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Abstract
A sequence of rational integers {An} is said to be a divisibility sequence if An | Am

whenever n | m and An 6= 0. If the divisibility sequence also satisfies a linear
recurrence relation, it is said to be a linear divisibility sequence of order r, where
r is the degree of the characteristic polynomial of the recurrence. The best known
example of such a sequence of order 2 is the Lucas sequence {un}. In an attempt to
extend Lucas’s theory to sequences of order 4, it becomes necessary to examine odd
and even divisibility sequences. In this paper we produce some conditions under
which certain divisibility sequences of order 4 will be either even or odd.

1. Introduction

Let p, q 2 C and ↵, � be the zeroes of x2�px+ q 2 C[x]. We define, for any n 2 Z,

un = un(p, q) =
↵n � �n

↵� �
, vn = vn(p, q) = ↵n + �n.

When p, q are integers, both un(p, q) and vn(p, q) are integers for all n � 0 and
when p, q are coprime are called the Lucas functions. Also u0 = 0, u1 = 1, v0 = 2,
v1 = p and {un}, {vn} both satisfy the second order linear recurrence

An+1 = pAn � qAn�1.

When p =
p

r, where r 2 Z, we find that if

ūn = ūn(r, q) :=
⇢

un(
p

r, q) when 2 - n
un(
p

r, q)/
p

r when 2 | n

and
v̄n = v̄n(r, q) :=

⇢
vn(
p

r, q)/
p

r when 2 - n
vn(
p

r, q) when 2 | n

then ūn and v̄n are integers for all integers n � 0. Also

ū0 = 0, ū1 = 1, ū2 = 1, ū3 = r � q, v̄0 = 2, v̄1 = 1, v̄2 = r � 2q, v̄3 = r � 3q.
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When (r, q) = 1, ūn(p, q) and v̄n(p, q) are called the Lehmer functions (see [2]).
Furthermore, both {ūn} and {v̄n} satisfy the fourth order linear recurrence

An+4 = (r � 2q)An+2 � q2An.

In general, a linear recurrence sequence of order r over Z is a sequence
{An} ✓ Z, where we have

An+r = T1An+r�1 � T2An+r�2 + T3An+r�3 � · · · + (�1)r+1TrAn

and A0, A1, . . . , Ar�1, T1, T2, . . . , Tr are given fixed integers with Tr 6= 0. The
polynomial

G(x) =
rX

i=0

(�1)iTix
r�i

is the characteristic polynomial of {An}.
If {An} is a linear recurrence sequence, we say that an integer m (> 1) is a null

divisor (see Ward [10, 9]) of {An} if, for some minimal k > 0, we have m | An for
all n � k. If {An} has a null divisor, it is said to be a null sequence. In what
follows we shall be concerned only with non null sequences. For example, the
condition that (p, q) = 1 ensures that both {un(p, q)} and {vn(p, q)} are non null
sequences. Similarly, the condition that (r, q) = 1 ensures that both {ūn(r, q)} and
{v̄n(r, q)} are non null sequences.

Now suppose that the characteristic polynomial F (x) of {An} is of even degree
2k and has 2k distinct zeroes

↵1, ↵2, . . . , ↵k, �1, �2, . . . , �k

such that ↵i�i is the same fixed integer Q for i = 1, 2, . . . , k. Notice that the Lucas
functions, the Lehmer functions, and the suggested extensions of the Lucas func-
tions mentioned in Roettger, Williams and Guy [6] all possess such a characteristic
polynomial. Lucas pointed out in [3, eqn (50)] that

u�n = �un/qn, v�n = vn/qn

for all n 2 Z. By analogy to the definitions in the theory of functions, we could
say that {un} is an odd recurrence and that {vn} is an even recurrence. More
generally, if {An} has the characteristic polynomial described above, then we say
that {An} is odd when A�n = �An/Qn for all n 2 Z and {An} is even when
A�n = An/Qn for all n 2 Z.

If m, n 2 Z amd m, n > 0, we say that a sequence {An} is a linear divisibility
sequence if An | Am whenever n | m and An 6= 0. We mention that both {un(p, q)}
and {ūn(r, q)} are linear divisibility sequences of orders 2 and 4 respectively. We
also point out that if {An} is a divisibility sequence, then it is only of limited interest
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(see Hall [1]) if A0 6= 0. Thus, we shall always assume that A0 = 0 and with no loss
of generality that A1 = 1.

The purpose of this paper is to derive some conditions under which a non null
divisibility sequence with characteristic polynomial F (x) and k = 2 is either even
or odd.

2. Some Elementary Observations Concerning Even and Odd {An}

Given the above conditions on F (x), we know that any particular recurrence se-
quence {An} which has F (x) as its characteristic polynomial must have the form

An = c1↵n
1 + c2�n

1 + c3↵n
2 + c4�n

2 + · · · + c2k�1↵n
k + c2k�n

k (2.1)
where c1, c2, . . . , c2k are constants whose values depend on ↵1, �1, ↵2, �2, . . . , ↵k,
�k and the initial conditions A0, A1, A2, . . . , Ak�1. We will now derive criteria for
{An} to be either even or odd.

Put vn(i) = ↵n
i + �n

i , un(i) = (↵n
i � �n

i )/(↵i � �i) and

D1 =

��������

v0(1) v0(2) · · · v0(k)
v1(1) v1(2) · · · v1(k)
· · · · · · · · · · · ·

vk�1(1) vk�1(2) · · · vk�1(k)

��������
, D2 =

��������

u1(1) u1(2) · · · u1(k)
u2(1) u2(2) · · · u2(k)
· · · · · · · · · · · ·

uk(1) uk(2) · · · uk(k)

��������
.

Note that if ↵i +�i = ↵j +�j (i 6= j), then since ↵i�i = ↵j�j we must have ↵i = ↵j

or �j , which by definition of F (x) is impossible. Thus, if we put ⇢i = ↵i + �i, we
have ⇢i 6= ⇢j when i 6= j. We will need the following simple result.

Theorem 2.1. Under the conditions defining F (x), we must have D1 6= 0, D2 6= 0.

