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Abstract
Let A = {a1, a2, . . . , ak} be a set of k relatively prime positive integers. Let pA(n)
denote the number of partitions of n with parts belonging to A. The aim of this
note is to provide a simple proof of the following well-known asymptotic relation of
pA(n):

pA(n) ⇠ nk�1

(a1a2 · · · ak)(k � 1)!
.

1. Introduction and Motivation

A partition of a positive integer n is a finite nonincreasing sequence of positive
integers (x1, x2, · · · , xm) such that x1 + x2 + · · · + xm = n. The xi are called the
parts of the partition. Let A be a set of positive integers. The partition function
pA(n) is defined as the number of partitions of n with parts belonging to A.

The generating function of pA(n) is

1X
n=0

pA(n)xn =
Y
a2A

1
1� xa

(1)

with pA(0) = 1; this generating function is valid in the interval |x| < 1.
For gcd(A) 6= 1, we have

pA(n) =

(
p A

gcd(A)

⇣
n

gcd(A)

⌘
if gcd(A)|n,

0 otherwise
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where the set A
gcd(A) =

n
a

gcd(A) : a 2 A
o
. Thus, it is expedient to assume always

that gcd(A) = 1.
The function pA(n) is more appealing when A is a finite set of relatively prime

integers. Throughout this note, we assume A to be a finite set of relatively prime
positive integers. T. C. Brown, Wun-Seng Chou and Peter J. S. Shiue [3] found
exact formulas for pA(n) when |A| = 2 or 3. The exact formula for pA(n) can also
be found by means of partial fraction decomposition of its generating function (see
[6]). Gert Almkvist [1] provided the exact formula for pA(n), without the usage of
partial fraction decomposition of its generating function. The following asymptotic
relation of pA(n) is well-known.

Theorem 1. Let A = {a1, a2, · · · , ak} be a set of k relatively prime positive inte-
gers. Then the following asymptotic relation holds true:

pA(n) ⇠ nk�1

(a1a2 · · · ak) (k � 1)!
. (2)

In 1927, E. Netto [8] pioneered in providing a proof of this theorem and subse-
quently, in 1972, G. Polya and G. Szegö [9] gave another proof; in both the proofs
partial fraction decomposition of the generating function was utilized. In 1942, Paul
Erdos [5] proved this result for the case: A = {1, 2, · · · , k}. In 1991, S. Sertoz and
A. E. Ozlük [11] found another proof by wielding the following recurrence relation:

1 =
nX

i=n�k+2

Cn�i[pA(i)� pA(i� (a1 · · · ak))]

for n > (a1 · · · ak)� (a1 + · · · + ak) + k � 2, where

Cm =
⇢

(�1)m
�k�2

m

�
for 0  m  k � 2

0 otherwise.

In 2000, Melvyn B. Nathanson [7] obtained an arithmetic proof.
The aim of this note is to provide a new proof of this historical result. The

proof furnished in this note is based on the fact that: the function pA(n) is a quasi
polynomial.

Definition 2. An arithmetical function f is said to be a Quasi polynomial if,
f(↵l + r) is a polynomial in l for each r = 0, 1, · · · ,↵ � 1, where ↵ is a positive
integer greater than 1. Each polynomial f(↵l + r) is called a constituent polynomial
of f and ↵ is called a quasi period of f .

In 1943, E. T. Bell [2] found that the function pA(n) is a quasi polynomial by
means of partial fraction decomposition of its generating function. In 1961, E.
M. Wright [12] reestablished this finding by extracting the term (1 � xt)�k from
the generating function of pA(n), where t = lcm(a1, · · · , ak). In 2006, using a
similar method, O. J. Rødseth and J. A. Sellers [10] obtained the quasi polynomial
representation of pA(n) in binomial coe�cients form.



INTEGERS: 15 (2015) 3

2. Proof of Theorem 1

2.1. A Recurrence Relation Satisfied by pA(n)

Following recurrence relation is crucial to our proof.

Lemma 3. Let n be a positive integer and let a 2 A. Then, we have

pA(n) = pA(n� a) + pA\{a}(n), (3)

provided a  n.

Proof. Let ⇡ = (x1, x2, · · · , xm) be a partition of n with parts belonging to A and
let a 2 A.

Case (i) Assume that xi = a for some i. Then ⇡ is of the form: ⇡ = (x1, · · · , xi�1, a,
xi+1, · · · , xm). We enumerate this kind of partitions of n; to that end, we consider
the mapping:

(x1, · · · , xi�1, a, xi+1, · · · , xm) ! (x1, · · · , xi�1, xi+1, · · · , xm) ,

which clearly establishes a one to one correspondence between the following sets:

• The set of all partitions of n with parts belonging to A and having a as a part;

• The set of all partitions of n� a with parts belonging to A.

