\#A43
 INTEGERS 15 (2015)
 POWERS IN PRIME BASES AND A PROBLEM ON CENTRAL BINOMIAL COEFFICIENTS

Sebastian Tim Holdum
Niels Bohr Institute, University of Copenhagen, Denmark
sebastian.holdum@nbi.dk
Frederik Ravn Klausen
Department of Mathematics, University of Copenhagen, Denmark
tlk870@alumni.ku.dk
Peter Michael Reichstein Rasmussen
Department of Mathematics, University of Copenhagen, Denmark
nmq584@alumni.ku.dk

Received: 7/18/14, Revised: 8/30/15, Accepted: 10/4/15, Published: 10/13/15

Abstract

It is an open problem whether $\binom{2 n}{n}$ is divisible by 4 or 9 for all $n>256$. In connection with this, we prove that for a fixed uneven m the asymptotic density of k 's such that $m \nmid\binom{2^{k+1}}{2^{k}}$ is 0 . To do so we examine numbers of the form α^{k} in base p, where p is a prime and $(\alpha, p)=1$. For every n and a we find an upper bound on the number of k 's less than a such that $\left(\alpha^{k}\right)_{p}$ contains less than n digits greater than $\frac{p}{2}$. This is done by showing that every sequence of the form $\left\langle\sigma_{t}, \ldots, \sigma_{1}, \sigma_{0}\right\rangle$, where $0 \leq \sigma_{i}<p$ for $i \geq 1$ and σ_{0} is in the residue class generated by α modulo p, occurs at specific places in the representation $\left(\alpha^{k}\right)_{p}$ as k varies.

1. Introduction

A well known conjecture by Erdős states that the central binomial coefficient $\binom{2 n}{n}$ is never squarefree for $n>4$. The problem was finally solved in 1996 by Granville and Ramaré [5], but is still inspiring further investigation of the central binomial coefficients. One question left unanswered can be found in Concrete Mathematics [4] and is the following conjecture, which is the starting point of this paper.
Conjecture 1.1. The central binomial coefficient $\binom{2 n}{n}$ is divisible by 4 or 9 for every $n>4$ except $n=64$ and $n=256$.

Since 4 divides $\binom{2 n}{n}$ when n is not a power of 2 , we consider only binomial coefficients of the form $\binom{2^{k+1}}{2^{k}}$ in our study of the conjecture. By Kummer's theorem,
the greatest exponent of a prime p dividing the central binomial coefficient $\binom{2 n}{n}$ is equal to the number of carries as n is added to itself in base p. Thus, to prove the conjecture it is sufficient to show that there are at least 2 carries when 2^{k} is added to itself in base 3 and $k>8$.

In relation to this, Erdős conjectured in 1979 [2] that the base 3 representation of 2^{k} only omits the digit 2 for $k=0,2,8$, noting that no methods for attacking it seemed to exist.

Methods for analysing the digits of powers of a number α in prime bases are scarce, and further developing such methods is what most of this paper will be concerned with.

Considering the periodicity of the base p representation of α^{k}, for a prime p and $(p, \alpha)=1$, we find new patterns that allow us to bound the function

$$
\mathcal{S}_{p}^{n}(a)=\#\left\{0 \leq s<a \mid\left(\alpha^{s}\right)_{p} \text { contains less than } n \text { digits greater than } \frac{p}{2}\right\} .
$$

Specifically, we show that every sequence of the form $\left\langle\sigma_{t}, \ldots, \sigma_{1}, \sigma_{0}\right\rangle$, where $0 \leq$ $\sigma_{i}<p$ for $i \geq 1$ and σ_{0} is in the residue class generated by α modulo p, occurs at given places in the representation $\left(\alpha^{k}\right)_{p}$ as k varies.

Interestingly, if p is not a Wieferich prime base α, it turns out that this system occurs on every digit of $\left(\alpha^{k}\right)_{p}$.

We use the above observations to show that

$$
\begin{equation*}
\mathcal{S}_{p}^{n}(a) \leq 8\left(\log _{p}(a)\right)^{n-1} a^{\log _{p}\left(\frac{p+1}{2}\right)} \tag{1}
\end{equation*}
$$

and in special cases we improve results due to Narkiewicz [8], and Kennedy and Cooper [1]. The bound (1) is used to prove that for any odd $m \in \mathbb{N}$, the set of numbers k such that $m \nmid\binom{2^{k+1}}{2^{k}}$ has asymptotic density 0 , which in the case $m=9$ specifically addresses conjecture 1.1.