Proof. We first note that (see, for example, (4.2.36), (4.2.35) of Williams [11])

vn(i) =
bn/2cX
j=0

(�1)j n

j

✓
n� j � 1

j � 1

◆
Qj⇢n�2j

i ,

un(i) =
b(n�1)/2cX

j=0

(�1)j

✓
n� j � 1

j

◆
Qj⇢n�2j�1

i .

In both formulas the coe�cients of the powers of ⇢i are independent of i. Thus, by
multiplying rows of D1 (or D2) by the corresponding coe�cients and subtracting,
we get

D1/2 = D2 =

����������

1 1 · · · 1
⇢1 ⇢2 · · · ⇢k

⇢2
1 ⇢2

2 · · · ⇢2
k

· · · · · · · · · · · ·
⇢k�1
1 ⇢k�1

2 · · · ⇢k�1
k

����������
=

Y
i6=j

(⇢i � ⇢j) 6= 0.
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2

By (2.1) we have

An =
kX

i=1

c2i�1↵
n
i +

kX
i=1

c2i�
n
i .

If {An} is even, then we have

A�n =
kX

i=1

c2i�1↵
�n
i +

kX
i=1

c2i�
�n
i = Q�n

kX
i=1

(c2i�1�
n
i + c2i↵

n
i )

= Q�nAn = Q�n
kX

i=1

(c2i�1↵
n
i + c2i�

n
i ) .

Hence, for all n 2 Z, we must have

kX
i=1

(↵n
i � �n

i )(c2i�1 � c2i) = 0.

We can write this as
kX

i=1

un(i)(↵i � �i)(c2i�1 � c2i) = 0

but since D2 6= 0, this means that

(↵i � �i)(c2i�1 � c2i) = 0 (i = 1, 2, . . . , k)

and c2i�1 = c2i (i = 1, 2, . . . , k). Similarly, if {An} is odd, then we must have

kX
i=1

vn(i)(c2i�1 + c2i) = 0

for all n 2 Z. As D1 6= 0, we get

c2i�1 = �c2i (i = 1, 2, . . . , k).

Note that if c2i�1 = c2i (i = 1, 2, . . . , k), then {An} is even, and if c2i�1 = �c2i (i =
1, 2, . . . , k), then {An} is odd. Thus, we have proved the following theorem.

Theorem 2.2. If {An} has F (x) as its characteristic polynomial, then {An} is
even if and only if c2i�1 = c2i (i = 1, 2, . . . , k), and {An} is odd if and only if
c2i�1 = �c2i (i = 1, 2, . . . , k).

We will now restrict our attention to the case of k = 2. In this case we have

⇢1 + ⇢2 = ↵1 + �1 + ↵2 + �2 = T1
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⇢1⇢2 = (↵1 + �1)(↵2 + �2) = ↵1↵2 + ↵2�1 + ↵1�2 + �1�2 =

T2 � ↵1�1 � ↵2�2 = T2 � 2Q

If we put P1 = T1, P2 = T2 � 2Q, then F (x) = (x2 � ⇢1x + Q)(x2 � ⇢2x + Q) or

F (x) = x4 � P1x3 + (P2 + 2Q)x2 � P1Qx + Q2 (2.2)

and An+4 = P1An+3 � (P2 + 2Q)An+2 + P1QAn+1 �Q2An (2.3)
where P1, P2, Q 2 Z. Of course, F (x) is the characteristic polynomial for the
sequences {Un} and {Vn} of Williams and Guy [12, 13]. The discriminant D of
F (x) is given by

D = E�2Q2 (2.4)

where � = P 2
1 � 4P2, E = (P2 + 4Q)2 � 4QP 2

1 . We also have the identity

�P 2
1 + 4E = (P 2

1 � 2P2 � 8Q)2 (2.5)

hence, � and E cannot both be negative. Also, if D 6= 0, we have

An = c1↵n
1 + c2�n

1 + c3↵n
2 + c4�n

2 . (2.6)
Now suppose that {An} is even. In this case we must have c1 = c2, c3 = c4 and

An = c1(↵n
1 + �n

1 ) + c3(↵n
2 + �n

2 ).

If {An} is a divisibility sequence, we have c1 + c2 + c3 + c4 = A0 = 0 and therefore
c1 = �c3. Since A1 = 1, we also have

1 = c1↵1 + c2�1 + c3↵2 + c4�2 = c1(↵1 + �1 � ↵2 � �2).

Hence
An =

↵n
1 + �n

1 � ↵n
2 � �n

2

↵1 + �1 � ↵2 � �2
.

This is the function Un in [12]. Indeed, as shown in [12], {Un} is a divisibility
sequence. Thus we see that there is one and only one even divisibility sequence for
a recurrence with characteristic polynomial (2.2).

We are left, then, with the problem of characterizing the odd divisibility se-
quences having characteristic polynomial (2.2). Certainly, odd divisibility sequences
exist, as we have seen that both {un(p, q)} and {ūn(r, q)} are odd. Also, if P1 =
p3/q � 2p, P2 = p4/q � 3p2, Q = q, A�1 = �1/q, A2 = p3/q, then An =
un(p, q)3/qn�1 and {An} is an odd divisibility sequence. An example of such a
sequence occurs as A056570 in Sloane [7]. This sequence is mentioned as Case
3.5.2 in Oosterhout [4]. In [7] two other divisibility sequences are listed; in all of
the fourth order divisibility sequences contained in [7], these two, A127595 and
A215466, are the only interesting ones that are odd. (We exclude the Lucas and
Lehmer sequences from consideration.)
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We conclude this section by developing a simple criterion for determining whether
{An} is an odd divisibility sequence. We recall from [12] that the sequences {Wn}
and {Un} can be defined by

Wn + ⇢iUn = ↵n
i + �n

i (i = 1, 2).

It is also convenient to define sequences {Xn} and {Yn} satisfying

Xn + ⇢iYn = (↵n
i � �n

i )/(↵i � �i) (i = 1, 2). (2.7)
We have X0 = 0, Y0 = 0, X1 = 1, Y1 = 0, X2 = 0, Y2 = 1, X3 = �Q�P2, Y3 = P1.
These are integer valued sequences when n � 0 and have (2.2) as their characteristic
polynomial. We also have X�n = �Xn/Qn, Y�n = �Yn/Qn. Now if {An} is odd,
then by Theorem 2.2, there exist constants �1 and �2 such that

An = �1

✓
↵n

1 � �n
1

↵1 � �1

◆
+ �2

✓
↵n

2 � �n
2

↵2 � �2

◆

= �1(Xn + ⇢1Yn) + �2(Xn + ⇢2Yn)
= (�1 + �2)Xn + (�1⇢1 + �2⇢2)Yn.

