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Abstract
We study the problem of whether or not there exist variants of Wythoff’s game
whose P-positions, except for a finite number, are obtained from those of Wythoff’s
game by adding a constant k to each P-position. We solve this question by in-
troducing a class {Wk}k�0 of variants of Wythoff’s game in which, for any
fixed k � 0, the P-positions of Wk form the set {(i, i)|0  i < k} [ {(b�nc +
k, b�2nc+ k)|n � 0}, where � is the golden ratio. We then analyze a class {Tk}k�0

of variants of Wythoff’s game whose members share the same P-positions set
{(0, 0)}[{(b�nc+1, b�2nc+1)|n � 0}. We establish several results for the Sprague-
Grundy function of these two families. On the way we exhibit a family of games
with di↵erent rule sets that share the same set of P-positions.

1. Introduction

Wythoff’s game (Wythoff in the sequel), introduced by Willem Abraham
Wytho↵ [19], is a two-pile Nim-like game in which two players move alternately,
either removing a number of tokens from a single pile, or removing an equal num-
ber of tokens from both piles. The player who first cannot move loses, and the
opponent wins.

A position is called an N -position (also known as winning position) if the N ext
player (the player who is about to move from there) can win. Otherwise, the
Previous player wins and the position is called a P-position (known as losing
position). Wytho↵ [19] showed that the P-positions of this game form the set
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{(b�nc, b�2nc)|n � 0} in which � = (1 +
p

5)/2 is the golden ratio and b.c denotes
the integer part.

Notation 1. For the sake of brevity, we set An = b�nc and Bn = b�2nc for every
n � 0.

Note that �2 = � + 1; therefore Bn = An + n.
Several authors have studied variants of Wythoff obtained by either adding

some extra moves (these new games are known as extensions) [5, 8, 7, 9, 11, 14, 15,
16, 17], or eliminating some legal moves (known as restrictions) [3, 4, 15]. Variants
not of these two typical types have also been widely studied [6, 10, 12, 13]. Not
surprisingly, P-positions of these variants are quite diverse.

In this paper we study the question whether there exist variants of Wythoff
whose P-positions, except possibly some finite number of them, can be obtained by
adding a fixed integer k � 1 to the P-positions of Wythoff. More precisely, given
an integer k � 1, we seek non trivial variants of Wythoff whose P-positions form
a set of the form

S [ {(An + k,Bn + k)|n � n0},

where S is a finite set of pairs of nonnegative integers, and n0 is an appropriate
nonnegative integer. Below we answer this question for k � 1.

Recall that the nim-value (Sprague-Grundy value) of a position is defined induc-
tively as follows: the nim-value of the terminal positions (final positions) is zero,
and the nim-value of a non-terminal position (a, b) is the least integer not in the
set of nim-values of the positions directly reachable from (a, b). Note that the set
of P-positions of a game is identical to the set of its positions whose nim-values are
zero.

In Section 2 we study the family {Wk}k�0 of two-pile variants of Wythoff in
which, for each Wk, each move is one of the following two types:

(i) removing a positive number of tokens from a single pile (Nim move), or

(ii) removing an equal positive number of tokens from both piles provided that
neither of the piles has size less than k after this move (diagonal move).

Note that the diagonal move (ii) of Wk is a constraint on the Wythoff move.
When k = 0, the game W0 is Wythoff. When k > 0, one cannot move from (a, b)
to (a�m, b�m) if min(a�m, b�m) < k.

We first show that for each Wk, the P-positions form the set

{(i, i)|0  i < k} [ {(An + k,Bn + k)|n � 0}.

This family of games therefore solves the posed question. We then explore the sets
of those positions whose nim-values are 1 of the family {Wk}k�1 and, in particular,
we prove a recursive relationship between these sets.
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Next we examine modifications of {Wk}k�0 in which the diagonal move from
each position (a, b), with a  b, becomes: (ii0) removing an equal number i of
tokens from both piles such that a � i � k and b � i � l, for some given positive
integers k and l with k  l. We denote this family {Wk,l}. We prove that the
P-positions of the game Wk,l, with k  l, are identical to those of the game Wl. We
also formulate a conjecture about an invariance property of the Sprague-Grundy
function of members of the family {Wk,l}.