Lastly, we have used computer experiments to improve a result due to Goetgheluck [3] which confirmed Conjecture 1.1 for all $n \leq 2^{4.2 \cdot 10^{7}}$.
Theorem 1.2. The central binomial coefficient $\binom{2 n}{n}$ is divisible by 4 or 9 for every n such that $4<n \leq 2^{10^{13}}$ except for $n=64$ and $n=256$.

See the Appendix for source code.

2. Large Digits in Prime Bases

In this section we explore the base p representation of powers of an integer α, where p is a prime not dividing α. We say that a digit n is "small" if $n<\frac{p}{2}$ and "large" otherwise. Further, p will always denote an odd prime, and $\alpha>1$ an integer with $(\alpha, p)=1$.

The main goal of the section is to bound the following function in various ways.

Definition 2.1. Let p be an odd prime and $a, n \in \mathbb{N}$. Fix α such that $p \nmid \alpha$. Then set

$$
\mathcal{S}_{p}^{n}(a)=\#\left\{0 \leq s<a \mid\left(\alpha^{s}\right)_{p} \text { contains }<n \text { large digits }\right\} .
$$

Bounding the S_{p}^{n} is done by considering periodic properties of α^{k} in base p as k varies.

2.1. Notation and Definitions

Definition 2.2. Let p be a prime and $n, k \in \mathbb{N}$. We write $p^{k} \| n$ if $p^{k} \mid n$ and $p^{k+1} \nmid n$, i.e., if k is the greatest exponent of p dividing n.
Definition 2.3. We define the following:

- $\delta=\left\{\alpha^{k} \bmod p \mid k \in \mathbb{Z}\right\}$, i.e. δ is the set of residues generated by α modulo p.
- $\theta=\#\left\{a \in \delta \left\lvert\, 0 \leq a<\frac{p}{2}\right.\right\}$, i.e. θ is the number of small residues in δ.
- $\gamma=\operatorname{ord}_{p}(\alpha)=|\delta|$.

Definition 2.4. Let $n \in \mathbb{N}_{0}$. We let Λ_{n} denote the set of sequences of the form

$$
\left\langle\sigma_{n}, \sigma_{n-1}, \ldots, \sigma_{1}, \sigma_{0}\right\rangle
$$

where $\sigma_{0} \in \delta$ and $0 \leq \sigma_{i}<p$ for $1 \leq i \leq n$.
Definition 2.5. Let $m \in \mathbb{N}$ be represented in base p as $m=\sum_{i \geq 0} a_{i} p^{i}$, where $0 \leq$ $a_{j}<p$. To pinpoint specific digits we make the following definitions: $a_{k}=(m)_{p}[k]$ and $\left\langle a_{k}, \cdots, a_{l}\right\rangle=(m)_{p}[k: l], k \geq l$.

2.2. Sequences

We will now consider the representations $\left(\alpha^{s}\right)_{p}$ when s varies to show how members of Λ_{k} occur as subsequences of these representations.

First, we need a couple of lemmas.
Lemma 2.6. Let p be an odd prime and $\alpha>1$ be given such that $(p, \alpha)=1$. Let further $p^{t} \| \alpha^{\gamma p^{k}}-1$ for some $t>0$ and $k \geq 0$. Then $p^{t+1} \| \alpha^{\gamma p^{k+1}}-1$.
Proof. Let $\alpha^{\gamma p^{k}}=u p^{t}+1$ with $(u, p)=1$. Then

$$
\alpha^{\gamma p^{k+1}}=\left(u p^{t}+1\right)^{p}=1+u p^{t+1}+u^{2} p^{2 t}\binom{p}{2}+R,
$$

where R is divisible by $p^{3 t}$ and thus divisible by p^{t+2} since $t>0$. Further, $p \left\lvert\,\binom{ p}{2}\right.$, so $p^{t+2} \left\lvert\, u^{2} p^{2 t}\binom{p}{2}\right.$ and we get

$$
\alpha^{\gamma p^{k+1}} \equiv 1+u p^{t+1} \quad\left(\bmod p^{t+2}\right),
$$

showing that $p^{t+1} \| \alpha^{\gamma p^{k+1}}-1$.

