, 3, 5},
then it is easy to see, with the help of Lemma 2, that p⇡(r)+2 < 2r. Thus, if
r 62 {1, 2, 3, 5}, then we have Sr(m) = q��1(q�r) � q(q�r) � p⇡(r)+1(p⇡(r)+1�r) >
r(p⇡(r)+1 � r) > (p⇡(r)+1 � r)(p⇡(r)+2 � r) > p � r. If r = 1, then the inequality
p < (p⇡(r)+1� r)(p⇡(r)+2� r) + r forces p = 2, so Sr(m) = q��1(q� r) > 1 = p� r.
If r = 2, then the inequality r < p < (p⇡(r)+1 � r)(p⇡(r)+2 � r) + r forces p = 3,
so Sr(m) = q��1(q � r) > 1 = p � r. If r = 3, then q � 5 and either p = 5 or
p = 7. Therefore, Sr(m) = q��1(q � r) � 5(5� 3) > p � r. Finally, if r = 5, then
p 2 {7, 11, 13} and q � 7. Thus, Sr(m) = q��1(q � r) � 7(7� 5) > p� r.

To prove the converse, suppose p � (p⇡(r)+1 � r)(p⇡(r)+2 � r) + r. We wish to
find some m 2 Br such that m > p and Sr(m)  p� r. We may assume that p >
p⇡(r)+1p⇡(r)+2 because, otherwise, we may simply set m = p⇡(r)+1p⇡(r)+2. We know
that there exists a unique integer t � ⇡(r)+2 such that p⇡(r)+1pt < p < p⇡(r)+1pt+1.
Suppose r > 3 so that, with the help of Lemma 2 and some very short casework, we

may conclude that p⇡(r)+1 
11
7

r and pt+1 
11
7

pt. Then, setting m = p⇡(r)+1pt+1,
we have

Sr(m) = (p⇡(r)+1 � r)(pt+1 � r)  4
7
r

✓
11
7

pt � r

◆

<
44
49

p⇡(r)+1pt �
4
7
r2 < p⇡(r)+1pt � r < p� r.

We now handle the cases in which r  3. If r = 1, then p is odd, so we may set
m = 2p to get S1(m) = S1(2)S1(p) = p� 1 = p� r. If r = 2, then 3 - p, so we may
set m = 3p to find S2(m) = S2(3)S2(p) = p� 2 = p� r. Finally, if r = 3, then we

have 5pt < p < 5pt+1. Set m = 5pt+1. As pt+1 <
5
2
pt, we have 2pt+1 � 3 < p, so

S3(m) = 2(pt+1 � 3) < p� 3 = p� r.
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Theorem 3. Let r be a positive integer, and let p be a prime. Then p2
⇡(r)+1 62 Fr

and p3 62 Fr.

Proof. Suppose p2
⇡(r)+1 2 Fr. Then, as p⇡(r)+1p⇡(r)+2 > p2

⇡(r)+1, we must have
(p⇡(r)+1 � r)(p⇡(r)+2 � r) > p⇡(r)+1(p⇡(r)+1 � r). Therefore, r < p⇡(r)+2 � p⇡(r)+1.
It is easy to see that this inequality fails to hold for all r  10. For r � 11,
we may use Lemma 2 to write p⇡(r)+1 <

p
2r and p⇡(r)+2 <

p
2p⇡(r)+1. Hence,

p⇡(r)+2 � p⇡(r)+1 < (
p

2� 1)p⇡(r)+1 < (2�
p

2)r < r, which is a contradiction.
Now, suppose p3 2 Fr. Then, by Lemma 3, we know that p2 2 Fr, so p > p⇡(r)+1.

