ON DIVISIBILITY OF GENERALIZED FIBONACCI NUMBERS

Miho Aoki ${ }^{1}$
Department of Mathematics, Shimane University, Matsue, Shimane, Japan
aoki@riko.shimane-u.ac.jp
Yuho Sakai
Department of Mathematics, Shimane University, Matsue, Shimane, Japan
s149410@matsu.shimane-u.ac.jp

Received: 4/6/14, Revised: 2/15/15, Accepted: 4/8/15, Published: 6/5/15

Abstract

It is well-known that p divides some Fibonacci numbers F_{n} for any prime number p. Moreover, it is also known that any Lucas number L_{n} cannot be divided by 5. Let p be a prime number and $d(p)$ be the smallest positive integer n for which $p \mid F_{n}$. In this article, we consider the generalized Fibonacci sequence $\left\{G_{n}\right\}$, which satisfies the Fibonacci recurrence relation, but with arbitrary initial conditions. We define an equivalence relation among the sequences $\left\{G_{n}\right\}$ and give all equivalence classes $\overline{\left\{G_{n}\right\}}$, whose representatives $\left\{G_{n}\right\}$ satisfy $p \nmid G_{n}$ for any $n \in \mathbb{N}$. From the result, we know that if $p \equiv \pm 1(\bmod 5)$, then there are infinitely many generalized Fibonacci sequences $\left\{G_{n}\right\}$ that satisfy $p \nmid G_{n}$ for any $n \in \mathbb{N}$, and if $p \equiv \pm 2(\bmod 5)$ and $d(p)=p+1$, then for any generalized Fibonacci sequences $\left\{G_{n}\right\}$, we have $p \mid G_{n}$ for some $n \in \mathbb{N}$.

1. Introduction and Main Result

We define the generalized Fibonacci sequence $\left\{G_{n}\right\}$ by

$$
G_{1}, G_{2} \in \mathbb{Z} \quad \text { and } \quad G_{n+2}=G_{n+1}+G_{n} \text { for any } n \geq 1
$$

Many interesting properties of the sequences are known ([2, especially see $\S 7$ and $\S 17])$. We fix a prime number p and let $d(p)$ be the order of appearance of p for the Fibonacci sequence $\left\{F_{n}\right\}$, which is defined as the smallest positive integer n such that $F_{n} \equiv 0(\bmod p)$. By the periodicity modulo $p([2, \S 35])$, we have $F_{n} \equiv 0$ $(\bmod p)$ if and only if $n \equiv 0(\bmod d(p))$. Furthermore, we know $d(p) \leq p+1$ from the well-known properties of Fibonacci numbers.

[^0]Lemma 1. ([2, §34, Theorem 34.8])
(1) If $p \equiv \pm 1(\bmod 5)$, then we have $F_{p-1} \equiv 0(\bmod p)$.
(2) If $p \equiv \pm 2(\bmod 5)$, then we have $F_{p+1} \equiv 0(\bmod p)$.

For any integer G that is not divisible by p, we denote an inverse element modulo p by $G^{-1}(\in \mathbb{Z})$ (i.e., $G G^{-1} \equiv 1(\bmod p)$). Let $\left\{G_{n}\right\}$ and $\left\{G_{n}^{\prime}\right\}$ be generalized Fibonacci sequences that satisfy $p \nmid G_{1}, G_{2}$ and $p \nmid G_{1}^{\prime}, G_{2}^{\prime}$. If $G_{2} G_{1}^{-1} \equiv G_{2}^{\prime} G_{1}^{\prime-1}$ $(\bmod p)$, then we write $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$. This relation \sim is an equivalence relation. We denote the quotient set of this relation by

$$
X_{p}=\left\{\left\{G_{n}\right\} \mid \text { generalized Fibonacci sequences that satisfy } p \nmid G_{1}, G_{2}\right\} / \sim .
$$