Lemma 2.7. Let p be an odd prime and $\alpha>1$ be given such that $(p, \alpha)=1$. Assume that $p^{\tau} \| \alpha^{\gamma}-1$. Then

$$
p^{\tau+k} \| \alpha^{\gamma p^{k}}-1 \text { and } \operatorname{ord}_{p^{\tau+k}}(\alpha)=\gamma p^{k}
$$

for every $k \geq 0$.
Proof. The first part follows easily by induction on k using Lemma 2.6. For the second part, note that

$$
\gamma=\operatorname{ord}_{p}(\alpha) \mid \operatorname{ord}_{p^{\tau+k}}(\alpha) \text { and } \operatorname{ord}_{p^{\tau+k}}(\alpha) \mid \gamma p^{k}
$$

Thus, $\operatorname{ord}_{p^{\tau+k}}(\alpha)=\gamma p^{r}$ for some $r \leq k$. By the first part, we have $p^{\tau+k-1} \|$ $\alpha^{\gamma p^{k-1}}-1$, so $p^{\tau+k} \nmid \alpha^{\gamma p^{k-1}}-1$ and we must have $\operatorname{ord}_{p^{\tau+k}}(\alpha)=\gamma p^{k}$.

With these lemmas at hand we are ready to analyse the base p representation $\left(\alpha^{s}\right)_{p}$. To do so, we use the following definition.

Definition 2.8. Let $a=\ldots a_{2} a_{1} a_{0}$ be any integer represented by an infinite sequence $\left(a_{i}\right)_{i \in \mathbb{N}_{0}}$ in some base. Then we define

$$
c_{\tau, k}(a)=\left\langle a_{\tau+k-1}, \ldots, a_{\tau+1}, a_{\tau}, a_{0}\right\rangle
$$

We make this definition since our interest lies in the digits underlined here:

$$
\ldots \underline{a_{\tau+k-1} \ldots a_{\tau} \ldots a_{1} \underline{a_{0}}, ~}
$$

because all the elements of Λ_{n} will appear periodically as subsequences of $\left(\alpha^{s}\right)_{p}$ on these positions, when s changes. This is captured in the main theorem of the section.

Theorem 2.9. Let p be an odd prime and $\alpha>1$ be given such that $(p, \alpha)=1$. Further, let $\tau>0$ be the integer satisfying $p^{\tau} \| \alpha^{\gamma}-1$. Then for any $k \geq 0$

$$
\left\{c_{\tau, k}\left(\left(\alpha^{b}\right)_{p}\right) \mid 0 \leq b<\gamma p^{k}\right\}=\Lambda_{k}
$$

Proof. Let $T:=\left\{c_{\tau, k}\left(\left(\alpha^{b}\right)_{p}\right) \mid 0 \leq b<\gamma p^{k}\right\}$. Clearly, $T \subseteq \Lambda_{k}$ since every member of T is of the form $\left\langle\sigma_{k}, \sigma_{k-1}, \ldots, \sigma_{1}, \sigma_{0}\right\rangle$, where $0 \leq \sigma_{i}<p$ for $1 \leq i \leq k$ and $\sigma_{0} \in \delta$, because $\left(\alpha^{b}\right)_{p}[0] \in \delta$ for any $b \geq 0$.

We now prove $T=\Lambda_{k}$, by showing $|T|=\gamma p^{k}=\left|\Lambda_{k}\right|$, where the last equality already follows from the definition of Λ_{k}.

Since $p^{\tau} \| \alpha^{\gamma}-1$ both $\left(\alpha^{b}\right)_{p}[\tau-1: 0]$ and $\left(\alpha^{b}\right)_{p}[0]$ are periodic with respect to b with least period γ and no repetitions in the period. This means that for $b, c \geq 0$ we have $\left(\alpha^{b}\right)_{p}[\tau-1: 0]=\left(\alpha^{c}\right)_{p}[\tau-1: 0]$ if and only if $\left(\alpha^{b}\right)_{p}[0]=\left(\alpha^{c}\right)_{p}[0]$.