By the definition, the cardinality of the latter set is pA(n � a). Thus, the number
of partitions of n of this type is pA(n� a).

Case(ii) Assume that xi 6= a 8i = 1, 2, · · · ,m. Then, it is not hard to see that,
the enumeration of such partitions is pA\{a}(n). Thus, the result follows.

2.2. Main Part of the Proof

As the consequences of Lemma 3, we will show that:

1. The function pA(n) is a quasi polynomial with a quasi period a1a2 · · · ak .

2. Each constituent polynomial of pA(n) is of degree k � 1.

3. The leading coe�cient of each constituent polynomial of pA(n) is (a1a2···ak)k�2

(k�1)! .

At this juncture, we note that: establishing the above three statements completes
the proof as one can get from these statements that

lim
l!1

pA(a1a2 · · · akl + r)
(a1a2 · · · akl + r)k�1

=
1

(a1a2 · · · ak) (k � 1)!

for each r = 0, 1, · · · , a1a2 · · · ak� 1; and the targeted estimate follows readily from
this limit.
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Now, we prove Statements 1, 2, and 3 simultaneously by using induction on k.
Suppose that k = 2. Let A = {a1, a2} with gcd(a1, a2) = 1. Then applying

Lemma 3 a1 times, we get

pA(a1a2l + r)� pA(a1a2(l � 1) + r) =
a1�1X
i=0

p{a1}(a1a2l + r � ia2) (4)

for each r = 0, 1, · · · , a1a2 � 1. Since the congruence equation

a2x ⌘ r(mod a1)

has an unique solution modulo a1 (see [4] pp. 83-84), the right side of the equation
(4) equals 1. Then replacing l by 1, · · · , l in equation (4) and adding, we get that

pA(a1a2l + r) = l + pA(r)

for each r = 0, 1, 2, · · · , a1a2�1. Thus, the function pA(n) is a quasi polynomial with
each constituent polynomial having degree 1 and leading coe�cient 1 = (a1a2)

2�2

(2�1)! .
Assume that the result is true when |A| < k for a fixed k � 3. Consider a set

of k positive integers say A = {a1, a2, · · · , ak} with gcd(a1, a2, · · · , ak) = 1. Let
s = gcd(a1, a2, · · · , ak�1). Then applying Lemma 3 a1a2 · · · ak�1 times again, we
get

pA(a1 · · · akl + r)� pA(a1 · · · ak(l� 1) + r) (5)

=
X

0ia1···ak�1�1;s|(r�iak)

p{a1,··· ,ak�1}(a1 · · · akl + r � iak)

=
X

0ia1···ak�1�1;s|(r�iak)

p{ a1
s ,··· , ak�1

s }
⇣a1

s
· · · ak�1

s
(aksk�2l + qi) + ri

⌘

for each r = 0, 1, · · · , a1a2 · · · ak � 1, where ri and qi were determined from the
equality r�iak

s = a1···ak�1
sk�1 qi + ri; here, uniqueness of ri and qi and the bound

0  ri  a1···ak�1
sk�1 � 1 follows from the division algorithm.

It is well-known that the congruence equation

akx ⌘ r(mod s) (6)

has a solution if and only if gcd(ak, s)|r (see [4] pp. 83-84). Furthermore, in such
case eqn(6) will have gcd(ak, s) number of mutually incongruent solution modulo s.
Here gcd(ak, s) = 1 and hence eqn(6) has an unique solution modulo s.

Since gcd(a1
s , · · · , ak�1

s )=1, by induction assumption, it follows that the right
side of the equation (5) is a sum of a1···ak�1

s polynomials and each of which is of

degree k � 2 with leading coe�cient
�a1···ak�1

sk�1

�k�3 ak�2
k s(k�2)2

(k�2)! . Consequently, the
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right side sum of the equation (5) is a polynomial of degree k�2. This implies that
pA(a1 · · · akl+r) is a polynomial in l of degree k�1 for each r = 0, 1, · · · , a1 · · · ak�1.

Now, we calculate the leading coe�cient of pA(a1 · · · akl + r). If one denotes the
leading coe�cient of the polynomial pA(a1 · · · akl+r) by ck�1, then by the previous
observations it follows that

(k � 1)ck�1 =
(a1 · · · ak)k�2

(k � 2)!
,

which simplifies to

ck�1 =
(a1 · · · ak)k�2

(k � 1)!
.

The proof is now completed.
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