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Abstract
Let A = {ay,as,...,ar} be a set of k relatively prime positive integers. Let pa(n)
denote the number of partitions of n with parts belonging to A. The aim of this
note is to provide a simple proof of the following well-known asymptotic relation of

pa(n):
nk—1

ajaz - ag)(k— 1)

pa(n) ~ (

1. Introduction and Motivation

A partition of a positive integer n is a finite nonincreasing sequence of positive
integers (21,2, - ,&m) such that &1 + 23 + -+ + 2, = n. The x; are called the
parts of the partition. Let A be a set of positive integers. The partition function
pa(n) is defined as the number of partitions of n with parts belonging to A.

The generating function of p4(n) is

Spata =] 1 (1)

acA

with pa(0) = 1; this generating function is valid in the interval |z| < 1.
For ged(A) # 1, we have

pa(n) ={ bedn (#(A)) if ged(A)ln,

0 otherwise
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where the set ﬁ@ = {ﬁ(A) ta € A}. Thus, it is expedient to assume always
that ged(A4) = 1.

The function p4(n) is more appealing when A is a finite set of relatively prime
integers. Throughout this note, we assume A to be a finite set of relatively prime
positive integers. T. C. Brown, Wun-Seng Chou and Peter J. S. Shiue [3] found
exact formulas for p4(n) when |A| = 2 or 3. The exact formula for p4(n) can also
be found by means of partial fraction decomposition of its generating function (see
[6]). Gert Almkvist [1] provided the exact formula for p4(n), without the usage of
partial fraction decomposition of its generating function. The following asymptotic
relation of p4(n) is well-known.

Theorem 1. Let A = {a1,a9, - ,ar} be a set of k relatively prime positive inte-
gers. Then the following asymptotic relation holds true:
k—1
n
pa(n) ~ 2)

(arag -+ -ag) (k= 1)

In 1927, E. Netto [8] pioneered in providing a proof of this theorem and subse-
quently, in 1972, G. Polya and G. Szegd [9] gave another proof; in both the proofs
partial fraction decomposition of the generating function was utilized. In 1942, Paul
Erdos [5] proved this result for the case: A ={1,2,---,k}. In 1991, S. Sertoz and
A. E. Ozlik [11] found another proof by wielding the following recurrence relation:

1= Y Cuilpali) —pa(i—(a1---ax))]

i=n—k+2
for n > (a1 ---ax) — (a1 + -+ ax) + k — 2, where

co— { ()™ (*2) for0<m<k-—2
" 0 otherwise.
In 2000, Melvyn B. Nathanson [7] obtained an arithmetic proof.
The aim of this note is to provide a new proof of this historical result. The
proof furnished in this note is based on the fact that: the function p4(n) is a quasi
polynomial.

Definition 2. An arithmetical function f is said to be a Quasi polynomial if,
flal +7) is a polynomial in 1 for each r = 0,1,--- ;o — 1, where « is a positive
integer greater than 1. Each polynomial f(al+7) is called a constituent polynomial
of f and « s called a quasi period of f.

In 1943, E. T. Bell [2] found that the function p4(n) is a quasi polynomial by
means of partial fraction decomposition of its generating function. In 1961, E.
M. Wright [12] reestablished this finding by extracting the term (1 — x*)~* from
the generating function of pa(n), where t = lem(ay,- - ,axr). In 2006, using a
similar method, O. J. Rgdseth and J. A. Sellers [10] obtained the quasi polynomial
representation of p4(n) in binomial coefficients form.
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2. Proof of Theorem 1

2.1. A Recurrence Relation Satisfied by pa(n)
Following recurrence relation is crucial to our proof.

Lemma 3. Let n be a positive integer and let a € A. Then, we have

pa(n) =pa(n —a) +pa(ap(n), (3)
provided a < n.
Proof. Let m = (x1,22, -+ ,Z;m) be a partition of n with parts belonging to A and
let a € A.