Section 3 continues the topic of the translation of Wythoff’s P-positions, study-
ing a variant of Wythoff in which the players must consider the integer ratio of the
two entries in each diagonal move. Let k � 0. We analyze a variant of Wythoff,
called Tk, obtained as follows: from a position (a, b) with a  b, one can either

(i) remove a positive number of tokens from a single pile, or
(ii) remove an equal positive number, say s, of tokens from both piles provided

that a� s > 0 and ����
�

b� s

a� s

⌫
�

�
b

a

⌫����  k.

Note that the diagonal move (ii) is a restriction of the diagonal move of Wythoff.
In this move, the condition a � s > 0 guarantees that the ratio b(b � s)/(a � s)c
is defined. Thus, when making a diagonal move in Tk, one must ensure that the
di↵erence between the ratios of the bigger entry over the smaller entry before and
after the move must not exceed k.

Consider the special case k = 1. The game T1 is the variant of Wythoff in
which the only restriction is that the diagonal move cannot make any pile empty.

We now give some examples to illustrate the rule of the game Tk with some values
of k. From the position (5, 10), one can either reduce any single entry, or reduce
the same s from both entries provided that |b(10� s)/(5� s)c�b10/5c|  k. Table
1 displays the di↵erences on diagonal moves between the games corresponding to
k = 0, 1, 2, 3, 4.

k Original
position

s: number of tokens that can be
removed in the diagonal move

The options enabled by the
diagonal move

0 (5,10) 1, 2 (4,9), (3,8)
1 (5,10) 1, 2, 3 (4,9), (3,8), (2,7)
2 (5,10) 1, 2, 3 (4,9), (3,8), (2,7)
3 (5,10) 1, 2, 3 (4,9), (3,8), (2,7)
4 (5,10) 1, 2, 3, 4 (4,9), (3,8), (2,7), (1,6)

Table 1: Possible diagonal moves from (5,10) for the game with k = 0, 1, 2, 3.

We analyze the winning strategy of the game Tk, for given k. We show that
the P-positions of game Tk form the set {0, 0)} [ {(An + 1, Bn + 1)|n � 0}, which
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is independent of k. We then study the Sprague-Grundy function of the family
{Tk}k�0. We prove that all games Tk share the same positions whose nim-values
are 1, forming the set {(0, 1)} [ {(An + 2, Bn + 2)|n � 0}. We state a conjecture
regarding an invariance property of the nim-value g between two games Tk and Tl

with k  l, provided g  k.
The paper ends with two further questions on the translation of Wythoff’s

P-positions.

2. The Class Wk

2.1. The Winning Strategy

We prove the formula for the P-positions of Wk in this section. Before doing this,
let us recall some background on Wythoff. The set of positive integers is denoted
by N.

Lemma 1. [1] The sets {An}n�1 and {Bn}n�1 are complementary, namely,

([n�1An) [ ([n�1Bn) = N,

([n�1An) \ ([n�1Bn) = ;.

Recall that in Wythoff, the following are the P-positions.

Theorem 1. [19] The P-positions of Wythoff form the set

{(An, Bn)|n � 0}.

We are now able to describe the P-positions for Wk where k � 1.

Notation 2. We denote by Sg
k the set of positions whose nim-values are g in any

given game.

Theorem 2. For each k � 0, the P-positions of Wk form the set

S0
k = {(i, i)|0  i < k} [ {(An + k,Bn + k)|n � 0}.

Proof. Let
A = {(i, i)|0  i < k} [ {(An + k,Bn + k)|n � 0}.

It su�ces to verify that the following two properties hold for Wk:

(i) every move from a position in A cannot terminate in A,

(ii) from every position not in A, there is a move terminating in A.
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For (i), note that there is no diagonal move between positions of the form (i, i)
where i  k, by the definition of the game Wk. For n > 0 we have Bn > An, so
there is no move from (An + k,Bn + k) to (i, i) with i  k, n > 0. It remains to
show that there is no move between two positions of the form (An + k,Bn + k).
Suppose there is a move (An + k,Bn + k) ! (Am + k,Bm + k) (not necessarily
ordered pairs). Then m < n. The di↵erence between the amounts taken from the
two piles is n �m > 0, so this is not a legal move in Wythoff, a fortiori not in
Wk.