Since A1 = 1 we put �1 + �2 = 1 and A2 = �1⇢1 + �2⇢2. Thus, if {An} is an odd
divisibility sequence, we must have

An = Xn + A2Yn (2.8)
but this is not su�cient to guarantee that {An} is a divisibility sequence.

3. The Case Where P1 = 0

It is by no means clear that any divisibility sequence {An} with characteristic poly-
nomial (2.2) must be either even or odd. In this section we completely characterize
all the divisibility sequences {An} which can occur with P1 = 0. We will show that
when P1 = 0 it is possible to have a divisibility sequence {An} which is neither even
nor odd.

When P1 = 0, we have F (x) = x4 +(P2 +2Q)x2 +Q2. Without loss of generality
we can put

↵1 =
p
�P2 +

p
�(P2+4Q)
2

, �1 =
p
�P2 �

p
�(P2+4Q))
2

, ↵2 = ��1, �2 = �↵1.

Hence, by (2.6),

An = (c1 + (�1)nc4)↵n
1 + (c2 + (�1)nc3)�n

1 .

Also, since A0 = 0, we have c1 + c2 + c3 + c4 = 0. If 2 | n, then

An = A2
↵n

1 � �n
1

↵2
1 � �2

1

= A2ūn(�P2, Q).
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If 2 - n, then
An = (c1 � c4)↵n

1 + (c2 � c3)�n
1 .

Since A1 = 1, we can solve for c1 � c4 and c2 � c3 in terms of A�1 and find that

An =
↵n+1

1 � �n+1
1

↵2
1 � �2

1

�Q2A�1
↵n�1

1 � �n�1
1

↵2
1 � �2

1

.

Since 2 | n+1 and 2 | n�1, we can write this as

An = ūn+1(�P2, Q)�Q2A�1ūn�1(�P2, Q).

In what follows we will use ūn and v̄n to denote ūn(�P2, Q), v̄n(�P2, Q) respectively.
If 2 - n, it is easy to verify that

ūn+1 + Qūn�1 = ūn,

ūn+1 �Qūn�1 = v̄n.

It follows that

2An = (1 + QA�1)v̄n + (1�QA�1)ūn (3.1)

whenever 2 - n. If we put Bn = A2n+1, then

Bn+2 = �(P2 + 2Q)Bn+1 �Q2Bn.

Thus, {Bn} is a second order linear recurring sequence, and Ward [10] (also proved
earlier by Pólya [5]) has shown that if such a sequence is not degenerate (in this
case ↵2

1/�2
1 is not a root of unity), then {Bn} has an infinitude of distinct prime

divisors.
If we put C1 = 1+QA�1, C2 = 1�QA�1, then since B1 = �(P2 +2Q)�Q2A�1,

we see that QC1, QC2 2 Z. Let C = max{2, |Q|, |QC1|, |QC2|}.
We have 2A2n+1 = C1v̄2n+1 + C2ū2n+1 and it is easy to verify that

v̄3(2n+1) = v̄2n+1(�P2v̄2
2n+1 � 3Q2n+1)

ū3(2n+1) = ū2n+1(�P2v̄2
2n+1 �Q2n+1)

hence A3(2n+1) = �(P2v̄2
2n+1 + Q2n+1)A2n+1 �Q2n+1C1v̄2n+1.

If {An} is to be a divisibility sequence, we must have A2n+1 | A3(2n+1). Hence

A2n+1 | Q2n+1C1v̄2n+1.

We next suppose that C1 and C2 are nonzero and let p be a prime such that
p > C and p | Bn. Such a prime must exist by Ward’s result. Since p - Q and
p - QC1 and p is odd, we must have p | v̄2n+1, but since p | QBn, we must also have
p | QC2ū2n+1 and p | ū2n+1. Since any common prime divisor of v̄2n+1 and ū2n+1
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must divide 2Q, this is impossible. It follows that if {An} is to be a divisibility
sequence, we must have C1 or C2 = 0.

If C1 = 0, then A2n+1 = ū2n+1, A2n = A2ū2n. We see that in this case {An} is
an odd divisibility sequence. If C2 = 0, then A2n+1 = v̄2n+1, A2n = A2ū2n. The
sequence {An} is a divisibility sequence, but because A�(2n+1) = A2n+1/Q2n+1

and A�2n = �A2n/Q2n, it is neither an odd nor an even divisibility sequence when
A2 6= 0.

An example of such a sequence occurs as A005013 in [7], where Q = �1, P2 = �1
and An = Ln (the Lucas number) when 2 - n and An = Fn (the Fibonacci number)
when 2 | n.

If A2 = 0 = P1, then {An} is the even divisibility sequence {Un}.
If ↵2

i /�2
i is a root of unity, then there are only finitely many possible prime

divisors of Bn (see §6 of [10]). As this is a case of little interest to us, we exclude it
from our study.

We have seen that it is possible to have a non null divisibility sequence with
characteristic function F (x) given by (2.2) which is neither even nor odd. In the
next sections we will consider the possible existence of such divisibility sequences
when P1 6= 0. It is useful at this point to define S and G to be those squarefree
integers such that

� = SV 2, E = GU2 (3.2)

and U , V 2 Z.

4. Some Preliminary Results

We first discuss the conditions that are necessary and su�cient for {An} to have no
null divisors. The following result is a special case of more general work of Ward
[8, 9].

Proposition 4.1. The sequence {An} will have no null divisors if and only if
(P1, P2, Q) = 1, (A3, P2, Q) = 1 and (A2, A3, Q) = 1.

Proof. If p is a prime and either p | (P1, P2, Q) or p | (A3, P2, Q) or p | (A3, A3, Q),
then it is easy to see from (2.3) that p | An for n � 4 in the first case, p | An for
n � 3 in the second case and p | An for n � 2 in the last case. Thus in any of these
cases p is a null divisor of {An}.

