

ON DIVISIBILITY OF GENERALIZED FIBONACCI NUMBERS

Miho Aoki¹

Department of Mathematics, Shimane University, Matsue, Shimane, Japan aoki@riko.shimane-u.ac.jp

Yuho Sakai

Department of Mathematics, Shimane University, Matsue, Shimane, Japan s149410@matsu.shimane-u.ac.jp

Received: 4/6/14, Revised: 2/15/15, Accepted: 4/8/15, Published: 6/5/15

Abstract

It is well-known that p divides some Fibonacci numbers F_n for any prime number p. Moreover, it is also known that any Lucas number L_n cannot be divided by 5. Let p be a prime number and d(p) be the smallest positive integer n for which $p \mid F_n$. In this article, we consider the generalized Fibonacci sequence $\{G_n\}$, which satisfies the Fibonacci recurrence relation, but with arbitrary initial conditions. We define an equivalence relation among the sequences $\{G_n\}$ and give all equivalence classes $\overline{\{G_n\}}$, whose representatives $\{G_n\}$ satisfy $p \nmid G_n$ for any $n \in \mathbb{N}$. From the result, we know that if $p \equiv \pm 1 \pmod{5}$, then there are infinitely many generalized Fibonacci sequences $\{G_n\}$ that satisfy $p \nmid G_n$ for any $n \in \mathbb{N}$, and if $p \equiv \pm 2 \pmod{5}$ and d(p) = p + 1, then for any generalized Fibonacci sequences $\{G_n\}$, we have $p|G_n$ for some $n \in \mathbb{N}$.

1. Introduction and Main Result

We define the generalized Fibonacci sequence $\{G_n\}$ by

 $G_1, G_2 \in \mathbb{Z}$ and $G_{n+2} = G_{n+1} + G_n$ for any $n \ge 1$.

Many interesting properties of the sequences are known ([2, especially see §7 and §17]). We fix a prime number p and let d(p) be the order of appearance of p for the Fibonacci sequence $\{F_n\}$, which is defined as the smallest positive integer n such that $F_n \equiv 0 \pmod{p}$. By the periodicity modulo p ([2, §35]), we have $F_n \equiv 0 \pmod{p}$ if and only if $n \equiv 0 \pmod{d(p)}$. Furthermore, we know $d(p) \leq p + 1$ from the well-known properties of Fibonacci numbers.

¹This work was supported by JSPS KAKENHI Grant Numbers 26400015.

Lemma 1. ([2, §34, Theorem 34.8])

- (1) If $p \equiv \pm 1 \pmod{5}$, then we have $F_{p-1} \equiv 0 \pmod{p}$.
- (2) If $p \equiv \pm 2 \pmod{5}$, then we have $F_{p+1} \equiv 0 \pmod{p}$.

For any integer G that is not divisible by p, we denote an inverse element modulo p by $G^{-1}(\in \mathbb{Z})$ (i.e., $GG^{-1} \equiv 1 \pmod{p}$). Let $\{G_n\}$ and $\{G'_n\}$ be generalized Fibonacci sequences that satisfy $p \nmid G_1, G_2$ and $p \nmid G'_1, G'_2$. If $G_2G_1^{-1} \equiv G'_2G'_1^{-1} \pmod{p}$, then we write $\{G_n\} \sim \{G'_n\}$. This relation \sim is an equivalence relation. We denote the quotient set of this relation by

 $X_p = \{\{G_n\} \mid \text{generalized Fibonacci sequences that satisfy } p \nmid G_1, G_2\} / \sim$.

By the definition of the relation \sim , each class $\overline{\{G_n\}} \in X_p$ contains infinitely many generalized Fibonacci sequences. The number of equivalence classes $\overline{\{G_n\}}$ of X_p is $|X_p| = |\mathbb{F}_p^{\times}| = p - 1$. Furthermore, we define the subset Y_p of X_p by

$$Y_p = \{\overline{\{G_n\}} \in X_p \mid p \nmid G_n \text{ for any } n \in \mathbb{N}\}.$$

We know that Y_p is well-defined; the condition " $p \nmid G_n$ for any $n \in \mathbb{N}$ " does not depend on a representative $\{G_n\}$ by the following lemma.

Lemma 2. Assume $p \nmid G_1, G_2, p \nmid G'_1, G'_2$, and $\{G_n\} \sim \{G'_n\}$. Then we have $p \nmid G_n$ if and only if $p \nmid G'_n$ for any $n \in \mathbb{N}$.