By the definition of the relation \sim, each class $\overline{\left\{G_{n}\right\}} \in X_{p}$ contains infinitely many generalized Fibonacci sequences. The number of equivalence classes $\overline{\left\{G_{n}\right\}}$ of X_{p} is $\left|X_{p}\right|=\left|\mathbb{F}_{p}^{\times}\right|=p-1$. Furthermore, we define the subset Y_{p} of X_{p} by

$$
Y_{p}=\left\{\overline{\left\{G_{n}\right\}} \in X_{p} \mid p \nmid G_{n} \quad \text { for any } \quad n \in \mathbb{N}\right\} .
$$

We know that Y_{p} is well-defined; the condition " $p \nmid G_{n}$ for any $n \in \mathbb{N}$ " does not depend on a representative $\left\{G_{n}\right\}$ by the following lemma.
Lemma 2. Assume $p \nmid G_{1}, G_{2}, p \nmid G_{1}^{\prime}, G_{2}^{\prime}$, and $\left\{G_{n}\right\} \sim\left\{G_{n}^{\prime}\right\}$. Then we have $p \nmid G_{n}$ if and only if $p \nmid G_{n}^{\prime}$ for any $n \in \mathbb{N}$.

For any positive integers i which satisfy $i \not \equiv 0(\bmod d(p))$, let $g_{i}\left(0 \leq g_{i} \leq p-1\right)$ be the integer such that $g_{i} \equiv F_{i+1} F_{i}^{-1}(\bmod p)$. The next lemma is the key to proving our main theorem. The key lemma shows that the ratios of successive Fibonacci numbers modulo p have the period $d(p)$.

Lemma 3. Let i and j be positive integers which satisfy $i, j \not \equiv 0(\bmod d(p))$. We have $g_{i}=g_{j}$ if and only if $i \equiv j(\bmod d(p))$.

We denote the generalized Fibonacci sequence $\left\{G_{n}\right\}$ such that $G_{1}=a$, and $G_{2}=$ $b(a, b \in \mathbb{Z})$ by $\{G(a, b)\}$. For example, $\left\{F_{n}\right\}=\{G(1,1)\}$ and $\left\{L_{n}\right\}=\{G(1,3)\}$. We can write $X_{p}=\{\overline{\{G(1, k)\}} \mid 1 \leq k \leq p-1\}$. Our main theorem is as follows.

Theorem 1. (1) $Y_{p}=X_{p}-\left\{\overline{\left\{G\left(1, g_{i}\right)\right\}} \mid 1 \leq i \leq d(p)-2\right\}$.
(2) $\left|Y_{p}\right|=p+1-d(p)$.

The next corollary immediately follows from Theorem 1, Lemma 1 , and $d(5)=5$.
Corollary 1. (1) $\left|Y_{5}\right|=1$.
(2) If $p \equiv \pm 1(\bmod 5)$, then there are infinitely many generalized Fibonacci sequences $\left\{G_{n}\right\}$ that satisfy $p \nmid G_{n}$ for any $n \in \mathbb{N}$.
(3) If $p \equiv \pm 2(\bmod 5)$ and $d(p)=p+1$, then for any generalized Fibonacci sequence $\left\{G_{n}\right\}$, we have $p \mid G_{n}$ for some $n \in \mathbb{N}$.

If $p \equiv \pm 2(\bmod 5)$, then we have $d(p) \leq p+1$ by Lemma 1 (2). Furthermore, we get $d(p) \mid p+1$ by a brief discussion (cf. [3, Lemma 2.2 (c)]). We give a necessary condition for $d(p)=p+1$ below. We obtained the following lemma from a private discussion with Yasuhiro Kishi.

Lemma 4. Let p be an odd prime number. If $d(p)=p+1$, then we have $p \equiv 3$ $(\bmod 4)$.