Let t be the unique integer such that p⇡(r)+1pt < p2 < p⇡(r)+1pt+1. Then p3 <
p⇡(r)+1pt+1p and p⇡(r)+1 < p < pt+1. Therefore, as p3 2 Fr, we see that Sr(p3) =
p2(p� r) < (p⇡(r)+1 � r)(pt+1 � r)(p� r), implying that p2 < (pt+1 � r)(p⇡(r)+1 �
r) < pt+1(p⇡(r)+1 � r). Using Bertrand’s Postulate, we see that pt+1 < 2pt and
p⇡(r)+1  2r. Therefore, p⇡(r)+1pt < p2 < pt+1(p⇡(r)+1 � r) < 2pt(p⇡(r)+1 � r), so
2r < p⇡(r)+1. This is our desired contradiction.

Combining Lemma 3, Theorem 2, and Theorem 3, we see that any n 2 Fr

satisfying n � ((p⇡(r)+1�r)(p⇡(r)+2�r)+r)2 must have at least two prime factors.
Furthermore, we record the following conjecture about the nonexistence of sparsely
Schemmel totient numbers that are squares of primes. This conjecture has been
checked for all r  16 and p  317.

Conjecture 1. For any prime p and positive integer r, p2 62 Fr.

We now proceed to establish asymptotic results concerning the primes that divide
and do not divide sparsely Schemmel totient numbers. For a given r 2 N and
n 2 Fr, we will define Pk(n) to be the kth largest prime divisor of n (provided
!(n) � k), and we will let Qk(n) denote the kth smallest prime that is larger
than r and does not divide n (the functions Qk depends on r, but this should
not lead to confusion because we will work with fixed values of r). We will let
R(n) = n

Y
p2P
p|n

p�1. We will also make use of the Jacobsthal function J . For a positive

integer n, J(n) is defined to be the smallest positive integer a such that every set
of a consecutive integers contains an element that is relatively prime to n [4]. In
particular, for any positive integer r, J(r#) is the largest possible di↵erence between
consecutive elements of Br. This means that, for any positive real x, the smallest
element of Br that is greater than x is at most x + J(r#). For convenience, we
will write Jr = J(r#). The first sixteen values of Jr (starting with r = 1) are
1, 2, 4, 6, 10, 14, 22, 26, 34, 40, 46, 58, 66, 74, 90, 100.

Finally, we will let �k(r) be the unique positive real root of the polynomial
Jr

r
xk + kx� (k � 1).
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Lemma 4. If r, n, and k are positive integers such that k � 2, n 2 Fr, and
!(n) � k, then Qk�1(n) > �k(r)(Pk(n)� r).

Proof. Write M =
kY

i=1

Pi(n) and N =
k�1Y
i=1

Qi(n). Let µ be the smallest element of

Br that is greater than
M

N
. As noted above, we must have µ <

M

N
+ Jr. Let us

put m =
µN

M
n so that m 2 Br and

1 <
m

n
< 1 +

JrN

M
< 1 + Jr

Qk�1(n)k�1

Pk(n)k
.

Since,
n

M
is an integer that is relatively prime to N , we may use the multiplicativity

of Sr along with (1) to write

Sr(m) = Sr

⇣
µN

n

M

⌘
 µSr

⇣
N

n

M

⌘
= µSr(N)Sr

⇣ n

M

⌘
 µ

Sr(N)Sr(n)
Sr(M)

.

This implies that

Sr(m)
m

 Sr(N)
N

M

Sr(M)
Sr(n)

n
=

k�1Y
i=1

✓
1� r

Qi(n)

◆ kY
j=1

✓
1� r

Pj(n)

◆�1 Sr(n)
n

<

✓
1� r

Qk�1(n)

◆k�1✓
1� r

Pk(n)

◆�k Sr(n)
n

.