Next, suppose that p is a prime null divisor of {An} such that p | An for all
n � k, where k � 0 is minimal. Since A1 = 1, we cannot have k = 0, 1. If k = 2,
then since p | An (n � 2) and

A5 = P1A4 � (P2 + 2Q)A3 + P1QA2 �Q2A1
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we see that p | Q and p | (A2, A3, Q). If k � 3, then p | Ak, p | Ak+1, p | Ak+2,
p | Ak+3, but p - Ak�1. Since

Ak+3 = P1Ak+2 � (P2 + 2Q)Ak+1 + P1QAk �Q2Ak�1

we see that p | Q. Also, since

Ak+1 = P1Ak � (P2 + 2Q)Ak�1 + P1QAk�2 �Q2Ak�3

we get p | P2Ak�1; hence p | P2 and p | (A3, P2, Q) when k = 3. If k > 3, then
Ak ⌘ P1Ak�1 (mod p) and p | (P1, P2, Q). 2

In the case of {Un} in [12], we have U2 = P1, U3 = P 2
1 � P2 � 3Q. Hence, since

(P1, P2, Q) = 1, we see that (U3, P2, Q) = 1 and (U3, U2, Q) = 1. It follows that the
single condition that (P1, P2, Q) = 1 ensures that {Un} has no null divisors.

In what follows, we shall investigate the possibility that a non null divisibility
sequence {An} could be neither even nor odd when both S and G are not 1. A
very useful tool which we utilize heavily in this study is a paper of Hall [1]. We will
modify Hall’s argument to apply to our particular case of using F (x) given by (2.2),
but we will not repeat his arguments when there is no need and we simply refer the
reader to [1] to fill in any gaps that we will leave in our presentation. In the sequel
we will consider {An} to be a non null divisibility sequence having characteristic
polynomial given by (2.2) with nonzero discriminant.

Lemma 4.2. Under the above conditions on {An}, suppose that a prime p is such
that p | Q and p | An (n > 0). Then there exists a finite N (independent of n and
the choice of p) and a factor r of n such that 1 < r < N .

Proof. We use the same reasoning as Hall in his proof of his Lemma 1, together
with Proposition 4.1. 2

Lemma 4.3. Let D be the discriminant of F (x) (see (2.4)). If p is a prime divisor
of An (n > 0) and p | D, then there exists a finite N (independent of n and the
choice of p) and a factor r of n such that 1 < r < N .

Proof. This follows exactly as the proof of Lemma 2 of [1]. 2

Lemma 4.4. Let N be defined as in Lemma 4.3 and q be a prime such that q > N ,
then A4

q ⌘ A4
q2 ⌘ A4

q3 ⌘ 1 (mod q).

Proof. Let p be any prime divisor of Aq. Since q > N , we know that p - D by
Lemma 4.3. If ↵1, �1, ↵2, �2 are the zeroes of F (x) over the splitting field K of
F (x) 2 Fp[x], then

↵p4�1
1 = �p4�1

1 = ↵p4�1
2 = �p4�1

2 = 1

in K. It follows that for any n � 0, we have An+p4�1 = An in K. Since {An} ✓ Z,
we must have An+p4�1 ⌘ An (mod p). The result now follows by using Hall’s
reasoning in the proof of his Lemma 3. 2
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In what follows we will attempt to determine the values of c1, c2, c3, c4 in (2.6)
such that {An} will be a divisibility sequence.

Lemma 4.5. If there exists an infinitude of primes q such that
⇣

�
q

⌘
=

⇣
E
q

⌘
= �1,

then

c1↵2 + c2�2 + c3�1 + c4↵1 = ✏1

c1�1 + c2↵1 + c3�2 + c4↵2 = ✏2

c1�2 + c2↵2 + c3↵1 + c4�1 = ✏3

where ✏41 = ✏42 = ✏43 = 1.

Proof. If
⇣

�
q

⌘
=

⇣
E
q

⌘
= �1, then F (x) is irreducible modulo q and we have

↵2 ⌘ ↵q
1, �1 ⌘ ↵q2

1 , �2 ⌘ ↵q3

1 , ↵1 ⌘ ↵q4

1 , (mod q)

where q is a prime ideal lying over q in the maximal order of Q(↵1,↵2). It follows
that

Aq = c1↵
q
1 + c2�

q
1 + c3↵

q
2 + c4�

q
2

⌘ c1↵2 + c2�2 + c3�1 + c4↵1 (mod q).

By Lemma 4.4 we get

(c1↵2 + c2�2 + c3�1 + c4↵1)4 ⌘ 1 (mod q).

Since there exists an infinite number of possible primes q, we see that

(c1↵2 + c2�2 + c3�1 + c4↵1)4 � 1

is divisible by an infinite number of distinct prime ideals, which can only mean that

(c1↵2 + c2�2 + c3�1 + c4↵1)4 = 1

or
c1↵2 + c2�2 + c3�1 + c4↵1 = ✏1

where ✏41 = 1.
The other equations follow on employing similar reasoning on Aq2 and Aq3 . 2

Lemma 4.6. If there exists an infinitude of primes q such that
⇣

�
q

⌘
= 1 and⇣

E
q

⌘
= �1, then c1↵1 + c2�1 + c3�2 + c4↵2 = ✏4, where ✏44 = 1.

Proof. If
⇣

�
q

⌘
= 1 and

⇣
E
q

⌘
= �1, then without loss of generality we have

↵q
1 ⌘ ↵1, �q

1 ⌘ �1, ↵q
2 ⌘ �2, �q

2 ⌘ ↵2 (mod q)
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where q is a prime ideal lying over q in the maximal order of Q(↵1,↵2). The result
can be derived by following the reasoning employed in the proof of Lemma 4.5. 2

Lemma 4.7. If d = (↵1 � �1)2 + (↵2 � �2)2 = 0, then 4E = ��P 2
1 .

Proof. We have d = ⇢2
1 + ⇢2

2 � 8Q = P 2
1 � 2P2 � 8Q. The result now follows from

(2.5). 2

5. The Case of S 6= 1 and G 6= 1

We have seen in [13] that if S 6= 1 and G 6= 1, then there exists an infinitude of
primes q such that

⇣
�
q

⌘
=

⇣
S
q

⌘
= �1 and

⇣
E
q

⌘
=

⇣
G
q

⌘
= �1. We are now able to

prove the following theorem.

