MONOCHROMATIC SOLUTIONS OF EXPONENTIAL EQUATIONS

Tom Brown
Department of Mathematics, Simon Fraser University, Burnaby, B. C., Canada
tbrown@sfu.ca

Received: 1/13/14, Revised: 10/6/14, Accepted: 1/26/15, Published: 6/15/15

Abstract

We show that for every 2 -coloring of \mathbb{N} and every $k \in \mathbb{N}$, there are infinitely many monochromatic solutions of the system of k^{2} equations $z_{i j}=x_{i}^{y_{j}}, 1 \leq i, j \leq k$, where $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ are distinct positive integers greater than 1 . We give similar, but somewhat weaker, results for more than two colors. - Dedicated to the memory of Paul Erdős.

1. Introduction

Using ultrafilters and results from [3, 4], Alessandro Sisto [5] showed that every 2coloring of \mathbb{N} gives infinitely many monochromatic sets of the form $\left\{a, b, a^{b}\right\}$, where $a, b>1, a \neq b$, and he raised the question of whether there is an elementary proof of this fact.

We use van der Waerden's Theorem on arithmetic progressions to give an elementary proof of a generalization of Sisto's result. We show that for any 2-coloring of \mathbb{N} and any $k \in \mathbb{N}$, there are infinitely many monochromatic sets of the form

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2} \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

where $a_{1}, \ldots, a_{k}, e_{1}, \ldots, e_{k}$ are distinct positive integers greater than 1.
We also show that for any 3-coloring of \mathbb{N} and any $k \in \mathbb{N}$, either there are monochromatic sets as just mentioned, or there are monochromatic sets of the form

$$
\left\{c^{a_{1}}, c^{a_{2}}, \cdots, c^{a_{k}}, c^{e_{1}}, c^{e_{2}}, \cdots, c^{e_{k}}\right\} \cup\left\{c^{a_{i}^{e_{j}}}: 1 \leq i, j \leq k\right\}
$$

where c is a power of 3 .
Analogous results hold for more than 3 colors. For example, for any 4-coloring of \mathbb{N} and any $k \in \mathbb{N}$, either there are monochromatic sets of one of the previous two types, or there are monochromatic sets of the form

$$
\left\{b^{c^{a_{1}}}, b^{c^{a_{2}}}, \cdots, b^{c^{a_{k}}}, b^{c^{e_{1}}}, b^{c^{e_{2}}}, \cdots, b^{c^{e_{k}}}\right\} \cup\left\{\left(b^{c^{a_{i}^{e_{i}}}}: 1 \leq i, j \leq k\right\}\right.
$$

where b, c are powers of 3 .
In each case, $a_{1}, \ldots, a_{k}, e_{1}, \ldots, e_{k}$ are distinct positive integers greater than 1.
A somewhat different result was proved (using non-elementary methods) by Beiglböck et al $[1,2]$: For every finite coloring of \mathbb{N} and $k \in \mathbb{N}$, there are $a, b, d \in \mathbb{N}$ such that $\left\{b(a+i d)^{j}: 0 \leq i, j \leq k\right\} \cup\left\{b d^{j}: 0 \leq j \leq k\right\} \cup\{a+i d: 0 \leq i \leq k\}$ is monochromatic.

2. Two Colors

Definition 1. For $k \in \mathbb{N}$, an exponential k-set is a set of the form

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2} \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

where $a_{1}, \ldots, a_{k}, e_{1}, \ldots, e_{k}$ are distinct positive integers greater than 1 .
Thus, an exponential k-set can be viewed as a non-trivial solution in \mathbb{N}, with distinct $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$, of the system of equations

$$
z_{i j}=x_{i}^{y_{j}}, 1 \leq i, j \leq k
$$

Theorem 1. For every 2-coloring of \mathbb{N} and $k \in \mathbb{N}$ there exists a monochromatic exponential k-set, that is, there exist distinct positive integers a_{1}, a_{2}, $\cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}$, all greater than 1 , such that

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

is monochromatic.
Proof. Let us first carry out the proof for $k=1$, which illustrates, without the complications which will come later, the basic scheme of the proof.