Now, assume for contradiction that $c_{\tau, k}\left(\left(\alpha^{b}\right)_{p}\right)=c_{\tau, k}\left(\left(\alpha^{c}\right)_{p}\right)$ for some $0 \leq b<$ $c<\gamma p^{k}$. Since $\left(\alpha^{b}\right)_{p}[0]=\left(\alpha^{c}\right)_{p}[0]$ we have $\left(\alpha^{b}\right)_{p}[\tau-1: 0]=\left(\alpha^{c}\right)_{p}[\tau-1: 0]$, so
$\left(\alpha^{b}\right)_{p}[\tau+k-1: 0]=\left(\alpha^{c}\right)_{p}[\tau+k-1: 0]$, i.e. $\alpha^{b} \equiv \alpha^{c}\left(\bmod p^{\tau+k}\right)$. Therefore, $p^{\tau+k} \mid \alpha^{b}\left(\alpha^{c-b}-1\right)$, but this means that $p^{\tau+k} \mid \alpha^{c-b}-1$ contradicting Lemma 2.7 since $0<c-b<\gamma p^{k}$.

Thus, all the elements in the definition of T are different, and $|T|=\gamma p^{k}$.

2.2.1. Wieferich Primes

The main result of the section has a curious corollary related to the Wieferich primes.

Definition 2.10. Let p be a prime and $\alpha>1$ be given such that $(\alpha, p)=1$. Then p is a Wieferich prime base α if $p^{2} \mid \alpha^{\gamma}-1$.

Since numerics [6] indicate that for any $\alpha>1$ the Wieferich primes base α are somewhat scarce, it is interesting that the following elegant property holds for any (p, α) such that p is not a Wieferich prime base α.

Corollary 2.11. Let p be a prime which is not a Wieferich prime base α. Then

$$
\left\{\left(\alpha^{b}\right)_{p}[k: 0] \mid 0 \leq b<\gamma p^{k}\right\}=\Lambda_{k}
$$

Proof. Since p is not a Wieferich prime base α, we have $p^{1} \| \alpha^{\gamma}$. Noticing that $c_{1, k}(a)=a[k: 0]$ the corollary follows directly from Theorem 2.9.

Thus, p not being a Wieferich prime base α implies that the first $k+1$ digits of $\left(\alpha^{s}\right)_{p}$ will form all sequences of Λ_{k} periodically as s varies.

2.3. Bounds on \mathcal{S}_{p}^{n}

The findings of the previous section allow us to obtain various bounds on the function \mathcal{S}_{p}^{n}. First we introduce a lemma, which is a step on the way to bounding \mathcal{S}_{p}^{n} for $n=1$.

Lemma 2.12. Let $s, t \geq 0, p$ be a prime, and $\gamma=\operatorname{ord}_{p}(\alpha)$. Then we have

$$
\mathcal{S}_{p}^{1}\left(s \gamma p^{t}\right) \leq s \theta\left(\frac{p+1}{2}\right)^{t}
$$

Proof. The number of sequences of Λ_{t} containing only small digits is $\theta\left(\frac{p+1}{2}\right)^{t}$. Thus, by Theorem 2.9 there are at most $\theta\left(\frac{p+1}{2}\right)^{t}$ integers $0 \leq h<\gamma p^{t}$, such that $\left(\alpha^{h}\right)_{p}$ does not contain any large digits. Now, letting $p^{\tau} \| \alpha^{\gamma}-1$ we have, by Lemma 2.7, that the last $\tau+t-1$ digits of $\left(\alpha^{h}\right)_{p}$ are periodic with respect to h with least period γp^{t} and no repetition in the period. Thus,

$$
\Lambda_{t}=\left\{c_{\tau, t}\left(\left(\alpha^{b}\right)_{p}\right) \mid 0 \leq b<\gamma p^{t}\right\}=\left\{c_{\tau, t}\left(\left(\alpha^{b}\right)_{p}\right) \mid r \gamma p^{t} \leq b<(r+1) \gamma p^{t}\right\}
$$

for every $r \in \mathbb{N}_{0}$, and we can see that there are at most $\theta\left(\frac{p+1}{2}\right)^{t}$ integers $r \gamma p^{t} \leq$ $h<(r+1) \gamma p^{t}$ such that $\left(\alpha^{h}\right)_{p}$ does not contain any large digits.

This yields

$$
\mathcal{S}_{p}^{1}\left(s \gamma p^{t}\right) \leq s \theta\left(\frac{p+1}{2}\right)^{t}
$$

Now, the following theorem improves a result by Narkiewicz [8] by a constant factor.

Theorem 2.13. Let $\alpha \equiv 2(\bmod 3)$ in the definition of \mathcal{S}. For every $a \in \mathbb{N}$ we have $\mathcal{S}_{3}^{1}(a) \leq 1.3 a^{\log _{3}(2)}$.