Proof. Applying the property $F_{n+m}=F_{m} F_{n+1}+F_{m-1} F_{n}$ for $(n, m)=\left(\frac{p-1}{2}, \frac{p+1}{2}\right)$ and $(n, m)=\left(\frac{p+1}{2}, \frac{p+3}{2}\right)$, we get $F_{\frac{p+1}{2}}^{2}+F_{\frac{p-1}{2}}^{2}=F_{p}$ and $F_{\frac{p+3}{2}}^{2}+F_{\frac{p+1}{2}}^{2}=F_{p+2}$. By our assumption $d(p)=p+1$, Lemma 1 , and $d(5)=5$, we have $p \equiv \pm 2(\bmod 5)$. On the other hand, we get $F_{p} \equiv-1(\bmod p)([1$, Theorem 6$])$, and also $F_{p+2} \equiv-1$ $(\bmod p)$ since $F_{p+1} \equiv 0(\bmod p)$. Hence we get $F_{\frac{p+1}{2}}^{2}+F_{\frac{p-1}{2}}^{2} \equiv-1(\bmod p)$ and $F_{\frac{p+3}{2}}^{2}+F_{\frac{p+1}{2}}^{2} \equiv-1(\bmod p)$. Furthermore, since

$$
\begin{aligned}
-1 \equiv F_{\frac{p+3}{2}}^{2}+F_{\frac{p+1}{2}}^{2} \quad(\bmod p) & =\left(F_{\frac{p+1}{2}}+F_{\frac{p-1}{2}}\right)^{2}+F_{\frac{p+1}{2}}^{2} \\
& \equiv 2 F_{\frac{p+1}{2}} F_{\frac{p-1}{2}}-1+F_{\frac{p+1}{2}}^{2} \quad(\bmod p)
\end{aligned}
$$

we conclude $F_{\frac{p+1}{2}}\left(2 F_{\frac{p-1}{2}}+F_{\frac{p+1}{2}}\right) \equiv 0(\bmod p)$ and hence $F_{\frac{p+1}{2}} \equiv-2 F_{\frac{p-1}{2}}(\bmod p)$ by our assumption that $d(p)=p+1$. We get $-1 \equiv F_{\frac{p+1}{2}}^{2}+F_{\frac{p-1}{2}}^{2} \equiv 5 F_{\frac{p-1}{2}}^{2}(\bmod p)$. If we assume $p \equiv 1(\bmod 4)$, then we have

$$
\left(\frac{5 F_{\frac{p-1}{2}}^{2}}{p}\right)=\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=\left(\frac{ \pm 2}{5}\right)=-1 \quad \text { and } \quad\left(\frac{-1}{p}\right)=1
$$

These contradict $5 F_{\frac{p-1}{2}}^{2} \equiv-1(\bmod p)$. Hence we get $p \equiv 3(\bmod 4)$.
The primes p which satisfy $p<100$ and the condition $d(p)=p+1$ are $p=$ $3,7,23,43,67,83$.

2. Proofs

First, we prove Lemma 2 and Lemma 3.
Proof of Lemma 2. Let a be the integer which satisfies $a \equiv G_{2} G_{1}^{-1} \equiv G_{2}^{\prime} G_{1}^{\prime-1}$ $(\bmod p)$ and $1 \leq a \leq p-1$, and $\left\{A_{n}\right\}$ be the generalized Fibonacci sequence defined by $A_{1}=1$ and $A_{2}=a$. Then, we have $G_{n} \equiv A_{n} G_{1}$ and $G_{n}^{\prime} \equiv A_{n} G_{1}^{\prime}(\bmod p)$
for all $n \in \mathbb{N}$. As p does not divide G_{1} and G_{1}^{\prime}, we have $p \mid G_{n}$ if and only if $p \mid G_{n}^{\prime}$.

Proof of Lemma 3. We consider two subsequences of $F_{n} \bmod p$:

$$
\begin{aligned}
& F_{i}, F_{i+1} \equiv g_{i} F_{i}, \quad F_{i+2} \equiv\left(1+g_{i}\right) F_{i}, F_{i+3} \equiv\left(1+2 g_{i}\right) F_{i}, \cdots \\
& F_{j}, F_{j+1} \equiv g_{j} F_{j}, \quad F_{j+2} \equiv\left(1+g_{j}\right) F_{j}, \quad F_{j+3} \equiv\left(1+2 g_{j}\right) F_{j}, \cdots
\end{aligned}
$$

Assume $g_{i}=g_{j}$ and let k be a positive integer. Because p does not divide F_{i} and F_{j}, we have $F_{i+k} \equiv 0(\bmod p)$ if and only if $F_{j+k} \equiv 0(\bmod p)$. We conclude that $i+k \equiv j+k(\bmod d(p))$ for some $k \in \mathbb{N}$, and obtain $i \equiv j(\bmod d(p))$.