Let f be a 2 -coloring of \mathbb{N}, using the colors 0 and 1 . We seek a monochromatic set $\left\{a_{1}, e_{1}, a_{1}^{e_{1}}\right\}$ where $a_{1}, e_{1}>1, a_{1} \neq e_{1}$. We define

$$
g(x)=f\left(2^{3^{x}}\right), x \geq 1
$$

By van der Waerden's Theorem on arithmetic progressions, there are $p, d^{\prime} \in \mathbb{N}$ with g constant on $\left\{p, p+d^{\prime}, p+2 d^{\prime}, \ldots, p+16 d^{\prime}\right\}$.

In particular, with $d=2 d^{\prime}, g$ is constant on $\{p, p+d, p+2 d, \ldots, p+8 d\}$, and $d \geq 2$ Thus,

$$
\left\{2^{3^{p+j d}}: 0 \leq j \leq 8\right\}
$$

is monochromatic with respect to f, say with colour 0 , and $d \geq 2$. There are now two cases to consider.

Case 1. There exists $x, 1 \leq x \leq 8$, with $f\left(3^{x d}\right)=0$. Set $a_{1}=2^{3^{p}}, e_{1}=3^{x d}$. Then $\left\{a_{1}, e_{1}, a_{1}^{e_{1}}\right\}$ is monochromatic, and $a_{1} \neq e_{1}$.

Case 2. $f\left(3^{x d}\right)=1,1 \leq x \leq 8$. If there exists $x, 2 \leq x \leq 8$, with $f(x)=1$, then $\left\{3^{d}, x, 3^{x d}\right\}$ is monochromatic and $3^{d} \neq x$, since $x \leq 8<3^{d}$. If no such x exists, then $f(x)=0,2 \leq x \leq 8$, and $\{2,3,8\}$ is monochromatic.

Now we turn to the general proof for $k>1$. Let k be fixed, with $k>1$.

Let f be a 2 -coloring of \mathbb{N}, using the colors 0 and 1 , and define

$$
g(x)=f\left(2^{3^{x}}\right), x \geq 1
$$

We require g to be constant on an arithmetic progression with $w+1$ terms, where w is defined as follows.

Definition 2. The numbers $t_{0}, t_{1}, \ldots, t_{2 k-1}$ are defined inductively by setting

$$
t_{0}=1, t_{q+1}=\left(t_{q}+k\right)^{2\left(t_{q}+2 k\right)}, 0 \leq q \leq 2 k-2
$$

Then we set

$$
w=2 t_{2 k-1}
$$

By van der Waerden's Theorem there are $p, d^{\prime} \in \mathbb{N}$ so that g is constant on $\left\{p, p+d^{\prime}, p+2 d^{\prime}, \ldots, p+e w d^{\prime}\right\}$, where e is large enough that $3^{e} \geq w$. Then in particular, with $d=e d^{\prime}, g$ is constant on $\{p, p+d, p+2 d, \ldots, p+w d\}$, where $3^{d} \geq 3^{e} \geq w$. (The inequality $3^{d} \geq w$ will be used below only in "Subcase 2 a .")

Hence,

$$
\left\{2^{3^{p}}, 2^{3^{p+d}}, 2^{3^{p+2 d}}, \ldots, 2^{3^{p+w d}}\right\}
$$

is monochromatic with respect to f, say with color 0 , and $3^{d} \geq w$.
Let

$$
T=\left\{j \in[1, w / 2]: f\left(3^{j d}\right)=0\right\}
$$

There are now two cases to consider.
Case 1. $|T| \geq k$. Let $x_{1}, \ldots, x_{k} \in T$. Then $x_{j} \leq w / 2,1 \leq j \leq k$, and

$$
f\left(3^{x_{j} d}\right)=0,1 \leq j \leq k
$$

In this case, we take

$$
\begin{gathered}
a_{i}=2^{3^{p+x_{i} d}}, 1 \leq i \leq k \\
e_{j}=3^{x_{j} d}, 1 \leq j \leq k
\end{gathered}
$$

Then

$$
a_{i}^{e_{j}}=2^{3^{p+\left(x_{i}+x_{j}\right) d}}, \text { and } x_{i}+x_{j} \leq 2(w / 2)=w
$$

hence

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

is monochromatic, with color 0 , and clearly $a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}$ are distinct and greater than 1.