For (ii), let (a, b) /2 A with a  b. If a  k then necessarily b > a, so reducing b
to a leads to a position in A. We now consider the case k < a  b. If a = b then
one can move from (a, b) to (k, k) 2 A. It remains to consider the case k < a < b.
Note that (a � k, b � k) /2 {(An, Bn)|n � 0}. By Theorem 2, there exists a move
from (a� k, b� k) to some (An, Bn) in Wythoff. This implies that there exists a
move in Wk from (a, b) to some (An + k,Bn + k) 2 A.

Note that for k = 0 the displayed formula for S0
k in Theorem 2 gives the P-

positions of Wythoff, but the proof (at its end) used the known facts about
Wythoff’s P-positions, though it would be easy to avoid this use.

For any set S and term l we define S + l = {s + l|s 2 S}.

Corollary 1. Let k � 0 and l > 0. The set S0
k+l of P-positions of the game Wk+l

can be given recursively in the form

S0
k+l = {(i, i)|0  i < l} [ {(a + l, b + l)|(a, b) 2 S0

k}.

Proof. We have

{(a + l, b + l)|(a, b) 2 S0
k}

= {(i + l, i + l)|0  i < k} [ {(An + k + l, Bn + k + l)|n � 0}
= {(i, i)|l  i < k + l} [ {(An + k + l, Bn + k + l)|n � 0}.

Thus,

{(i, i)|0  i < l} [ {(i, i)|l  i < k + l} [ {(An + k + l, Bn + k + l)|n � 0}
={(i, i)|0  i < k + l} [ {(An + k + l, Bn + k + l)|n � 0}
=S0

k+l.

Remark 1. For each k, one may be interested in considering the variant W 0
k of

Wythoff in which each move is one of the following two types:

(i) removing a number of tokens from a single pile, or
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(ii) removing an equal number of tokens from both piles provided that this move
does not lead to a position of the form (i, i) where i < k.

Note that inW 0
k, one can move to a position of the form (i, j) if i < j and i < k. This

condition distinguishes the two games Wk and W 0
k. Moreover, W 0

k is an extension
of Wk. It is not surprising that the winning strategy for W 0

k is exactly the same
to that of W 0

k. The proof for the following result is exactly the same as that of
Theorem 2.

Theorem 3. For every k �, P-positions of W 0
k are identical to those of Wk.

2.2. The Positions With Nim-values 1 for Wk

Recall that, for each k � 0, the set of positions whose nim-values are 1 in the
game Wk is denoted by S1

k . In this part, we establish S1
k , for each k � 0. We first

introduce the result for k = 0 and k = 1. We then show that for k > 1, S1
k can be

derived directly from either S1
0 (if k is even) or S1

1 (if k is odd).
For W0 (Wythoff) a recursive algorithm for computing its 1-values was given

in [2]. It was conjectured there that the algorithm for computing the n-th 1-value
(an, bn) is polynomial in ⌦(log n). See also [18].

Theorem 4. The set of positions with nim-value 1 in W1 is

S1
1 = {(0, 1)} [ {(An + 2, Bn + 2)|n � 0}.

Proof. Set B = {(0, 1)}[{(An+2, Bn+2)|n � 0}. Recall that the set of P-positions
of W1 is

S0
1 = {(0, 0)} [ {(An + 1, Bn + 1)|n � 0}.

It su�ces to prove the following four facts:

(i) B \ S0
1 = ;,

(ii) There is no move from a position in B to a position in B,

(iii) From every position in B there is a move to a position in S0
1 ,

(iv) From every position not in B [ S0
1 , there exists a move to some position in B

(to ensure that B contains all the 1-values).

For (i), assume that B \ S0
1 6= ;. Then there exist n 6= m such that

(An + 1, Bn + 1) = (Am + 2, Bm + 2).

Then either (
An = Am + 1,
Bn = Bm + 1,
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and subtracting gives n = m, a contradiction; or else(
An = Bm + 1,
Bn = Am + 1,

and subtracting, gives n + m = 0 which leads to the contradiction n = m = 0.
For (ii), it is easy to see that there is no move (An + 2, Bn + 2) ! (0, 1). The

special case k = 2 in the proof of (i) in Theorem 2 shows that there is no move
between positions of the form (An + 2, Bn + 2).