Theorem 5.1. If S 6= 1, G 6= 1 and S 6= �G, then {An} must be either even or
odd.

Proof. Since A0 = 0 and A1 = 1, by Lemma 4.5 and (2.6) we have

c1 + c2 + c3 + c4 = 0 (5.1)
c1↵1 + c2�1 + c3↵2 + c4�2 = 1 (5.2)
c1↵2 + c2�2 + c3�1 + c4↵1 = ✏1 (5.3)
c1�1 + c2↵1 + c3�2 + c4↵2 = ✏2 (5.4)
c1�2 + c2↵2 + c3↵1 + c4�1 = ✏3 (5.5)

where ✏41 = ✏42 = ✏43 = �1. If we add equations (5.2), (5.3), (5.4) and (5.5), we get

(c1 + c2 + c3 + c4)(↵1 + �1 + ↵2 + �2) = 1 + ✏1 + ✏2 + ✏3

and from (5.1), this means that

1 + ✏1 + ✏2 + ✏3 = 0. (5.6)
If we add (5.2) and (5.4) we get

(c1 + c2)(↵1 + �1) + (c3 + c4)(↵2 + �2) = 1 + ✏2.

If we put � = ↵1 + �1 � ↵2 � �2 = ⇢1 � ⇢2 (6= 0), then, by (5.1), we find that

c1 + c2 = (1 + ✏2)/�, c3 + c4 = �(1 + ✏2)/�. (5.7)
If ✏2 = �1, then c1 = �c2, c3 = �c4 and {An} must be odd by Theorem 2.2.

Set �i = ↵i � �i (i = 1, 2). On subtracting (5.4) from (5.2) we get

(c1 � c2)�1 + (c3 � c4)�2 = 1� ✏2

and on subtracting (5.5) from (5.3) we also get

(c1 � c2)�2 � (c3 � c4)�1 = ✏1 � ✏3.

On solving these two equations for c1 � c2 and c3 � c4, we find that
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(c1 � c2)d = (✏1 � ✏3)�2 + (1� ✏2)�1, (5.8)
(c3 � c4)d = �(✏1 � ✏3)�1 + (1� ✏2)�2. (5.9)

Since S 6= �G, by Lemma 4.7 we cannot have d = 0.
If ✏2 = 1, then by (5.6), ✏1 + ✏3 = �2. Since ✏1, ✏3 2 {1,�1, i,�i}, where

i2 + 1 = 0, we can only have ✏1 = ✏3 = �1. By (5.8) and (5.9) this means that
c1 = c2, c3 = c4 and {An} must be even by Theorem 2.2.

We next consider the case of ✏22 = �1. By (5.6) we can only have ✏1 = �1,
✏3 = �✏2 or ✏3 = �1, ✏1 = �✏2. Hence ✏1� ✏3 = ⌘(1� ✏2), where ⌘ 2 {1,�1}. From
(5.7), (5.8) and (5.9) we get

2c1 = (1� ✏2)(⌘�2 + �1)/d + (1 + ✏2)/�,

2c2 = (1� ✏2)(�⌘�2 � �1)/d + (1 + ✏2)/�,

2c3 = (1� ✏2)(�⌘�1 + �2)/d� (1 + ✏2)/�,

2c4 = (1� ✏2)(⌘�1 � �2)/d� (1 + ✏2)/�.

On substituting these values of c1, c2, c3, c4 into (2.6) we get

2An = (1� ✏2)
�
[�2

1 + �2
2]Xn + [⇢1�

2
1 + ⇢2�

2
2 + ⌘�1�2(⇢1 � ⇢2)]Yn

�
/d + (1 + ✏2)Un.

Put C = ⇢1�2
1 + ⇢2�2

2 = P1(P 2
1 � 3P2 � 4Q) 2 Z. Since �2

1�
2
2(⇢1 � ⇢2)2 = �E, we

have ⌘�1�2(⇢1 � ⇢2) = ±
p

�E.
Since A2 must be an integer and

2A2 = (1� ✏2)(C ±
p

�E)/d + (1� ✏2)P1

we get
2dA2 � dP1 � C = ±

p
�E � ✏2C � ✏2(±

p
�E).

If we put M = 2dA2 � dP1 � C 2 Z, then

M ±
p

�E = �✏2(C ±
p

�E � P1d).

Squaring both sides, we find that, since ✏22 = �1,

M2 + (C � P1d)2 + 2�E = ⌥2(C � P1d�M)
p

�E.

If G 6= S, then �E is not a square and
p

�E /2 Q. Hence M = C � P1d and
2M2 + 2�E = 0. But if M2 + �E = 0, then G = �S, which is not possible; hence,
we must have G = S. In this case R = [C + ⌘�1�2(⇢1 � ⇢2)]/d 2 Q and

2An = Xn + Un + RYn + ✏2(Un �Xn �RYn).

Since ✏2(Un �Xn �RYn) /2 Q, we must have

Un = Xn + RYn.
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Putting n = 2, we see that R must be P1. Putting n = 3, we must have

U3 = P 2
1 � P2 � 3Q = X3 + P1Y3 = �Q� P2 + P 2

1

which means that Q = 0, a contradiction. Hence ✏22 6= �1 and we have proved
Theorem 5.1. 2

Theorem 5.2. Under the conditions of Theorem 5.1, we cannot have {An} odd
unless S = G.

Proof. We have already seen in the proof of Theorem 5.1 that {An} can be odd
only when ✏2 = �1. From (5.2) and (5.3) we get

c1�1 + c3�2 = 1,
c1�2 � c3�1 = ✏1.

It follows that c1 = (�1 + ✏1�2)/d, c3 = (�2��1✏1)/d, and since c1 = �c2, c3 = �c4

when ✏2 = �1, we get dA2 = ⇢1�2
1 + ⇢2�2

2 + (⇢1 � ⇢2)�1�2✏1 = C ± ✏1
p

�E from
(2.6). Since dA2 � C 2 Z, we must have

p
�E 2 Z, which means that S = G. 2

We next deal with the case where G = �S and S 6= 1, G 6= 1. Here we still
have equations (5.1), (5.2), (5.3), (5.4) and (5.5) and by Lemma 4.6 the additional
equation

c1↵1 + c2�1 + c3�2 + c4↵2 = ✏4 (5.10)
where ✏44 = 1.