For any positive integers i which satisfy $i \neq 0 \pmod{d(p)}$, let $g_i (0 \leq g_i \leq p-1)$ be the integer such that $g_i \equiv F_{i+1}F_i^{-1} \pmod{p}$. The next lemma is the key to proving our main theorem. The key lemma shows that the ratios of successive Fibonacci numbers modulo p have the period d(p).

Lemma 3. Let *i* and *j* be positive integers which satisfy $i, j \not\equiv 0 \pmod{d(p)}$. We have $g_i = g_j$ if and only if $i \equiv j \pmod{d(p)}$.

We denote the generalized Fibonacci sequence $\{G_n\}$ such that $G_1 = a$, and $G_2 = b$ $(a, b \in \mathbb{Z})$ by $\{G(a, b)\}$. For example, $\{F_n\} = \{G(1, 1)\}$ and $\{L_n\} = \{G(1, 3)\}$. We can write $X_p = \{\overline{\{G(1, k)\}} \mid 1 \le k \le p - 1\}$. Our main theorem is as follows.

Theorem 1. (1) $Y_p = X_p - \{\overline{\{G(1,g_i)\}} \mid 1 \le i \le d(p) - 2\}.$

(2) $|Y_p| = p + 1 - d(p).$

The next corollary immediately follows from Theorem 1, Lemma 1, and d(5) = 5.

Corollary 1. (1) $|Y_5| = 1$.

(2) If $p \equiv \pm 1 \pmod{5}$, then there are infinitely many generalized Fibonacci sequences $\{G_n\}$ that satisfy $p \nmid G_n$ for any $n \in \mathbb{N}$.

(3) If $p \equiv \pm 2 \pmod{5}$ and d(p) = p + 1, then for any generalized Fibonacci sequence $\{G_n\}$, we have $p|G_n$ for some $n \in \mathbb{N}$.

If $p \equiv \pm 2 \pmod{5}$, then we have $d(p) \leq p+1$ by Lemma 1 (2). Furthermore, we get d(p)|p+1 by a brief discussion (cf. [3, Lemma 2.2 (c)]). We give a necessary condition for d(p) = p+1 below. We obtained the following lemma from a private discussion with Yasuhiro Kishi.

Lemma 4. Let p be an odd prime number. If d(p) = p + 1, then we have $p \equiv 3 \pmod{4}$.

Proof. Applying the property $F_{n+m} = F_m F_{n+1} + F_{m-1} F_n$ for $(n,m) = \left(\frac{p-1}{2}, \frac{p+1}{2}\right)$ and $(n,m) = \left(\frac{p+1}{2}, \frac{p+3}{2}\right)$, we get $F_{\frac{p+1}{2}}^2 + F_{\frac{p-1}{2}}^2 = F_p$ and $F_{\frac{p+3}{2}}^2 + F_{\frac{p+1}{2}}^2 = F_{p+2}$. By our assumption d(p) = p + 1, Lemma 1, and d(5) = 5, we have $p \equiv \pm 2 \pmod{5}$. On the other hand, we get $F_p \equiv -1 \pmod{p}$ ([1, Theorem 6]), and also $F_{p+2} \equiv -1 \pmod{p}$ since $F_{p+1} \equiv 0 \pmod{p}$. Hence we get $F_{\frac{p+1}{2}}^2 + F_{\frac{p-1}{2}}^2 \equiv -1 \pmod{p}$ and $F_{\frac{p+3}{2}}^2 + F_{\frac{p+1}{2}}^2 \equiv -1 \pmod{p}$. Furthermore, since

$$\begin{aligned} -1 &\equiv F_{\frac{p+3}{2}}^2 + F_{\frac{p+1}{2}}^2 \pmod{p} &= \left(F_{\frac{p+1}{2}} + F_{\frac{p-1}{2}}\right)^2 + F_{\frac{p+1}{2}}^2 \\ &\equiv 2F_{\frac{p+1}{2}}F_{\frac{p-1}{2}} - 1 + F_{\frac{p+1}{2}}^2 \pmod{p}, \end{aligned}$$

we conclude $F_{\frac{p+1}{2}}\left(2F_{\frac{p-1}{2}} + F_{\frac{p+1}{2}}\right) \equiv 0 \pmod{p}$ and hence $F_{\frac{p+1}{2}} \equiv -2F_{\frac{p-1}{2}} \pmod{p}$ by our assumption that d(p) = p+1. We get $-1 \equiv F_{\frac{p+1}{2}}^2 + F_{\frac{p-1}{2}}^2 \equiv 5F_{\frac{p-1}{2}}^2 \pmod{p}$. If we assume $p \equiv 1 \pmod{4}$, then we have

$$\left(\frac{5F_{\frac{p-1}{2}}^2}{p}\right) = \left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = \left(\frac{\pm 2}{5}\right) = -1 \quad \text{and} \quad \left(\frac{-1}{p}\right) = 1.$$

These contradict $5F_{\frac{p-1}{2}}^2 \equiv -1 \pmod{p}$. Hence we get $p \equiv 3 \pmod{4}$.