Proof. The theorem obviously holds for $a=1$. Now consider an $a \geq 2$, and let s, t be given such that $s \in\{1,2\}$ and $s \cdot 2 \cdot 3^{t} \leq a \leq(s+1) \cdot 2 \cdot 3^{t}$. We now have

$$
t \leq \log _{3}(a)-\log _{3}(2 s),
$$

and since S_{3}^{1} clearly is weakly increasing and by Lemma 2.12, we get

$$
\mathcal{S}_{3}^{1}(a) \leq \mathcal{S}_{3}^{1}\left((s+1) \cdot 2 \cdot 3^{t}\right) \leq(s+1) \cdot 2^{t} \leq(s+1) \cdot 2^{-\log _{3}(2 s)} \cdot 2^{\log _{3}(a)}
$$

For $s \in\{1,2\}$ the constant $(s+1) \cdot 2^{-\log _{3}(2 s)}$ is maximised by $s=1$, and so

$$
\mathcal{S}_{3}^{1}(a) \leq 2 \cdot 2^{-\log _{3}(2)} \cdot 2^{\log _{3}(a)} \leq 1.3 a^{\log _{3}(2)}
$$

The function \mathcal{S}_{m}^{1} for $m>2$ is studied by R. E. Kennedy and C. Cooper [1], and if we consider only the cases when m is a prime, we get the following improvement of their results, which replaces a factor increasing with m with a constant.

Theorem 2.14. Let p be a prime and α arbitrary in the definition of \mathcal{S}. Then for all $a \in \mathbb{N}$, we have $\mathcal{S}_{p}^{1}(a) \leq 4 a^{\log _{p}\left(\frac{p+1}{2}\right)}$.
Proof. The theorem holds for $a<\gamma$ since $a<4 a^{\log _{p}\left(\frac{p+1}{2}\right)}$ for $a<p$.
Now let $a \geq \gamma$ and s, t be integers with $0<s<p$ such that $s \gamma p^{t} \leq a<(s+1) \gamma p^{t}$. Now, $t \leq \log _{p}(a)-\log _{p}(s \gamma)$, and letting $\mu=\log _{p}\left(\frac{p+1}{2}\right)$ we get, by Lemma 2.12,

$$
\begin{aligned}
\mathcal{S}_{p}^{1}(a) \leq \mathcal{S}_{p}^{1}\left((s+1) \gamma p^{t}\right) \leq(s+1) \theta\left(\frac{p+1}{2}\right)^{t} & \leq(s+1) \theta\left(\frac{p+1}{2}\right)^{\log _{p}(a)-\log _{p}(s \gamma)} \\
& =(s+1) \theta(s \gamma)^{-\mu} a^{\mu}
\end{aligned}
$$

Since $\theta \leq \gamma<p$ we get

$$
\mathcal{S}_{p}^{1}(a) \leq \frac{s+1}{s^{\mu}} \gamma^{1-\mu} a^{\mu} \leq \frac{s+1}{s^{\mu}} p^{1-\mu} a^{\mu}=\frac{s+1}{s^{\mu}} \frac{2 p}{p+1} a^{\mu}
$$

Considering $\frac{s+1}{s^{\mu}}$ we see that $\frac{d}{d s}\left(\frac{s+1}{s^{\mu}}\right)=s^{-\mu-1}(s(1-\mu)-\mu)$, and thus $\frac{s+1}{s^{\mu}}$ is strictly decreasing for $s \in\left[1, \frac{\mu}{1-\mu}\right)$ and strictly increasing for $s \in\left(\frac{\mu}{1-\mu}, p\right]$ and consequently attains its maximum on $[1, p]$ either at 1 or p. Since $s=1, s=p$ both yield $\frac{1+1}{1^{\mu}}=\frac{p+1}{p^{\mu}}=2$, we get $\mathcal{S}_{p}^{1}(a) \leq 4 a^{\mu}$.
Finally, we generalize our observations regarding \mathcal{S}_{p}^{n}.
Lemma 2.15. Let $s \geq 0, t \geq 1$, p be a prime, and $\gamma=\operatorname{ord}_{p}(\alpha)$. Then we have

$$
\mathcal{S}_{p}^{n}\left(s \gamma p^{t}\right) \leq 2 s \gamma t^{n-1}\left(\frac{p+1}{2}\right)^{t}
$$

Proof. For $t=1$ the result is clear. Now, assume $t>1$.
First, we count the number of sequences $\eta \in \Lambda_{t}$ such that η contains less than n large elements. This is done by counting for each $i<n$ how many sequences $\eta \in \Lambda_{t}$ that contain exactly i large elements.