Theorem 5.3. If S 6= 1 and G 6= 1 and G = �S, then {An} is either even or odd.

Proof. If we subtract (5.10) from (5.2) we get

c3�2 � c4�2 = 1� ✏4.

Thus, from (5.7) we deduce

2c3 = (1� ✏4)/�2 � (1 + ✏2)/�,

2c4 = (✏4 � 1)/�2 � (1 + ✏2)/�.

Also, since c1↵1 + c2�1 = 1� c3↵2 � c4�2 = (1 + ✏4)/2 + (1 + ✏2)⇢2/2�, we get

2c1 = (✏4 � ✏2)/�1 + (1 + ✏2)/�,

2c2 = (✏2 � ✏4)/�1 + (1 + ✏2)/�.

Hence

2A2 = (1 + ✏2)(↵2
1 + �2

1 � ↵2
2 � �2

2)/� � (✏2 � ✏4)⇢1 + (1� ✏4)⇢2

or 2A2 = (1 + ✏2)P1 � (1� ✏4)� + (1� ✏2)⇢1.
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We have already shown in the proof of Theorem 5.1 that if ✏2 = �1, then {An}
must be odd. Suppose ✏2 = 1. In this case

2(A2 � P1) = (✏4 � 1)�.

If we square both sides, we get

(✏24 + 1� 2✏4)� = 4(A2 � P1)2.

If ✏24 = �1, then ✏4� 2 Q, which is impossible. Thus, ✏24 = 1. If ✏4 = 1, then
✏4 = ✏2 = 1 and c1 = c2, c3 = c4; hence {An} is even. If ✏4 = �1, then A2 = P1 � �
and therefore � is a square. However, this means that S = 1, which is not possible.
Thus, if {An} is neither even nor odd, we must have ✏22 = �1.

Suppose ✏22 = �1 and ✏4 = 1. In this case we get

2A2 = (1 + ✏2)P1 + (1� ✏2)⇢1

and
2A2 � P1 = ✏2⇢2 + ⇢1 (P1 = ⇢1 + ⇢2).

Thus (✏2⇢2 + ⇢1)2 = P1(⇢1 � ⇢2) + 2✏2P2 2 Z; consequently,

(P1(⇢1 � ⇢2) + 2✏2P2)2 = P 2
1 � + 4✏2P2P1(⇢1 � ⇢2)� 4P 2

2 2 Z

and
4✏2P1P2(⇢1 � ⇢2) 2 Z.

It follows that �16P 2
1 P 2

2 � is a square, but this means that S = �1 and G = 1, a
contradiction.

If ✏4 = �1, then

2A2 = (1 + ✏2)P1 � 2� + (1� ✏2)⇢1 = ⇢2(3 + ✏2).

Since 3 + ✏2 6= 0, we get ⇢2 = 2A2/(3 + ✏2). We also recall that ⇢2
2 �P1⇢2 + P2 = 0;

hence by substitution of this value of P2 we get

4A2
2 � 6P1A2 + 8P2 + (6P2 � 2P1A2)✏2 = 0.

Since ✏2 /2 Q, we must have A2 = 3P2/P1 (P1 6= 0) and 4A2
2 � 6P1A2 + 8P2 = 0,

which means that 36P 2
2 = 10P 2

1 P2.
If P2 = 0, then � = P 2

1 , which is not possible. Hence P2 = 5P 2
1 /18 and

� = �P 2
1 /9, which means that S = �1 and G = 1, an impossibility.

Thus, if ✏22 = �1, we must have ✏24 = �1 and ✏4 = ±✏2. If ✏4 = ✏2, then

2A2 = (1 + ✏2)P1 � (1� ✏2)� + (1� ✏2)⇢1
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and
2A2 � P1 = ✏2⇢1 + ⇢2.

If ✏4 = �✏2, then

2A2 = (1 + ✏2)P1 � (1 + ✏2)� + (1� ✏2)⇢1

and
2A2 � P1 = ✏2(2⇢2 � ⇢1) + ⇢2.

By using the same kind of reasoning as that employed above, we find that, since
S 6= 1, G 6= 1 and S = �G, neither of these cases can occur. 2

Theorem 5.4. Under the conditions of Theorem 5.3 we cannot have {An} odd.

Proof. From the proof of Theorem 5.3 we have

2A2 = (1 + ✏2)P1 � (1� ✏4)� + (1� ✏2)⇢1.

We know from the proof of Theorem 5.1 that {An} can be odd only when ✏2 = �1.
Under this condition

2A2 = P1 + ✏4�

and if ✏44 = 1, then (2A2 � P1)2 = ±� which implies that S = 1 or S = �1 and
G = 1, both of which are excluded by the conditions of Theorem 5.3. 2

6. Some Cases When S or G is 1

We have seen that if S 6= 1 and G 6= 1, the only divisibility sequences {An} must
be either even or odd. We now briefly consider the cases where S = 1 or G = 1.

If S = 1 and G 6= 1, we have � = V 2 (V 2 Z), ⇢1 = (P1 + V )/2 2 Z,
⇢2 = (P1 � V )/2 2 Z. Put Ri = ⇢2

i � 4Q (i = 1, 2). Then E = R1R2. Since R1R2

is not a square, if neither R1 nor R2 is a square, there must exist infinite sets of
primes q such that either✓

R1

q

◆
=

✓
R2

q

◆
= �1; or

✓
R1

q

◆
= �1,

✓
R2

q

◆
= 1; or

✓
R1

q

◆
= 1,

✓
R2

q

◆
= �1.