Conversely, we assume $i \equiv j(\bmod d(p))$. Let $\left\{I_{n}\right\}$ and $\left\{J_{n}\right\}$ be the generalized Fibonacci sequences which are defined as $I_{1}=J_{1}=1$ and $I_{2}=g_{i}, J_{2}=g_{j}$. We denote the above two subsequences $\bmod p$ by

$$
\begin{aligned}
& F_{i}, F_{i+1} \equiv I_{2} F_{i}, \quad F_{i+2} \equiv I_{3} F_{i}, F_{i+3} \equiv I_{4} F_{i}, \cdots \\
& F_{j}, F_{j+1} \equiv J_{2} F_{j}, \quad F_{j+2} \equiv J_{3} F_{j}, F_{j+3} \equiv J_{4} F_{j}, \cdots
\end{aligned}
$$

By the assumption that $i \equiv j(\bmod d(p))$, for any positive integer k, we have $i+k \equiv 0(\bmod d(p))$ if and only if $j+k \equiv 0(\bmod d(p))$. Therefore, we have $F_{i+k} \equiv 0(\bmod p)$ if and only if $F_{j+k} \equiv 0(\bmod p)$. Since p does not divide F_{i} and F_{j}, we get $I_{k+1} \equiv 0(\bmod p)$ if and only if $J_{k+1} \equiv 0(\bmod p)$. By the formulas
$I_{k+1}=F_{k-1} I_{1}+F_{k} I_{2}=F_{k-1}+F_{k} g_{i} \quad$ and $\quad J_{k+1}=F_{k-1} J_{1}+F_{k} J_{2}=F_{k-1}+F_{k} g_{j}$,
we have $F_{k} g_{i} \equiv F_{k} g_{j}(\bmod p)$. Since $k \not \equiv 0(\bmod d(p))$ by $i, j \not \equiv 0(\bmod d(p))$, we have $g_{i} \equiv g_{j}(\bmod p)$. Furthermore, since $0 \leq g_{i}, g_{j} \leq p-1$, we get $g_{i}=g_{j}$.

Proposition 1. Assume $p \nmid G_{1}, G_{2}$. For all positive integers n which satisfy $n \not \equiv 2$ $(\bmod d(p))$, we have $p \mid G_{n}$ if and only if $-G_{1} G_{2}^{-1} \equiv g_{n-2}(\bmod p)$.

Proof. This follows from the well-known formula $G_{n}=F_{n-2} G_{1}+F_{n-1} G_{2}$.
Proposition 2. Assume $p \nmid G_{1}, G_{2}$. We have $p \mid G_{n}$ for some $n \in \mathbb{N}$ if and only if $-G_{1} G_{2}^{-1} \equiv g_{i}(\bmod p)$ for some i which satisfies $1 \leq i \leq d(p)-2$.

Proof. If $n \equiv 2(\bmod d(p))$, then we have $G_{n}=F_{n-2} G_{1}+F_{n-1} G_{2} \equiv F_{n-1} G_{2} \not \equiv 0$ $(\bmod p)$. Furthermore, if $i=d(p)-1$, then we have $-G_{1} G_{2}^{-1} \not \equiv g_{i}(\bmod p)$ as we have assumed $p \nmid G_{1}$ and $g_{d(p)-1} \equiv F_{d(p)} F_{d(p)-1}^{-1} \equiv 0(\bmod p)$. Hence it suffices to show that we have $p \mid G_{n}$ for some $n \in \mathbb{N}$ which satisfies $n \not \equiv 2(\bmod d(p))$ if and only if $-G_{1} G_{2}^{-1} \equiv g_{i}(\bmod p)$ for some i which satisfies $1 \leq i \leq d(p)-1$. This follows from Proposition 1 and Lemma 3.