Case 2. $|T|<k$. Thus,

$$
f\left(3^{x d}\right)=1, x \in[1, w / 2]-T, \text { and }|T| \leq k-1
$$

Subcase 2 a . There exist $y_{1}, y_{2}, \ldots, y_{k}$, with the following two properties:

$$
\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \cup\left\{y_{i} y_{j}: 1 \leq i, j \leq k\right\} \subset[1, w / 2]-T
$$

and

$$
f\left(y_{i}\right)=1,1 \leq i \leq k
$$

Then we have $f\left(3^{x d}\right)=1$ whenever $x=y_{i}$ or $x=y_{i} y_{j}, 1 \leq i, j \leq k$, and $f\left(y_{i}\right)=1,1 \leq i \leq k$. Hence f is constant, with color 1 , on the set

$$
\left\{3^{y_{1} d}, 3^{y_{2} d}, \ldots, 3^{y_{k} d}, y_{1}, y_{2}, \ldots, y_{k}\right\} \cup\left\{\left(3^{y_{i} d}\right)^{y_{j}}: 1 \leq i, j \leq k\right\}
$$

We may assume $y_{1}<y_{2}<\cdots<y_{k}$, so that $3^{y_{1} d}<3^{y_{2} d}<\cdots<3^{y_{k} d}$. To show that $3^{y_{1} d}, 3^{y_{2} d}, \ldots, 3^{y_{k} d}, y_{1}, y_{2}, \ldots, y_{k}$ are distinct, we simply note that $y_{k}<w \leq 3^{d} \leq$ $3^{y_{1} d}$, and hence

$$
y_{1}<y_{2}<\cdots<y_{k}<3^{y_{1} d}<3^{y_{2} d}<\cdots<3^{y_{k} d}
$$

Subcase 2b. There do not exist numbers $y_{1}, y_{2}, \ldots, y_{k}$ as in Subcase 2a. This means that for any

$$
\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \cup\left\{y_{i} y_{j}: 1 \leq i, j \leq k\right\} \subset[1, w / 2]-T
$$

there is at least one $i, 1 \leq i \leq k$, such that $f\left(y_{i}\right)=0$.
Now we make explicit use of the numbers $t_{0}, \ldots, t_{2 k-1}$ defined above.
Definition 3. The sets $A_{q} \subset B_{q}, 1 \leq q \leq 2 k-1$, are defined inductively by setting

$$
\begin{aligned}
A_{1} & =\left[t_{0}+1,\left(t_{0}+k\right)^{t_{0}+2 k}\right], B_{1}=\left[t_{0}+1,\left(t_{0}+k\right)^{2\left(t_{0}+2 k\right)}\right]=\left[t_{0}+1, t_{1}\right], \\
A_{q+1} & =\left[t_{q}+1,\left(t_{q}+k\right)^{t_{q}+2 k}\right], B_{q+1}=\left[t_{q}+1,\left(t_{q}+k\right)^{2\left(t_{q}+2 k\right)}\right]=\left[t_{q}+1, t_{q+1}\right] .
\end{aligned}
$$

Note that for each $q, 0 \leq q \leq 2 k-2$, we can write

$$
A_{q+1}=\left[t_{q}+1, t_{q}+2 k\right] \cup\left[t_{q}+2 k+1,\left(t_{q}+k\right)^{t_{q}+2 k}\right]
$$

so that if we take

$$
\left[t_{q}+1, t_{q}+2 k\right]=\left[a_{1}, a_{2}, \ldots, a_{k}, e_{1}, e_{2}, \ldots, e_{k}\right]
$$

then A_{q+1} contains the exponential k-set

$$
\left\{a_{1}, \ldots, a_{k}, e_{1}, \ldots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