Case (i) Assume that z; = a for some ¢. Then 7 is of the form: 7 = (21, - ,24-1,q,
Xit1,* ,Tm). We enumerate this kind of partitions of n; to that end, we consider
the mapping:

(xlu e 7xi717a71‘i+17 tee 7:1:m) - (xlv e 7xi717xi+17 e 7xm)7

which clearly establishes a one to one correspondence between the following sets:
e The set of all partitions of n with parts belonging to A and having a as a part;
e The set of all partitions of n — a with parts belonging to A.

By the definition, the cardinality of the latter set is p4(n — a). Thus, the number
of partitions of n of this type is pa(n — a).

Case(ii) Assume that x; # a Vi = 1,2,--- ,m. Then, it is not hard to see that,
the enumeration of such partitions is pA\{a}(n). Thus, the result follows. O

2.2. Main Part of the Proof
As the consequences of Lemma 3, we will show that:

1. The function p4(n) is a quasi polynomial with a quasi period ajas - - ag .

2. Each constituent polynomial of p4(n) is of degree k — 1.

k—2
3. The leading coefficient of each constituent polynomial of p4(n) is %
At this juncture, we note that: establishing the above three statements completes
the proof as one can get from these statements that
palaras---apl + 1) 1

li =
o (arag---agl + 1)kt (ajaz---ax) (k—1)!

for each r = 0,1, -+ ;ajas - - -ag — 1; and the targeted estimate follows readily from
this limit.
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Now, we prove Statements 1, 2, and 3 simultaneously by using induction on k.
Suppose that &k = 2. Let A = {aj,as} with ged(ag,a2) = 1. Then applying
Lemma 3 a; times, we get

alfl

palaragl +7) —palaraz(l—1) +71) = Z Plary(@1azl + 1 —iag) 4)
i=0
for each r =0,1,--- ,a1a2 — 1. Since the congruence equation

asx = r(mod ay)

has an unique solution modulo a; (see [4] pp. 83-84), the right side of the equation
(4) equals 1. Then replacing [ by 1,--- ,1 in equation (4) and adding, we get that

palarasl + 1) =1+ pa(r)

foreachr =0,1,2,--- ,a1a3—1. Thus, the function p4(n) is a quasi polynomial with
2—-2
each constituent polynomial having degree 1 and leading coefficient 1 = %
Assume that the result is true when |A| < k for a fixed & > 3. Consider a set
of k positive integers say A = {a1,as9, - ,ar} with ged(ag,az,---,a;) = 1. Let
s = ged(ag, a9, -+ ,ap—1). Then applying Lemma 3 ajas---ax—1 times again, we
get
palar---agl+71)—palar---ap(l—1)+7r) (5)
= Z Play,,ap_.} (@1 apl +1r —iag)

0<i<ai--ar—1—1;s|(r—iay)

= Z p{ﬂ akl—l} (%"‘E(akskiZl‘qu')"'Ti)

s T s s

0<i<ai---ap—1—1;s|(r—iag)

for each r = 0,1,--- ,a1a2---ar — 1, where r; and ¢; were determined from the
equality ™% = #5%k=Lg; 4 r;; here, uniqueness of r; and ¢; and the bound

0 <7y < B2t — 1 follows from the division algorithm.
It is well-known that the congruence equation

arz = r(mod s) (6)

has a solution if and only if ged(ag, s)|r (see [4] pp. 83-84). Furthermore, in such
case eqn(6) will have ged(ag, s) number of mutually incongruent solution modulo s.
Here ged(ag,s) = 1 and hence eqn(6) has an unique solution modulo s.

Since ged(4,---, #=1)=1, by induction assumption, it follows that the right
side of the equation (5) is a sum of % polynomials and each of which is of

k=3 ak=25(t=2)7

degree k — 2 with leading coefficient (“324=1) Gz Consequently, the
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right side sum of the equation (5) is a polynomial of degree k — 2. This implies that
pa(ay -« - agl+r) is a polynomial in [ of degree k—1 for eachr = 0,1,--- ;a1 -+ - ap—1.

Now, we calculate the leading coefficient of ps(ay - - - axl + 7). If one denotes the
leading coefficient of the polynomial p4(a; - - - apl+7r) by cx—1, then by the previous
observations it follows that

(ay---ag)F2
k —_ 1 _ = -
(k= Lex k-2
which simplifies to
Ck—1 (1 ap)*

The proof is now completed.
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