For (iii), note that in the proof of Theorem 2 we already showed that from every
position not in S0

1 there is a move to a position in S0
1 , so this holds a fortiori for all

positions in B by (i).
For (iv), let (a, b) /2 B [ S0

1 with a  b. One can move from (a, b) to (0,1) if
either a = 0 or a = 1 by taking a number of tokens from the pile of size b. If a � 2,
consider the position p = (a� 2, b� 2). Note that p is not of the form (An, Bn). In
Wythoff, there is a move from p to some position (Am, Bm). This move results
in (a, b) ! (Am + 2, Bm + 2) 2 S1

1 .

We now show how S1
k+2 can be obtained from S1

k .

Theorem 5. Let k � 0 be an integer. We have

S1
k+2 = {(0, 1)} [ {(a + 2, b + 2)|(a, b) 2 S1

k}.

Proof. Set
C = {(0, 1)} [ {(a + 2, b + 2)|(a, b) 2 S1

k}.
Recall (Theorem 2) that the set of P-positions of Wk+2 is

S0
k+2 = {(i, i)|0  i < k + 2} [ {(An + k + 2, Bn + k + 2)|n � 0}.

It su�ces to prove the following facts.

(i) C \ S0
k+2 = ;.

(ii) There is no move from a position in C to a position in C.

(iii) From every position not in C [ S0
k+2, there exists a move to some position in

C.

For (i), note that (0, 1) /2 S0
k+2 and so we only need to show that (An+k+2, Bn+

k + 2) /2 S0
k+2. Assume that this is not the case. Then there exists (a, b) 2 S1

k

such that either (a + 2, b + 2) = (i, i) for some i < k + 2 or (a + 2, b + 2) =
(An + k + 2, Bn + k + 2) for some n � 0. It follows from either of these two cases
that (a, b) 2 S0

k , a contradiction.
For (ii), we first claim that there is no move from (a+2, b+2) to (0, 1) in Wk+2.

In fact, this move must be diagonal, but since k+2 � 3, we cannot reach (0, 1). We
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now show that, in Wk+2, there is no move between (a + 2, b + 2) and (a0 + 2, b0 + 2)
for some (a, b) and (a0, b0) in S1

k . In fact, the existence of such a move in Wk+2

implies that there exists a move between (a, b) and (a0, b0) in S1
k , a contradiction.

For (iii), let (c, d) /2 C [ S0
k+2 with c  d. One can move from (c, d) to (0,1) if

either c = 0 or c = 1 by taking either d � 1 or d tokens respectively from the pile
of size d. Note that (0, 1) 2 S1

k and so (2, 3) 2 C. Also note that (2, 2) 2 S0
k+2.

Therefore, if c = 2, then d > 3. It follows that one can move from (c, d) to
(2, 3) 2 S1

k+2. We now assume that c � 3. The position p = (c�2, d�2) /2 S1
k [S0

k :
if p 2 S0

k then (c, d) 2 S0
k+2; if p 2 S1

k , then (c, d) 2 C. Consequently there exists a
move from p to some position (c0, d0) 2 S1

k . This is equivalent to the fact that there
exists a move from (c, d) to the position (c0 + 2, d0 + 2) 2 S1

k . This completes the
proof.

Theorems 4 and 5 provide full information on the positions whose nim-values are
1 of the game Wk when k is odd. Iterating Theorem 5 we get

Corollary 2. For k = 2l + 1, the positions of the game Wk whose nim-values are
1 form the set {(2i, 2i + 1)|0  i  l} [ {(An + k + 1, Bn + k + 1)|n � 0}.

Our computer exploration shows that translation phenomena such as in Theo-
rems 2 and 5 no longer hold for g � 2. It seems to be hard to get a general formula
encompassing all Wk for the positions whose nim-values are g for some g � 2.

2.3. An Additional Generalization

We now investigate a further variant of the game Wk. Let k and l be nonnegative
integers such that k  l. We present a variant Wk,l of Wythoff in which each
move is one of the following two types:

(i) removing a number of token from a single pile, or

(ii) removing an equal number of tokens from both piles provided that the position
(i, j) moved to satisfies min(i, j) � k and max(i, j) � l.