Also, if p is a prime and
⇣

Ri
p

⌘
= �1 (i = 1, 2), then in the maximal order of

Q(↵1,↵2) = Q(
p

R1,
p

R2), we have

↵p
i ⌘ �i (mod p), �p

i ⌘ ↵i (mod p) (i = 1, 2)

and if
⇣

Ri
p

⌘
= 1 (i = 1, 2), then

↵p
i ⌘ ↵i (mod p), �p

i ⌘ �i (mod p) (i = 1, 2).
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By (2.6) we see that
An+p2�1 ⌘ An (mod p)

for any prime p such that p - 2D for any n � 0. It follows that A2
q ⌘ 1 (mod q) if q

is any prime such that q > N (Lemma 4.3).
We also find that if {An} is to be a divisibility sequence, we must have

c1 + c2 + c3 + c4 = 0
c1↵1 + c2�1 + c3↵2 + c4�2 = 1
c1↵1 + c2�1 + c3�2 + c4↵2 = ✏1

c1�1 + c2↵1 + c3↵2 + c4�2 = ✏2

c1�1 + c2↵1 + c3�2 + c4↵2 = ✏3

where ✏21 = ✏22 = ✏23 = 1. We can then deduce that 1 + ✏3 = ✏1 + ✏2 and

2c1 = (✏1 + ✏2)/� � (✏2 � 1)/�1, 2c2 = (✏1 + ✏2)/� + (✏2 � 1)/�1,

2c3 = �(✏1 + ✏2)/� � (✏1 � 1)/�2, 2c4 = �(✏1 + ✏2)/� + (✏1 � 1)/�2.

Since 1 + ✏3 = ✏1 + ✏2, we can only have ✏1 = ✏2 = 1 or ✏1 = �✏2. In the former
case we get c1 = c2, c3 = c4 and {An} must be even. In the latter case we get
c1 = �c2, c3 = �c4 and {An} must be odd.

Thus, if G 6= 1, � = V 2, and neither of P 2
1 ± 2V P1 + �� 16Q is a square, then

{An} is either even or odd. We also note in this case that we have

c1↵1 + c2�1 + c3�2 + c4↵2 = ✏1 (✏21 = 1).

If {An} is odd, then since c1 = �c2, c3 = �c4, we get

c1�1 + c3�2 = 1, c1�1 � c3�2 = ✏1.

Thus, 2c1�1 = 1 + ✏1, 2c3�2 = 1 � ✏1. It follows that either c1 = 0 or c3 = 0 and
therefore An is one of the Lucas functions un(⇢i, Q) (i = 1 or 2).

We next consider the case where S 6= 1, G = 1 and E = U2 where U 2 Z. We
have seen in [13] that there must exist integers r1, r2, q1, q2 satisfying ri > 0 and
(ri, qi) = 1 for i = 1, 2, such that

P 2
1 = r1r2, P2 = q1r2 + q2r1 � 4q1q2, Q = q1q2, U = q1r2 � q2r1.

Here we have ↵1 = µ1µ2, �1 = ⌫1⌫2, ↵2 = ⌫1µ2 and �2 = µ1⌫2,
where µi + ⌫i =

p
ri, µi⌫i = qi (i = 1, 2). Also, � = d1d2, where di = ri � 4qi (i =

1, 2).
In the maximal order of Q(µ1, µ2) we have, for any prime p such that p - 2D,

µp
i ⌘

8<
:

⇣
ri
p

⌘
µi (mod p) when

⇣
diri

p

⌘
= 1⇣

ri
p

⌘
⌫i (mod p) when

⇣
diri

q

⌘
= �1.
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Hence
↵p

1 ⌘ �2, �p
1 ⌘ ↵2, ↵p

2 ⌘ �1, �p
2 ⌘ ↵1 (mod p)

when
⇣

d1r1
p

⌘
= 1,

⇣
d2r2

p

⌘
= �1. Also

↵p
1 ⌘ ↵2, �p

1 ⌘ �2, ↵p
2 ⌘ ↵1, �p

2 ⌘ �1 (mod p)

when
⇣

d1r1
p

⌘
= �1,

⇣
d2r2

p

⌘
= 1 and

↵p
1 ⌘ �1, �p

1 ⌘ ↵1, ↵p
2 ⌘ �2, �p

2 ⌘ ↵2 (mod p)

when
⇣

d1r1
p

⌘
= �1,

⇣
d2r2

p

⌘
= �1. In all possible cases, including

⇣
d1r1

p

⌘
=⇣

d2r2
p

⌘
= 1, we find that

↵p2

i ⌘ ↵i, �p2

i ⌘ �i (mod p) for i = 1, 2.

Hence, Ap2�1+n ⌘ An (mod p). It follows from Hall’s reasoning that if neither d1r1

nor d2r2 is a perfect square, then we must have

c1 + c2 + c3 + c4 = 0
c1↵1 + c2�1 + c3↵2 + c4�2 = 1
c1�2 + c2↵2 + c3�1 + c4↵1 = ✏1

c1↵2 + c2�2 + c3↵1 + c4�1 = ✏2

c1�1 + c2↵1 + c3�2 + c4↵2 = ✏3

where ✏21 = ✏22 = ✏23 = 1. By adding these equations we get

1 + ✏1 + ✏2 + ✏3 = 0.

We can also deduce that

c1 + c2 = �(✏1 + ✏2)/�, c3 + c4 = (✏1 + ✏2)/�.

If ✏3 = �1, then ✏1 + ✏2 = 0 and c1 = �c2, c3 = �c4, which means that {An} is
odd. If ✏3 = 1, then ✏1 = ✏2 = �1 and

(c1 � c2)�1 + (c3 � c4)�2 = 0,
(c1 � c2)�2 + (c3 � c4)�1 = 0.

Since �2
1 � �2

2 = P1� 6= 0, we have c1 = c2 and c3 = c4 and {An} is even.
Now (P2 + 4Q� U)/2 = q2r1 and (P2 + 4Q + U)/2 = q1r2; hence r1 = q1(P2 +

4Q � U)/2Q, r2 = q2(P2 + 4Q + U)/2Q. Hence d1 = q1(P2 � 4Q � U)/2Q, d2 =
q2(P2 � 4Q + U)/2Q. and

4Q2d1r1 = q2
1 [(P2 � U)2 � 16Q2], 4Q2d2r2 = q2

2 [(P2 + U)2 � 16Q2].
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Thus, if E = U2 and neither of (P2 ±U)2�16Q2 is a square, then {An} is either
even or odd.

If G = 1, S 6= 1, and {An} is odd, then since c2 = �c1, c4 = �c3, we get

c1�1 + c3�2 = 1, c1�2 + c3�1 = ✏

where ✏2 = 1. It follows that

c1 = 1/(�1 + ✏�2), c2 = ✏/(�1 + ✏�2)

and we get

An =
1

�1 + ✏�2
(↵n

1 � �n
1 + ✏(↵n

2 � �n
2 ))

=
(µn

1 + ✏⌫n
1 )(µn

2 � ✏⌫n
2 )

(µ1 + ✏⌫1)(µ2 � ✏⌫2)
.