Next, we prove the main theorem.

Proof of Theorem 1. (1) Since the Fibonacci numbers satisfy $F_{n+m}=F_{m} F_{n+1}+$ $F_{m-1} F_{n}$, we have $0 \equiv F_{d(p)}=F_{i+(d(p)-i)}=F_{d(p)-i} F_{i+1}+F_{d(p)-i-1} F_{i}(\bmod p)$ for any $i(1 \leq i \leq d(p)-2)$. Therefore, $g_{i} \equiv-g_{d(p)-i-1}^{-1}(\bmod p)$. By Lemma 3 and Proposition 2, we have

$$
\begin{aligned}
& Y_{p}=X_{p}-\left\{\overline{\left\{G_{n}\right\}} \in X_{p}|p| G_{n} \text { for some } n \in \mathbb{N}\right\} \\
&=X_{p}-\left\{\overline{\{G(1, k)\}} \mid 1 \leq k \leq p-1,-k^{-1} \equiv g_{i}(\bmod p)\right. \\
&\quad \text { for some } i(1 \leq i \leq d(p)-2)\} \\
&=X_{p}-\left\{\overline{\{G(1, k)\}} \mid 1 \leq k \leq p-1,-k^{-1} \equiv g_{d(p)-i-1}(\bmod p)\right. \\
&\quad \text { for some } i(1 \leq i \leq d(p)-2)\} \\
&=X_{p}-\left\{\overline{\{G(1, k)\}} \mid 1 \leq k \leq p-1, k \equiv-g_{d(p)-i-1}^{-1}(\bmod p)\right. \\
&\quad \text { for some } i(1 \leq i \leq d(p)-2)\} \\
&=X_{p}-\left\{\overline{\left\{G\left(1, g_{i}\right)\right\}} \mid 1 \leq i \leq d(p)-2\right\} .
\end{aligned}
$$

(2) By Lemma 3, we know $g_{i} \neq g_{j}$ if $1 \leq i, j \leq d(p)-2$ and $i \neq j$. Hence we conclude $\left|Y_{p}\right|=\left|X_{p}\right|-(d(p)-2)=(p-1)-(d(p)-2)=p+1-d(p)$.

3. Examples

p	$d(p)$	Y_{p}
3	4	\emptyset
5	5	$\overline{\left\{L_{n}\right\}}(=\overline{\{G(1,3)\}})$
7	8	\emptyset
11	10	$\overline{\{G(1,4)\}}, \overline{\{G(1,8)\}}$
13	7	$\overline{\{G(1,3)\}}, \overline{\{G(1,4)\}}, \overline{\{G(1,5)\}}, \overline{\{G(1,7)\}}, \overline{\{G(1,9)\}}, \overline{\{G(1,11)\}}$
17	9	$\overline{\{G(1,10)\}}$,
19	18	$\overline{\{G(1,3)\}}, \overline{\{G(1,4)\}}, \overline{\{G(1,6)\}}, \overline{\{G(1,7)\}}, \overline{\{G(1,9)\}}, \overline{\{G(1,)\}}, \overline{\{G(1,14)\}}, \overline{\{G(1,15)\}}$

Table 1. Y_{p} for small prime numbers p

Acknowledgments The authors would like to express their gratitude to the referee and the editor for their valuable comments and suggestions. We added Lemma 4 by referee's suggestion. We also want to thank Y. Kishi for telling us the proof of Lemma 4.

References

[1] V. E., Jr. Hoggatt and M. Bicknell, Some congruences of the Fibonacci numbers modulo a prime p, Math. Mag. 47, 210-214 (1974).
[2] T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, New York (2001).
[3] D. Marques, The order of appearance of integers at most one away from Fibonacci numbers, Fibonacci Quart. 50, no.1, 36-43(2012).

[^0]: ${ }^{1}$ This work was supported by JSPS KAKENHI Grant Numbers 26400015.