For each i we split up into two cases:
Case 1: The last element of η is large (which means $i>0$). This element can then be chosen in $\gamma-\theta$ ways, and there are $\binom{t}{i-1}\left(\frac{p-1}{2}\right)^{i-1}\left(\frac{p+1}{2}\right)^{t+1-i}$ ways to choose the remaining t elements such that exactly $i-1$ of them are large.
Case 2: The last element of η is small. This element can then be chosen in θ ways, and there are $\binom{t}{i}\left(\frac{p-1}{2}\right)^{i}\left(\frac{p+1}{2}\right)^{t-i}$ ways to choose the remaining t elements such that exactly i of them are large.

Thus, we can express the number of elements in Λ_{t} containing less than n large elements by

$$
\begin{aligned}
\sum_{i=1}^{n-1}(\gamma-\theta)\binom{t}{i-1}\left(\frac{p-1}{2}\right)^{i-1} & \left(\frac{p+1}{2}\right)^{t+1-i}+\sum_{i=0}^{n-1} \theta\binom{t}{i}\left(\frac{p-1}{2}\right)^{i}\left(\frac{p+1}{2}\right)^{t-i} \\
& \leq \gamma\left(\frac{p+1}{2}\right)^{t} \sum_{i=0}^{n-1}\binom{t}{i} \\
& \leq \gamma\left(\frac{p+1}{2}\right)^{t} \sum_{i=0}^{n-1} t^{i} \\
& \leq 2 \gamma t^{n-1}\left(\frac{p+1}{2}\right)^{t}
\end{aligned}
$$

since $t>1$.
Now, as in the proof of Lemma 2.12, we can conclude by Theorem 2.9 and Lemma 2.7 that for every $r \in \mathbb{N}_{0}$ there are at most $2 \gamma t^{n-1}\left(\frac{p+1}{2}\right)^{t}$ integers $r \gamma p^{t} \leq$ $k<(r+1) \gamma p^{t}$ such that $\left(\alpha^{k}\right)_{p}$ contains less than n large digits. Thus, we have

$$
\mathcal{S}_{p}^{n}\left(s \gamma p^{t}\right) \leq 2 s \gamma t^{n-1}\left(\frac{p+1}{2}\right)^{t}
$$

Theorem 2.16. Let p be a prime and α arbitrary in the definition of \mathcal{S}. Then for all $a, n \in \mathbb{N}$, where $a \geq \gamma p$, we have $\mathcal{S}_{p}^{n}(a) \leq 8 \log _{p}(a)^{n-1} a^{\log _{p}\left(\frac{p+1}{2}\right)}$.

Proof. Let $a \geq \gamma p$ be given, and s, t be integers with $0<s<p$ and $t \geq 1$ such that $s \gamma p^{t} \leq a<(s+1) \gamma p^{t}$. Now, $t \leq \log _{p}(a)-\log _{p}(s \gamma)$, and letting $\mu=\log _{p}\left(\frac{p+1}{2}\right)$ we use Lemma 2.15 and the fact that $\frac{s+1}{s^{\mu}} \gamma^{1-\mu} \leq 4$ from the proof of Theorem 2.14 to get

$$
\begin{aligned}
\mathcal{S}_{p}^{n}(a) & \leq \mathcal{S}_{p}^{n}\left((s+1) \gamma p^{t}\right) \\
& \leq 2(s+1) \gamma t^{n-1}\left(\frac{p+1}{2}\right)^{t} \\
& \leq 2(s+1) \gamma\left(\log _{p}(a)-\log _{p}(s \gamma)\right)^{n-1}\left(\frac{p+1}{2}\right)^{\log _{p}(a)-\log _{p}(s \gamma)} \\
& \leq 2(s+1) \gamma(s \gamma)^{-\mu} \log _{p}(a)^{n-1} a^{\mu} \\
& =2 \frac{s+1}{s^{\mu}} \gamma^{1-\mu} \log _{p}(a)^{n-1} a^{\mu} \\
& \leq 8 \log _{p}(a)^{n-1} a^{\log _{p}\left(\frac{p+1}{2}\right)}
\end{aligned}
$$

3. Application to Central Binomial Coefficients

This section will apply the bounds on \mathcal{S} to a generalisation of Conjecture 1.1 in order to show that the set of numbers not satisfying the conjecture restricted to the case $n=2^{s}$ has asymptotic density 0 .