Without loss of generality we can put ✏ = 1 and we find that

An = vn(
p

r1, q1)un(
p

r2, q2)/
p

r1.

If {An} is to be a divisibility sequence, we need An | A2n, but this can only happen
if

A2n/An = (µn
1 + ⌫n

1 )(µn
2 + ⌫n

2 )� 2µn
1⌫n

1 (µn
2 + ⌫n

2 )/(µn
1 + ⌫n

1 ) 2 Z.

Now since (µn
1 + ⌫n

1 )(µn
2 + ⌫n

2 ) 2 Z, we must have 2qn
1 (µn

2 + ⌫n
2 )/(µn

1 + ⌫n
1 ) 2 Z;

thus, if n = 1, then we need 2q1

p
r2/r1 2 Z. Since (q1, r1) = 1, this means that

2
p

r2/r1 2 Z. If we put

tn =
⇢

2 2 | n,
2
p

r2/r1 2 - n.

We see that A2n/An 2 Z if and only if

v̄n(r1, q1) - qn
1 tnv̄n(r2, q2).

Since (v̄n(r1, q1), q1) = (r1, q1) = 1, we see that {An} is a divisibility sequence if
and only if

v̄n(r1, q1) | tnv̄n(r2, q2) for all n � 0. (6.1)

It is easy to show that if p is a prime, p - 2q, and p | v̄n(r, q), then there exists
a minimal ⇢ (> 0) such that p | v̄⇢(r, q) and if p | v̄m(r, q), then ⇢ | m. Also
⇢ = !/2, where ! is the rank of apparition of p in {ūn(r, q)}. If we now define
⌘1 = ⌘1(p) =

⇣
d1r1

p

⌘
, ⌘2 = ⌘2(p) =

⇣
d2r2

p

⌘
, and ✓1 = ✓1(p) =

⇣
q1r1

p

⌘
, we know from

results of Lehmer [2] that
p | v̄(p�⌘1)/2(r1, q1)
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when ✓1 = �1. Note that ⌘1⌘2 =
⇣

d1d2
p

⌘
=

⇣
�
p

⌘
because r1r2 is a square. If we

suppose that r1q1 is not a square, then because (d1, q1) = (r1, q1) = 1, there must
exist (see [13]) an infinitude of primes p (> tn) such that ✓1(p) = �1, ⌘1(p)⌘2(p) =
�1 and p - 2q1q2. For such primes we see that for n = (p � ⌘1)/2 we must have
p | v̄n(r2, q2) by (6.1) if {An} is to be a divisibility sequence. If ⇢ is the least value
of m such that p | v̄m(r2, q2), then ⇢ | n. Now Lehmer [2] showed that if ! is the
rank of apparition of p in {um(r2, q2)}, then ! must divide p � ⌘2. This means
that ⇢ | (p � ⌘2)/2, but since p | v̄n(r2, q2), we must have ⇢ | n or ⇢ | (p � ⌘1)/2.
Since ⌘1⌘2 = �1, this is impossible unless ⇢ = 1, but in this case v̄⇢(r2, q2) = 1, a
contradiction.

Thus, if {An} is to be an odd divisibility sequence when G = 1 and S 6= 1, we
must have r1q1 a perfect square. Since (r1, q1) = 1, this means that both r1 and
q1 must be perfect squares. Also, since r1r2 is a square, we must have r2 a perfect
square. We note that v̄n(s2, q) = vn(s, q) when 2 | n and v̄n(s2, q) = vn(s, q)/s
when 2 - n. Thus, if we put r1 = s2

1, r2 = s2
2, then, by (6.1), we must have

2vn(s2, q2)/vn(s1, q1) 2 Z for all n � 0. (6.2)

If S 6= 1, this seems most unlikely.

7. Conclusion

We now summarize some of our results. We let {An} be any non null linear divis-
ibility sequence with characteristic polynomial F (x), given by (2.2) with nonzero
discriminant and P1 6= 0. We let S, G be defined by (3.2).

1. If S 6= 1 and G 6= 1, {An} can only be even or odd.

2. There is always one and only one even {An} for any given F (x).

3. If S 6= 1 and G 6= 1 and G 6= S, there can be no odd {An}.

4. If S = 1 and G 6= 1, then the only possible odd {An} is the Lucas sequence
{un}.

This leaves us with several unanswered questions.

1. If G = 1 or S = 1, what are the conditions on P1, P2, Q for the existence
of an {An} that is neither even nor odd? We have seen that if P1 = 0
(G = 1, S = 1), such a sequence does exist, but are there any when P1 6= 0?

2. Do any odd sequences {An} exist when S = G 6= 1? No non-trivial example
of such a sequence is known. We do have the case of |P1| = 1, P2 = �1,
Q = 1, |A2| = 1. In this case � = E = 5, but {An} is periodic with period
10 and |An| = 1 for all n 2 Z.
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3. Do any odd divisibility sequences exist when G = 1 and S 6= 1? If so, then
(6.2) must hold, and this seems very unlikely when S 6= 1.

4. What odd {An} exist when S = G = 1?

In Section 2 we mentioned some odd divisibility sequences, and S = G = 1 for
all of these. In fact, Oosterhout [4, §3.5.1] discovered an infinitude of odd {An},
where, if R and W are integer parameters and R | W 2, we put P1 = W 2/R� 3W ,
P2 = W 3/R � 6W 2 + 10WR � 4R2, Q = R2, A�1 = �R2, A0 = 0, A1 = 1,
A2 = W 2/R� 2W . Here � = (W 2/R� 5W + 4R)2, E = (W 3/R� 6W 2 + 8RW )2.

After making some minor corrections, we get these sequences from hers by re-
placing her Q by W and her Q2/P by R. Also, if {An} is to be non null, we must
have (R,W 2/R) = 1 and |R| a perfect square.

If we put R = 1, W = 5, we get P1 = 10, P2 = 21, Q = 1, A2 = 15. This
is A127595 in [7]; however, A215466 cannot be represented by any of Oosterhout’s
schemes. Thus it appears that there are more odd {An} yet to be discovered, but
it seems that such sequences will have S = G = 1.
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