Also, recall that max $B_{2 k-1}=t_{2 k-1}=w / 2$, hence

$$
B_{1} \cup \cdots \cup B_{2 k-1} \subset[1, w / 2]
$$

We shall show that one of the sets A_{i} is monochromatic under f, with color 0 .
We have $2 k-1$ pairwise disjoint subsets $B_{1}, \ldots, B_{2 k-1}$ of $[1, w / 2]$, and, since $|T|<k$, at most $k-1$ of them can meet T. Hence, there are k sets $B_{i_{1}}, \ldots, B_{i_{k}}$ (we assume that $i_{1}<\cdots<i_{k}$) such that

$$
B_{i_{1}} \cup \cdots \cup B_{i_{k}} \subset[1, w / 2]-T
$$

(In Lemma 2 below, we consider the corresponding union $A_{i_{1}} \cup \cdots \cup A_{i_{k}}$.)
Lemma 1. If $i \leq j$ and $y \in A_{i}, z \in A_{j}$, then $y z \in B_{j}$.
Proof. From the definitions of A_{j}, B_{j}, we can simplify the notation to write $A_{j}=$ $[a, b], B_{j}=\left[a, b^{2}\right]$. Then $y \in A_{i}, z \in A_{j}$ implies $2 \leq y \leq b$ and $a \leq z \leq b$, therefore $a \leq z<y z \leq b^{2}$, hence $y z \in B_{j}$.

Lemma 2. Let $S=\left\{y \in A_{i_{1}} \cup \cdots \cup A_{i_{k}}: f(y)=1\right\}$, and assume that $B_{i_{1}} \cup \cdots \cup B_{i_{k}} \subset$ $[1, w / 2]-T$. Then $|S|<k$.

Proof. Suppose $|S| \geq k$. Let $y_{1}, \ldots, y_{k} \in S \subset A_{i_{1}} \cup \cdots \cup A_{i_{k}}$. Then by Lemma 2.1,

$$
\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \cup\left\{y_{i} y_{j}: 1 \leq i, j \leq k\right\} \subset B_{i_{1}} \cup \cdots \cup B_{i_{k}} \subset[1, w / 2]-T
$$

But since we are in Subcase 2b, this immediately implies that $f\left(y_{i}\right)=0$ for some i, a contradiction.

Thus, we now have $|S|<k$ and

$$
\text { if } y \in A_{i_{1}} \cup \cdots \cup A_{i_{k}}-S \text { then } f(y)=0
$$

Since S can meet at most $k-1$ of the intervals $A_{i_{1}}, \cdots, A_{i_{k}}$, there is some $q, 1 \leq q \leq k$, such that

$$
f(y)=0, y \in A_{i_{q}}
$$

Since $A_{i_{q}}$ contains an exponential k-set, this finishes the proof of Theorem 1.

Corollary 1. Given $A, k \in \mathbb{N}$, there exists $M(A, k) \in \mathbb{N}, M(A, k)>A$, such that for every 2-coloring of $[A, M(A, k))$ there exists a monochromatic exponential k-set.

Proof. The exponential $(A+k)$-set

$$
\left\{a_{1}, \ldots, a_{A+k}, e_{1}, \ldots, e_{A+k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq A+k\right\}
$$

where we can assume that $a_{1}<\cdots<a_{A+k}$ and $e_{1}<\cdots<e_{A+k}$, contains the exponential k-set

$$
\left\{a_{A+1}, \ldots, a_{A+k}, e_{A+1}, \ldots, e_{A+k}\right\} \cup\left\{a_{i}^{e_{j}}: A+1 \leq i, j \leq A+k\right\}
$$

which is contained in $[A, \infty)$.
Thus, given any 2 -coloring f of $[A, \infty)$, extend f arbitrarily to a 2 -coloring of \mathbb{N}. By Theorem 1, there exists a monochromatic exponential $(A+k)$-set, which contains an exponential k-set in $[A, \infty)$. By compactness, the result follows.