For this we need the following theorem by Kummer.
Theorem 3.1 (Kummer [7]). Let $n, m \geq 0$ and p be a prime. Then the greatest exponent of p dividing $\binom{n+m}{m}$ is equal to the number of carries, when n is added to m in base p.

Further we define the following function:
Definition 3.2. Let $m \in \mathbb{N}$ be odd. Then we define

$$
\mathcal{T}_{m}(a)=\#\left\{0 \leq s<a \left\lvert\, m \nmid\binom{2^{s+1}}{2^{s}}\right.\right\}
$$

It is clear that to show Conjecture 1.1 we would have to bound \mathcal{T}_{9} by $\mathcal{T}_{9}(a) \leq 5$ for all a. Instead we can get a partial result by connecting \mathcal{T} and \mathcal{S} in the following way:

Lemma 3.3. Let $a, n \in \mathbb{N}$, $\alpha=2$ in the definition of \mathcal{S}, and p be an odd prime. Then $\mathcal{T}_{p^{n}}(a) \leq \mathcal{S}_{p}^{n}(a)$.

Proof. Adding 2^{s} to itself in base p will yield at least one carry for every large digit in $\left(2^{s}\right)_{p}$. Thus, by Kummer's theorem, we must have $\mathcal{T}_{p^{n}}(a) \leq \mathcal{S}_{p}^{n}(a)$.

With this at hand, it is possible to give an asymptotic upper bound on \mathcal{T}_{m} for every odd m.

Theorem 3.4. Let $m>1$ be odd and let p be the greatest prime dividing m. Then

$$
\mathcal{I}_{m}(a)=o\left(a^{\log _{p}\left(\frac{p+1}{2}\right)+\epsilon}\right)
$$

for any $\epsilon>0$.
Proof. Assume m has prime factorisation $m=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{k}^{\beta_{k}}$ with $p_{1}<p_{2}<\cdots<$ p_{k}. Then $\mathcal{S}_{p_{i}}^{\beta_{i}}(a)=O\left(\log _{p_{k}}(a)^{\beta_{k}-1} a^{\log _{p_{k}}\left(\frac{p_{k}+1}{2}\right)}\right)$ for all $1 \leq i \leq k$, since $p_{i} \leq p_{k}$, and thus,

$$
\mathcal{T}_{m}(a) \leq \sum_{i=1}^{k} \mathcal{S}_{p_{i}}^{\beta_{i}}(a)=O\left(\log _{p_{k}}(a)^{\beta_{k}-1} a^{\log _{p_{k}}\left(\frac{p_{k}+1}{2}\right)}\right)=o\left(a^{\log _{p_{k}}\left(\frac{p_{k}+1}{2}\right)+\epsilon}\right)
$$

for any $\epsilon>0$.
Although we still cannot give a definite answer to Conjecture 1.1, we do get the following corollary.
Corollary 3.5. For every odd m the set of integers s such that $m \nmid\binom{2^{s+1}}{2^{s}}$ has asymptotic density 0 .

Proof. By Theorem 3.4 we have $\mathcal{T}_{m}(a)=o(a)$.
Since the case $m=9$ is not special in this corollary, it seems natural to pose the following conjecture, which strengthens Conjecture 1.1.
Conjecture 3.6. For every odd m there is an $N \in \mathbb{N}$ such that $m \left\lvert\,\binom{ 2^{k+1}}{2^{k}}\right.$ for every $k \geq N$.

It seems by Theorem 2.9 and by computer heuristics that the digits of $\left(2^{s}\right)_{p}$ are uniformly distributed for large s in the sense that for any $0 \leq a<p$ most digits in the representation have probability roughly $1 / p$ of being a.

Assuming such a random distribution of the digits in the representation and considering computer experiments on a selection of primes $p<200$ has lead to the following conjecture.

Conjecture 3.7. For an odd prime, p, let $\epsilon_{p}(a)$ be the function satisfying $p^{\epsilon_{p}(a)} \| a$ for every a. Then

$$
\epsilon_{p}\left(\binom{2^{k+1}}{2^{k}}\right)=\frac{\log (2)}{2 \log (p)} \cdot k+O(\sqrt{k})
$$

Acknowledgement The authors wish to thank prof. Søren Eilers for his helpful guidance and suggestions in the writing process; prof. Carl Pomerance for his encouragement and support; and the anonymous referee for his/her suggestions that significantly improved some of the proofs of this paper.