For example, let k = 3, l = 5. The diagonal move (6, 9) ! (3, 6) is legal while
the move (6, 9) ! (2, 5) is illegal since 2 = min(2, 5) < 3.

Notice that for k = l, the rule sets of the games Wk and Wk,k are identical. The
following theorem shows that the P-positions of the game Wk,l depend only on l
and, moreover, are identical to those of the game Wl.

Theorem 6. Let k and l be nonnegative integers with k  l. The P-positions of
Wk,l are identical to those of Wl.

The proof of Theorem 6 is essentially the same as that of Theorem 2, with l
replacing k in Theorem 2. We leave the details to the reader.
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We next present a conjecture on the invariance property of the Sprague-Grundy
function of {Wk,l} implied by our investigations.

Conjecture 1. Let k < k0  l. For every integer g in the range 0  g  l� k0, the
two games Wk,l and Wk0,l have the same sets of positions with nim-value g.

One may be interested in an investigation on the set of positions whose nim-values
are 1 in each game Wk,l. By Conjecture 1, we have Sv

k0,l = Sv
k,l for k, k0 < l. Our

computer exploration shows that if l is even, the set Sv
k,l seems to be coincident with

the set Sv
k . When l is odd, as far as our calculation, the set Sv

k,l is very close to Sv
k ,

illustrated as follows. Let l is odd and let {(an, bn)}n�0 (reps. {(a0n, b0n)}n�0) be the
sequence of positions of Wk,l (reps. Wl) whose nim-values are 1 such that an  bn

(reps. a0n  b0n) and ai < aj (reps. a0i < a0j) if i < j. Then |an�a0n|+ |bn� b0n)|  1.

3. The Class Tk

3.1. The Winning Strategy

We state and prove the formula for the P-positions of the game Tk for given k.

Theorem 7. For each k � 0, the P-positions of Tk form the set

S0
k = {(0, 0)} [ {(An + 1, Bn + 1)|n � 0}.

Remark 2. The striking feature of this result is that it is independent of k, quite
unlike the result of Theorem 2. In the process of the proof below, the reason for
this feature will become clear.

Proof. Let A = {(0, 0)} [ {(An + 1, Bn + 1)|n � 0}. It su�ces to show that the
following two properties hold for Tk:

(i) every move from a position in A cannot terminate in A,

(ii) from every position not in A, there is a move terminating in A.

For (i), the requirement a > s implies that for all k � 0, no diagonal move can
be made to (0, 0). In particular, the diagonal move (1, 1) ! (0, 0) cannot be made.
Since there is no move between positions of the form (An, Bn) in Wythoff and the
set of moves in Tk is a subset of that of Wythoff, there is no move in Tk between
positions of the form (An + 1, Bn + 1).

For (ii), let p = (a, b) be a position not in A. Set q = (a�1, b�1). Then q is not
of the form (An, Bn). Since there exists a legal move from q to some (An, Bn) in
Wythoff, there exists a move from p to (An + 1, Bn + 1) in Tk, provided that if a
diagonal move is taken then |b(Bn+1)/(An+1)c�bb/ac|  k. In fact, we now show
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that b(Bn+1)/(An+1)c = bb/ac, so the inequality holds for all k. This explains why
the expression for the P-positions is independent of k: Since (a�1, b�1) ! (An, Bn)
is also a diagonal move in Wythoff, the move must satisfy (b�1)�(a�1) = b�a =
Bn �An = n. Now (Bn + 1)/(An + 1) = (An + n + 1)/(An + 1) = 1 + n/(An + 1).
Since � > 1, n < An+1, so b(Bn+1)/(An+1)c = 1. Also b/a = (a+n)/a = 1+n/a.
If a ! An, then n  An < a, and if a ! Bn, then n  An  Bn < a, so in either
case n < a. Hence bb/ac = b(Bn + 1)/(An + 1)c = 1.

A comparison between Theorems 2 and 7 immediately implies:

Corollary 3. The set of P-positions of W1 is identical to the set of P-positions of
Tk for every k � 0.