The primes p which satisfy p < 100 and the condition d(p) = p + 1 are p = 3, 7, 23, 43, 67, 83.

2. Proofs

First, we prove Lemma 2 and Lemma 3.

Proof of Lemma 2. Let a be the integer which satisfies $a \equiv G_2 G_1^{-1} \equiv G'_2 G'_1^{-1}$ (mod p) and $1 \leq a \leq p-1$, and $\{A_n\}$ be the generalized Fibonacci sequence defined by $A_1 = 1$ and $A_2 = a$. Then, we have $G_n \equiv A_n G_1$ and $G'_n \equiv A_n G'_1 \pmod{p}$ for all $n \in \mathbb{N}$. As p does not divide G_1 and G'_1 , we have $p|G_n$ if and only if $p|G'_n$. \Box

Proof of Lemma 3. We consider two subsequences of $F_n \mod p$:

$$F_i, \ F_{i+1} \equiv g_i F_i, \ F_{i+2} \equiv (1+g_i) F_i, \ F_{i+3} \equiv (1+2g_i) F_i, \cdots,$$
$$F_j, F_{j+1} \equiv g_j F_j, \ F_{j+2} \equiv (1+g_j) F_j, \ F_{j+3} \equiv (1+2g_j) F_j, \cdots.$$

Assume $g_i = g_j$ and let k be a positive integer. Because p does not divide F_i and F_j , we have $F_{i+k} \equiv 0 \pmod{p}$ if and only if $F_{j+k} \equiv 0 \pmod{p}$. We conclude that $i + k \equiv j + k \pmod{d(p)}$ for some $k \in \mathbb{N}$, and obtain $i \equiv j \pmod{d(p)}$.

Conversely, we assume $i \equiv j \pmod{d(p)}$. Let $\{I_n\}$ and $\{J_n\}$ be the generalized Fibonacci sequences which are defined as $I_1 = J_1 = 1$ and $I_2 = g_i$, $J_2 = g_j$. We denote the above two subsequences mod p by

$$F_i, \ F_{i+1} \equiv I_2 F_i, \ F_{i+2} \equiv I_3 F_i, \ F_{i+3} \equiv I_4 F_i, \cdots,$$

 $F_j, F_{j+1} \equiv J_2 F_j, \ F_{j+2} \equiv J_3 F_j, \ F_{j+3} \equiv J_4 F_j, \cdots.$

By the assumption that $i \equiv j \pmod{d(p)}$, for any positive integer k, we have $i + k \equiv 0 \pmod{d(p)}$ if and only if $j + k \equiv 0 \pmod{d(p)}$. Therefore, we have $F_{i+k} \equiv 0 \pmod{p}$ if and only if $F_{j+k} \equiv 0 \pmod{p}$. Since p does not divide F_i and F_j , we get $I_{k+1} \equiv 0 \pmod{p}$ if and only if $J_{k+1} \equiv 0 \pmod{p}$. By the formulas

$$I_{k+1} = F_{k-1}I_1 + F_kI_2 = F_{k-1} + F_kg_i \quad \text{and} \quad J_{k+1} = F_{k-1}J_1 + F_kJ_2 = F_{k-1} + F_kg_j,$$

we have $F_k g_i \equiv F_k g_j \pmod{p}$. Since $k \not\equiv 0 \pmod{d(p)}$ by $i, j \not\equiv 0 \pmod{d(p)}$, we have $g_i \equiv g_j \pmod{p}$. Furthermore, since $0 \leq g_i, g_j \leq p-1$, we get $g_i = g_j$. \Box

Proposition 1. Assume $p \nmid G_1, G_2$. For all positive integers n which satisfy $n \not\equiv 2 \pmod{d(p)}$, we have $p \mid G_n$ if and only if $-G_1G_2^{-1} \equiv g_{n-2} \pmod{p}$.

Proof. This follows from the well-known formula $G_n = F_{n-2}G_1 + F_{n-1}G_2$.

Proposition 2. Assume $p \nmid G_1, G_2$. We have $p \mid G_n$ for some $n \in \mathbb{N}$ if and only if $-G_1G_2^{-1} \equiv g_i \pmod{p}$ for some *i* which satisfies $1 \leq i \leq d(p) - 2$.