References

[1] Cooper, C., Kennedy, R. E., A Generalization of a Result by Narkiewicz Concerning Large Digits of Powers, Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 11 (2000), 36-40.
[2] Erdős, P., Some Unconventional Problems in Number Theory, Math. Mag. 52 (1979), 67-70.
[3] Goetgheluck, P., On prime divisors of binomial coefficients, Math. Comp. 51 (1988), 325-329.
[4] Graham, R. L., Knuth, D., Patashnik, O., Concrete Mathematics, Second Edition, AddisonWesley 2nd ed. 1998.
[5] Granville, A., Ramaré, O., Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients, Mathematika 43 (1996), 73-107.
[6] Keller, W., Richstein, J., Solutions of the Congruence $a^{p-1} \equiv 1\left(\bmod p^{r}\right)$, Math. Comp. 74 (2004), 927-936.
[7] Kummer, E. E., Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen, J. Reine Angew. Math. 44 (1852), 93-146.
[8] Narkiewicz, W., A note on a paper of H. Gupta concerning powers of two and three, Univ. Beograd. Publ. Elektrotechn. Fak. Ser. Mat. 678-715 (1980), 173-174.

Appendix

The following code checks that the central binomial coefficient $\binom{2 n}{n}$ is divisible by 4 or 9 for every n such that $4<n \leq 2^{10^{13}}$ except for $n=64$ and $n=256$. The Java-code checks the first 35 digits of the base 3 representation of 2^{k} for every k such that $0<k<10^{13}$. Every k such that the first 35 digits of 2^{k} do not contain two 2's is written to a file containing special cases. These cases are then checked individually by the Python-code.

JAVA source

```
import java.io.FileWriter;
import java.io.IOException;
import java.io.File;
class NewSearcher {
    private static int[] number = new int[35];
    private static int size = O;
    private static final int MAX_SIZE = 35;
    private static final String ERROR_FILE = "Check_needed.txt";
    public static void main(String[] args) {
        deleteFile(ERROR_FILE);
        addNum(1);
        for (int a=0; a<10000000; a++) {
            for (int b=0; b<1000000; b++) {
            if (doubleIt()) {
                String output = String.format("%%%%06d", a, b);
                System.out.println(output);
                writeNumberToFile(ERROR_FILE, output);
                    }
            }
        }
    }
    private static void addNum(int num) {
        if (size < MAX_SIZE) {
            number[size] = num;
            size ++;
        }
    }
    public static boolean doubleIt() {
        int totalCarry = 0;
        int carry = 0;
        int i=0;
        while (totalCarry < 2 && i<size) {
            int res = (number[i]*2 + carry);
            carry = (res>=3) ? 1 : 0;
            number[i] = (res % 3);
            if (carry==1) totalCarry ++;
            i++;
        }
```

```
        while (i<size) {
            int res = (number[i]*2 + carry);
            carry = (res>=3) ? 1 : 0;
            number[i] = (res % 3);
            i++;
        }
        if (carry == 1) {
        addNum(1);
        }
        return (totalCarry<2);
    }
    public static void writeNumberToFile(String filename, String number)
        {
        try
    {
        FileWriter fw = new FileWriter(filename, true);
        fw.write(number + "\r\n");
        fw.close();
    }
    catch(IOException e)
    {
            System.out.println("IOException: " + e.getMessage());
    }
    }
    public static void deleteFile(String filename) {
    try {
        File toDelete = new File(filename);
            toDelete.delete();
        } catch (Exception e) {
        }
    }
```

\}

Python source

```
def mod(n, md):
    if n < 10:
        return 2**n%md
    return 2**(n%2)*mod(n/2,md)**2%md
def checkCarry(n):
    tmp = n
    count = 0
    while tmp and count<2:
        if tmp%3 == 2:
            count += 1
        tmp /= 3
    return count<2
fil = file("Check_needed.txt", "r")
nls = []
while True:
    try:
        next = int(fil.readline())
        if checkCarry(mod(next, 3**50)):
            nls.append(next)
        except ValueError:
        break
for i in nls:
    if checkCarry(mod(i, 3**80)):
        print i
```