Therefore,

Sr(m) <

✓
1 + Jr

Qk�1(n)k�1

Pk(n)k

◆✓
1� r

Qk�1(n)

◆k�1✓
1� r

Pk(n)

◆�k

Sr(n),

so the fact that n 2 Fr implies that
✓

1 + Jr
Qk�1(n)k�1

Pk(n)k

◆✓
1� r

Qk�1(n)

◆k�1✓
1� r

Pk(n)

◆�k

> 1. (8)

Write x1 = Jr
Qk�1(n)k�1

Pk(n)k
, x2 =

r

Qk�1(n)
, and x3 =

r

Pk(n)
so that (8) becomes

(1+x1)(1�x2)k�1(1�x3)�k > 1. Because x1 and x2 are positive and 0 < x3 < 1, we
may invoke the inequalities 1+x1 < ex1 , 1�x2 < e�x2 , and (1�x3)�1 < ex3/(1�x3)

to write
ex1�(k�1)x2+kx3/(1�x3) > 1. (9)

After a little algebraic manipulation, (9) becomes

Jr

r

✓
Qk�1(n)
Pk(n)

◆k

+ k
Qk�1(n)
Pk(n)� r

� (k � 1) > 0.
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Thus, if we write A(x) =
Jr

r
xk + kx� (k � 1), then A

✓
Qk�1(n)
Pk(n)� r

◆
> 0. This

means that
Qk�1(n)
Pk(n)� r

> �k(r), so we are done.

Lemma 5. For any positive integers r and n with n 2 Fr,

P1(n) < Q1(n)
✓

1� Jr +
Jr

r
Q1(n)

◆
.

Proof. Fix r and n, and write P = P1(n) and Q = Q1(n). Suppose, for the sake of
finding a contradiction, that

P � Q

✓
1� Jr +

Jr

r
Q

◆
.

Let µ be the smallest element of Br that is greater than
P

Q
. Then µ <

P

Q
+ Jr. Write

m =
Qµ

P
n so that m 2 Br and 1 <

m

n
< 1 +

JrQ

P
 1 +

Jr

1� Jr + Jr
r Q

. Because m

is divisible by Q and all the prime divisors of n except possibly P , we have

Sr(m)
m


✓

1� r

Q

◆⇣
1� r

P

⌘�1 Sr(n)
n

.

Therefore,

Sr(m) <

✓
1� r

Q

◆⇣
1� r

P

⌘�1
 

1 +
Jr

1� Jr + Jr
r Q

!
Sr(n)


✓

1� r

Q

◆ 
1� r

Q
�
1� Jr + Jr

r Q
�
!�1 

1 +
Jr

1� Jr + Jr
r Q

!
Sr(n)

=
✓

1� r

Q

◆✓
1� Jr +

Jr

r
Q� r

Q

◆�1✓
1 +

Jr

r
Q

◆
Sr(n) = Sr(n).

This is our desired contradiction, so the proof is complete.

For the following lemma, recall that we defined R(n) = n
Y
p2P
p|n

p�1.

Lemma 6. Let r be a positive integer, and let n 2 Fr. Then

R(n) <
Jr

r
Q1(n)(Q1(n)� r).
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Proof. Fix r, and n, and write Q = Q1(n) and R = R(n). Suppose

R � Jr

r
Q(Q� r). Let µ be the smallest element of Br greater than

R

Q
. Then

µ <
R

Q
+ Jr. If we put m =

Qµ

R
n, then m 2 Br and

1 <
m

n
< 1 +

JrQ

R
 1 +

r

Q� r
.

Because m is divisible by Q and all the prime divisors of n, we have

Sr(m)
m


✓

1� r

Q

◆
Sr(n)

n
.

This implies that

Sr(m) <

✓
1� r

Q

◆✓
1 +

r

Q� r

◆
Sr(n) = Sr(n),

which is a contradiction.

Corollary 1. Let r and ⌦ be positive integers, and let

Vr(⌦) =
Jr

r
p⇡(r)+⌦(p⇡(r)+⌦ � r).

If n 2 Fr and n � Vr(⌦)
(Vr(⌦) + p⇡(r)+⌦)#

p⇡(r)#
, then !(n) � ⌦. In particular, for

n 2 Fr,
lim

n!1
!(n) =1.