Corollary 1 is the basis of the proofs for the results involving more than 2 colors.
Corollary 2. For every 2-coloring of \mathbb{N} and $k \in \mathbb{N}$ there exist infinitely many monochromatic exponential k-sets.

Proof. This follows immediately from Corollary 1.

3. Three and Four Colors

Theorem 2. For every 3-coloring of \mathbb{N} and $k \in \mathbb{N}$ there exist distinct $a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}$, all greater than 1 , and $c=3^{d}>1$ such that

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

or

$$
\left\{c^{a_{1}}, c^{a_{2}}, \cdots, c^{a_{k}}, c^{e_{1}}, c^{e_{2}}, \cdots, c^{e_{k}}\right\} \cup\left\{c^{a_{i}^{e_{j}}}: 1 \leq i, j \leq k\right\}
$$

is monochromatic.
Proof. Let $k \in \mathbb{N}$ and let f be a 3 -coloring of \mathbb{N}, using the colors $0,1,2$. Using the notation of Corollary 1, define $W_{q}, 1 \leq q \leq k$ by setting

$$
W_{1}=M(1, k), W_{q+1}=M\left(W_{q}, k\right), 1 \leq q \leq k-1
$$

We follow closely the first part of the proof of Theorem 1.
By van der Waerden's Theorem, there are $p, d \in \mathbb{N}$ so that

$$
\left\{2^{3^{p}}, 2^{3^{p+d}}, 2^{3^{p+2 d}}, \ldots, 2^{3^{p+2 W_{k} d}}\right\}
$$

is monochromatic with respect to f, say with color 0 .
Let

$$
T=\left\{j \in\left[1, W_{k}\right): f\left(3^{j d}\right)=0\right\}
$$

so that

$$
f\left(3^{j d}\right) \in\{1,2\}, \forall j \in\left[1, W_{k}\right)-T
$$

There are now two cases to consider.
Case 1. $|T| \geq k$. We proceed exactly as in Case 1 of the proof of Theorem 1 , to obtain a monochromatic set of colour 0

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

Case 2. $|T|<k$. We make use of Corollary 1. Consider the intervals

$$
\left[1, W_{1}\right),\left[W_{1}, W_{2}\right), \ldots,\left[W_{k-1}, W_{k}\right)
$$

The set T can meet at most $k-1$ of these intervals, so for some q we have

$$
\left[W_{q}, W_{q+1}\right) \subset\left[1, W_{k}\right]-T
$$

Thus $g(j)=f\left(3^{j d}\right), j \in\left[W_{q}, W_{q+1}\right)$ is a 2-coloring of $\left[W_{q}, M\left(W_{q}, k\right)\right)$ and by the definition of $M\left(W_{q}, k\right)$ there is an exponential k-set

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

which is monochromatic with respect to g.
Hence, with $c=3^{d}$, we have $g\left(a_{1}\right)=f\left(c^{a_{1}}\right), g\left(a_{2}\right)=f\left(c^{a_{2}}\right), \ldots$, so that

$$
\left\{c^{a_{1}}, c^{a_{2}}, \cdots, c^{a_{k}}, c^{e_{1}}, c^{e_{2}}, \cdots, c^{e_{k}}\right\} \cup\left\{c^{a_{i}^{e_{j}}}: 1 \leq i, j \leq k\right\}
$$

is monochromatic with respect to f.
Corollary 3. Given $A, k \in \mathbb{N}$, there exists $M(A, k) \in \mathbb{N}$ such that for every 3coloring of $[A, M(A, k))$ there are distinct $a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}$, all greater than 1 , and $c=3^{d}, d \in \mathbb{N}$, such that

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

or

$$
\left\{c^{a_{1}}, c^{a_{2}}, \cdots, c^{a_{k}}, c^{e_{1}}, c^{e_{2}}, \cdots, c^{e_{k}}\right\} \cup\left\{c^{a_{i}^{e_{j}}}: 1 \leq i, j \leq k\right\}
$$

is monochromatic.
Proof. The proof is exactly the same as the proof of Corollary 1.