Proof. If $n \equiv 2 \pmod{d(p)}$, then we have $G_n = F_{n-2}G_1 + F_{n-1}G_2 \equiv F_{n-1}G_2 \neq 0 \pmod{p}$. Furthermore, if i = d(p) - 1, then we have $-G_1G_2^{-1} \neq g_i \pmod{p}$ as we have assumed $p \nmid G_1$ and $g_{d(p)-1} \equiv F_{d(p)}F_{d(p)-1}^{-1} \equiv 0 \pmod{p}$. Hence it suffices to show that we have $p|G_n$ for some $n \in \mathbb{N}$ which satisfies $n \neq 2 \pmod{d(p)}$ if and only if $-G_1G_2^{-1} \equiv g_i \pmod{p}$ for some i which satisfies $1 \leq i \leq d(p) - 1$. This follows from Proposition 1 and Lemma 3.

Next, we prove the main theorem.

Proof of Theorem 1. (1) Since the Fibonacci numbers satisfy $F_{n+m} = F_m F_{n+1} + F_{m-1}F_n$, we have $0 \equiv F_{d(p)} = F_{i+(d(p)-i)} = F_{d(p)-i}F_{i+1} + F_{d(p)-i-1}F_i \pmod{p}$ for any $i \ (1 \leq i \leq d(p) - 2)$. Therefore, $g_i \equiv -g_{d(p)-i-1}^{-1} \pmod{p}$. By Lemma 3 and Proposition 2, we have

$$\begin{split} Y_p &= X_p - \{\overline{\{G_n\}} \in X_p \mid p | G_n \text{ for some } n \in \mathbb{N} \} \\ &= X_p - \{\overline{\{G(1,k)\}} \mid 1 \le k \le p-1, \ -k^{-1} \equiv g_i \pmod{p} \\ & \text{ for some } i \ (1 \le i \le d(p)-2) \} \\ &= X_p - \{\overline{\{G(1,k)\}} \mid 1 \le k \le p-1, \ -k^{-1} \equiv g_{d(p)-i-1} \pmod{p} \\ & \text{ for some } i \ (1 \le i \le d(p)-2) \} \\ &= X_p - \{\overline{\{G(1,k)\}} \mid 1 \le k \le p-1, \ k \equiv -g_{d(p)-i-1}^{-1} \pmod{p} \\ & \text{ for some } i \ (1 \le i \le d(p)-2) \} \\ &= X_p - \{\overline{\{G(1,g_i)\}} \mid 1 \le i \le d(p)-2 \}. \end{split}$$

(2) By Lemma 3, we know $g_i \neq g_j$ if $1 \leq i, j \leq d(p) - 2$ and $i \neq j$. Hence we conclude $|Y_p| = |X_p| - (d(p) - 2) = (p - 1) - (d(p) - 2) = p + 1 - d(p)$. \Box

3. Examples

p	d(p)	Y_p
3	4	Ø
5	5	$\overline{\{L_n\}} \ (= \overline{\{G(1,3)\}})$
7	8	Ø
11	10	$\overline{\{G(1,4)\}}, \ \overline{\{G(1,8)\}}$
13	7	$\overline{\{G(1,3)\}}, \ \overline{\{G(1,4)\}}, \ \overline{\{G(1,5)\}}, \ \overline{\{G(1,7)\}}, \ \overline{\{G(1,9)\}}, \ \overline{\{G(1,10)\}}, \ \overline$
17	9	$\overline{\{G(1,3)\}}, \ \overline{\{G(1,4)\}}, \ \overline{\{G(1,6)\}}, \ \overline{\{G(1,7)\}}, \ \overline{\{G(1,9)\}}, \ \overline{\{G(1,11)\}}, \ \overline{\{G(1,11)\}}, \ \overline{\{G(1,12)\}}, \ \overline{\{G(1,12)\}}, \ \overline{\{G(1,14)\}}, \ \overline{\{G(1,15)\}}$
19	18	$\overline{\{G(1,5)\}}, \overline{\{G(1,15)\}}$

Table 1. Y_p for small prime numbers p

Acknowledgments The authors would like to express their gratitude to the referee and the editor for their valuable comments and suggestions. We added Lemma 4 by referee's suggestion. We also want to thank Y. Kishi for telling us the proof of Lemma 4.

References

- V. E., Jr. Hoggatt and M. Bicknell, Some congruences of the Fibonacci numbers modulo a prime p, Math. Mag. 47, 210–214 (1974).
- [2] T. Koshy, Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, New York (2001).
- D. Marques, The order of appearance of integers at most one away from Fibonacci numbers, Fibonacci Quart. 50, no.1, 36–43(2012).