Proof. We prove the contrapositive. Suppose n 2 Fr and !(n) < ⌦. Then Q1(n) 
p⇡(r)+⌦, so P1(n) < p⇡(r)+⌦

✓
1� Jr +

Jr

r
p⇡(r)+⌦

◆
= Vr(⌦) + p⇡(r)+⌦ by Lemma

5. This implies that R(n) = n
Y
p2P
p|n

p�1 � n
p⇡(r)#

(Vr(⌦) + p⇡(r)+⌦)#
. Lemma 6 tells us

that R(n) < Vr(⌦), so

n  R(n)
(Vr(⌦) + p⇡(r)+⌦)#

p⇡(r)#
< Vr(⌦)

(Vr(⌦) + p⇡(r)+⌦)#
p⇡(r)#

.

Corollary 2. Let r be a positive integer. For su�ciently large n 2 Fr, P1(n)4 - n.
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Proof. For any integer n > 1, write �P1(n)(n) = ⌘(n). Using Lemma 6, we see that,
for any n 2 Fr satisfying n > 1,

P1(n)⌘(n)�1  R(n) <
Jr

r
Q1(n)(Q1(n)� r).

Because Q1(n) is at most the smallest prime exceeding P1(n), we may use Bertrand’s
Postulate to write

Jr

r
Q1(n)(Q1(n)� r)  2

Jr

r
P1(n)(2P1(n)� r) < 4

Jr

r
P1(n)2.

If P1(n)4|n, then ⌘(n)� 1 � 3, so P1(n) < 4
Jr

r
. By Corollary 1, we see that this is

impossible for su�ciently large n.

Masser and Shiu show that P1(n)3 - n for all sparsely totient numbers n, but
their methods are not obviously generalizable [5]. Thus, we make the following
conjecture, which has been checked for all r  16 and n  100000.

Conjecture 2. For any positive integers r and n with n 2 Fr and n > 1, P1(n)3 - n.

For small values of r, we may e↵ortlessly make small amounts of progress toward
Conjecture 2. For example, it is easy to use Lemma 6 to show that P1(n)4 - n for all

n 2 F2. Indeed, if P1(n)4|n for some n 2 F2, then P1(n) < 4 · J2

2
= 4. This forces

n to be a power of 3, but Theorem 3 tells us that there are no powers of 3 in F2

except 3 itself.
We are finally ready to establish our promised asymptotic results.

Theorem 4. Let r, K, and L be positive integers with K � 2. For n 2 Fr, we have

(a) lim sup
n!1

P1(n)
log n

� 2,

(b) lim sup
n!1

QL(n)
log n

= 1,

(c) lim sup
n!1

PK(n)
log n

 �K(r)�1,

(d) lim sup
n!1

P1(n)
log2 n

 Jr

r
.

Proof. To prove (a), let us begin by choosing some integer k � ⇡(r)+2. Let `(k) be

the largest integer such that pk+`(k) < 2pk�r. Setting n(k) = pk+`(k)

k�1Y
i=⇡(r)+1

pi, we
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see, by Theorem 1, that n(k) 2 Fr. Furthermore, as
kY

i=⇡(r)+1

pi  n(k) <
k+1Y

i=⇡(r)+1

pi,

the Prime Number Theorem tells us that pk ⇠ log n(k) as k !1. Thus, as k !1,
P1(n(k)) = pk+`(k) ⇠ 2pk ⇠ 2 log n(k).

To prove (b), choose any n 2 Fr with n > 1, and let k(n) be the unique integer sat-

isfying
k(n)Y

i=⇡(r)+1

pi  n <

k(n)+1Y
i=⇡(r)+1

pi. Using the Prime Number Theorem again, we

have QL(n)  pk(n)+L ⇠ log n as n!1. In addition, for those n 2 Fr (guaranteed

by Theorem 1) of the form n =
k(n)Y

i=⇡(r)+1

pi, we see that QL(n) = pk(n)+L ⇠ log n.

Corollary 1 guarantees that the limit in (c) is well-defined. To prove the limit,
we use Lemma 4 to find that if n 2 Fr and !(n) � K, then

PK(n)
log n

< �K(r)�1 QK�1(n)
log n

+
r

log n
.

Then the desired result follows from setting L = K � 1 in (b).
Finally, (d) follows immediately from Lemma 5 and from setting L = 1 in (b).
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