Theorem 3. For every 4-coloring of \mathbb{N} and $k \in \mathbb{N}$ there exist distinct $a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}$, all greater than $1, c=3^{d}, b=3^{d^{\prime}}, d, d^{\prime} \in \mathbb{N}$ such that

$$
\left\{a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}\right\} \cup\left\{a_{i}^{e_{j}}: 1 \leq i, j \leq k\right\}
$$

or

$$
\left\{c^{a_{1}}, c^{a_{2}}, \cdots, c^{a_{k}}, c^{e_{1}}, c^{e_{2}}, \cdots, c^{e_{k}}\right\} \cup\left\{c^{a_{i}^{e_{j}}}: 1 \leq i, j \leq k\right\}
$$

or

$$
\left\{b^{c^{a_{1}}}, b^{c^{a_{2}}}, \cdots, b^{c^{a_{k}}}, b^{c^{e_{1}}}, b^{c^{e_{2}}}, \cdots, b^{c^{e_{k}}}\right\} \cup\left\{\left(b^{c^{e_{i}^{e_{i}}}}: 1 \leq i, j \leq k\right\}\right.
$$

is monochromatic.
Proof. The proof is virtually the same as the proof of Theorem 2, here using Corollary 3 instead of Corollary 1.

4. The General Case

Theorem 4. Let $r, k \in \mathbb{N}$ and let an r-coloring of \mathbb{N} be given. If $r=2$ there exist infinitely many monochromatic exponential k-sets. If $r>2$, either there are infinitely many monochromatic exponential k-sets, or there exist $1 \leq s \leq r-2$, and infinitely many monochromatic sets of the form

where $a_{1}, a_{2}, \cdots, a_{k}, e_{1}, e_{2}, \cdots, e_{k}$ are distinct positive integers greater than 1 , and the $c_{i}, 1 \leq i \leq s$, are (not necessarily distinct) powers of 3 .

In fact, given $A, r \in \mathbb{N}$, there is $M(A, k, r)$ such that, for every r-coloring of the interval $[A, M(A, k, r))$, there exists a monochromatic set of one of these types.

Proof. The proof is by induction on r, following the methods of the proofs of Theorem 2 and Corollary 1.

We conclude this paper by proposing the following questions.

Questions. Does every r-coloring of \mathbb{N} give a monochromatic set $\left\{a, b, a^{b}\right\}$, with $a, b>1, a \neq b$? Does every 2-coloring of \mathbb{N} give a monochromatic solution of

$$
w=x^{y^{z}} ?
$$

Let $h(k)$ denote the smallest n such that for any 2 -coloring of $[1, n]$ there exists a monochromatic exponential k-set. Let $W(k)$ denote the smallest n such that for
any 2-coloring of $[1, n]$ there exists a monochromatic k-term arithmetic progression. The proof of Theorem 2.1 shows that $h(1) \leq 2^{3^{W(16)}}$ and that $h(2)$ is bounded above, roughly speaking, by $2^{3^{W\left(s \cdot 3^{s}\right)}}$, where $s=40 \cdot 3^{20 \cdot 3^{10}}$. Perhaps these bounds can be decreased a bit.

Acknowledgement. The author is indebted to the referee for many useful comments.

References

[1] Mathias Beiglböck, A variant of the Hales-Jewett theorem, Bull. Lond. Math. Soc. 40 (2008), 210-216.
[2] Mathias Beiglböck, Vitaly Bergelson, Neil Hindman, Dona Strauss, Some new results in multiplicative and additive Ramsey theory, Trans. Amer. Math. Soc. 360 (2008), 819-847.
[3] V. Bergelson, Combinatorial and Diophantine applications of ergodic theory, Handbook of Dynamical Systems, Vol. 1B, Elsevier B. V., Amsterdam, 2006, pp. 745-869.
[4] Neil Hindman, Dona Strauss. Algebra in the Stone-Čech compactification. Theory and applications, de Gruyter, Berlin, 1998.
[5] A. Sisto. Exponential Triples. Electron. J. Combin. 18 (2011), \#P147.