It is rather rare that two games with di↵erent rule-sets have the same set of P-
positions. In fact, we have here a family of games that share the same P-positions,
since the rule sets of Tk are di↵erent for each k. Why does it happen here? Why is
each P-position of Tk but a translation by 1 of a P-position of Wythoff (except
for (0, 0))? We end this section with some intuition about these questions.

Consider the game T1. This is the same as Wythoff, except that the terminal
position (0, 0) of Wythoff cannot be reached with a diagonal move. The position
(1, 1) is terminal in T1 – for diagonal moves – and so replaces the terminal position
(0, 0) of Wythoff. In the proof of (ii) of Theorem 7, the reason of the independence
of the P-positions of k was explained. This independence includes the case k = 1.
Thus the P-positions (An, Bn) of Wythoff are translated into the P-positions
(An + 1, Bn + 1) in Tk. Note further that the rule-sets of W1 and T1 are identical.
Therefore the two games have identical sets of P-positions. But as pointed out
in the previous paragraph, we indeed have an entire family of di↵erent rule-sets
sharing the same set of P-positions.

3.2. On an Invariance Property of Nim-values

We state two properties of the Sprague-Grundy function of the class of games Tk.
First, the games Tk, for di↵erent values k, share the same set of positions with
nim-values 1. It is then conjectured that, for given k and l, the two games Tk and
Tl have the same sets of positions of nim-value g, provided that g  min(k, l).

Theorem 8. For all k � 0, the set of positions with nim-value 1 in Tk is

S1
k = {(0, 1)} [ {(An + 2, Bn + 2)|n � 0}.

Note 1. This set is identical with S1
1 for W1 of Theorem 4.

Proof. As in the proof of Theorem 4, put B = {(0, 1)} [ {(An + 2, Bn + 2)|n � 0}.
Recall that the set of P-positions of Tk is

S0
k = {(0, 0)} [ {(An + 1, Bn + 1)|n � 0}.
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Analogously to the proof of Theorem 4, it su�ces to prove the following properties:

(i) B \ S0
k = ;,

(ii) there is no move from a position in B to a position in B,

(iii) from every position in B there is a move to S0
k .

(iv) from every position not in B [ S0
k , there exists a move to some position in B.

As pointed out at the end of section 3.1, the games T1 and W1 are identical. By
Theorem 4, B = S1

1 . Therefore, (i) holds. For (ii), note that the set of moves
in Tk is a subset of that in Wythoff. As there is no move between positions of
the form (An, Bn) in Wythoff, there is no move between positions of the form
(An+2, Bn+2) in B. Item (iii) follows a fortiori from (ii) in the proof of Theorem 7.
Finally, (iv) holds for all k since each Tk is an extension of T1.

Denote by Sg
k(T ) the g-values T g

k and by Sg
k(W) the g-values Wg

k . Corollary 3
states that S0

1 (W) = T 0
k (T ) for all k � 0; Theorems 4 and 8 show that S1

1 (W) =
S1

k(T ) for all k � 0. These results seem to suggest that Sg
1 (W) = Sg

k(T ) for all
g � 0 and all k � 0. However, there are counterexamples. Thus, for the position
(20, 30) we have g(20, 30) = 38 in W1, but g(20, 30) = 2 in T1. Since it seems,
however, that g(20, 30) = 38 in Tk for all k � 38, we are led to the following

Conjecture 2. Let k be a nonnegative integer. Then

• Sg
k(T ) = Sg

1(T ) for all 0  g  k.

• Sg
1 (W) = Sg

k(T ) for all 0  g  k.

Here is a related

Conjecture 3. Let k and l be nonnegative integers. For every integer g in the
range 0  g  min(k, l), we have Sg

k = Sg
l .

Note that Conjectures 3, 2 and 1 are related. We believe that a proof method of
either of them would lead to the proof of the other two.

4. Conclusion

We found cases when translations of P-positions of Wythoff’s P-positions are
P-positions of games “close” to Wythoff. There are some further directions of
study on the theme of this translation. We list here two such questions.

Question 1. Does there exist a variant of Wythoff whose P-positions, except
possibly a finite number, are (An � k,Bn � k) for some fixed k � 1?



INTEGERS: 15A (2015) 12

More generally,

Question 2. Does there exist a variant of Wythoff whose P-positions, except
possibly a finite number, are (An + k,Bn + l) for some fixed integers k 6= l?
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