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Abstract

Let A be a set of k integers. We study Freiman’s inverse problem with small
doublings and continue the work of G. A. Freiman, I. Bardaji and D. J. Grynkiewicz
by characterizing the detailed structure of A in Theorem 2.2 below when the sumset
A+A contains exactly 3k� 3 integers. Besides some familiar structures, such a set
A can have a configuration composed of “additively minimal triangles.”

1. Introduction and Propositions

The letters A,B always represent finite sets of integers and |A| means the cardinality
of A. Let A ± B := {a ± b : a 2 A, b 2 B} for any sets of integers A and B. Let
2A := A + A. If a is an integer, then A± a := A± {a} and a±A := {a} ±A.

Freiman’s inverse problem for small doubling constants seeks structural informa-
tion of A or 2A when the size of 2A is small, say for example, less than 4|A|.

A set B is called a bi-arithmetic progression if B = I0 [ I1 where I0 and I1 are
arithmetic progressions with a common di↵erence such that 2I0, I0 + I1, 2I1 are
pairwise disjoint1. The common di↵erence of I0 and I1 is called the di↵erence of
B. The expression B = I0 [ I1 gives a (bi-arithmetic progression) decomposition of
B. For example, B = {0, 3, 5, 6, 8} is a bi-arithmetic progression of di↵erence 3 and
has a decomposition {0, 3, 6} [ {5, 8}.

Let G and G0 be two abelian semi-groups, A ✓ G and B ✓ G0. A bijection
' : A 7! B is a Freiman isomorphism (of order 2) if

a + b = c + d if and only if '(a) + '(b) = '(c) + '(d)

for any a, b, c, d 2 A.
The following two classical theorems on Freiman’s inverse problem with small

doublings were proven more than fifty years ago (see [2, page 11, page 15] or [8]).
1B is a bi-arithmetic progression if and only if B is Freiman isomorphic to two parallel line

segments of the integral lattice points on the plane.
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Theorem 1.1 (G. A. Freiman). Let A be a set of k integers with k > 2. If
|2A| = 2k�1+ b < 3k�3, then A is a subset of an arithmetic progression of length
at most k + b.

Theorem 1.2 (G. A. Freiman). Let A be a set of k integers with k > 2. If
|2A| = 3k � 3, then one of the following is true.

1. A is a bi-arithmetic progression;

2. A is a subset of an arithmetic progression of length at most 2k � 1;

3. k = 6 and A is a Freiman isomorphism image of the set K6 where

K6 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (2, 0)} ✓ Z2. (1)

Notice that the part 2 above implies that k > 1
2 |I|, i.e. A is a large subset of the

arithmetic progression I.
Part 1 and 2 in Theorem 1.2 show the regularity of the structure of A when

|2A| = 3k � 3. Part 3 is an exception. If A is the set {0, 1, 2, a, a + 1, 2a} for any
a > 3, then A is Freiman isomorphic to K6. Clearly, this A can be made neither
a subset of an arithmetic progression nor a subset of a bi-arithmetic progression of
reasonable length.

We call each element in V = {(0, 2), (2, 0), (0, 0)} a vertex of K6. Notice that
each permutation of V can be extended to a Freiman isomorphism from K6 to K6.
If ' : K6 7! B is a Freiman isomorphism, we also call the elements in '(V ) vertices
of '(K6).

Theorem 1.2 is much more di�cult to prove than Theorem 1.1 is. There has been
a few generalizations of Theorem 1.2. In [5] it is proved that the structure of A is
the same as the structure of A characterized in Theorem 1.2 when |A±A| = 3k�3.
In [6], a generalization of Theorem 1.2 is given, which characterizes the structure
of A when k is su�ciently large and |2A| = 3k � 3 + b for 0 6 b 6 ✏k, where ✏ is a
small positive real number independent of k.

Recently, Freiman discovered in [3, 4] some interesting detailed structural infor-
mation of A when |2A| < 3k � 3. By saying “detailed structural information” we
mean any structural information other than that of A being a large subset of an
arithmetic progression. The term “detailed structure” first appeared in [4]. The
main result in [3, 4] is the following.

Theorem 1.3 (A. G. Freiman, 2009). Let A be a set of k integers. If |2A| <
3k � 3, then 2A contains an arithmetic progression of length 2k � 1.

For the sum of two distinct sets, the following theorem in [1] adds extra detailed
structural information to the structural information obtained in [7] and [9].
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Theorem 1.4 (I. Bardaji and D. J. Grynkiewicz, 2010). Let A and B be
nonempty sets of k1 and k2 integers, respectively, with

maxB �minB 6 maxA�minA 6 k1 + k2 � 3

and |A + B| 6 k1 + 2k2 � 3� �(A,B).

Then A + B contains an arithmetic progression of length k1 + k2 � 1.

The number �(A,B) in Theorem 1.4 is defined to be 1 if A + t ✓ B for some
integer t and 0 otherwise. If checking the proof in [1] carefully, the reader can find
that the condition maxA �minA 6 k1 + k2 � 3 in Theorem 1.4 can be weakened
to maxA�minA 6 k1 + k2 � 2 when maxB �minB < maxA�minA.

In this paper we seek detailed structural information for A when |2A| = 3k � 3.
The most part of the structural information we have found is consistent with that in
Theorem 1.3 and Theorem 1.4. But there are some significant exceptions involving
a new concept of set configurations called triangles (see Definition 1.7 and Theorem
2.2).

Let a and b be integers. Throughout this paper we will write [a, b] for the interval
of integers between a and b including a and b. Notice that [a, b] = ; if a > b. For
any set A of integers, we will use the following notation:

A(a, b) := |A \ [a, b]|.

We now introduce a few propositions, which will be used in the proof of the main
result.

Proposition 1.5. If A(x, y) > 1
2 (y � x + 1), then y + x 2 2A.

Proof. The conclusion is true because A \ (x + y �A) \ [x, y] 6= ;.

Proposition 1.6. If ' : K6 7! B ✓ Z is an Freiman isomorphism from K6 in (1)
to B, then

1. minB and maxB are vertices of '(K6).

2. If x, y 2 B are vertices, then 1
2 (x + y) 2 B.

3. If B ✓ [a, b], then b� a > 10.

4. If B ✓ [0, 10], then B is either B1 = {0, 1, 2, 5, 6, 10},
or B2 = {0, 2, 4, 5, 7, 10}, or B3 = 10�B1, or B4 = 10�B2.

Proof. Parts 1 and 2 follow from the definition of Freiman isomorphism. For
Part 3, suppose '({(0, 0), (0, 1), (0, 2)}) = {a, a + d, a + 2d} where a = minB.
Then part 3 can be easily verified for d = 1, 2, 3, or > 4. For Part 4, sup-
pose '({(0, 0), (0, 1), (0, 2)}) = {0, d, 2d}. Then part 4 can be easily verified for
10 = '((0, 2)) or 10 = '((2, 0)).
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We introduce new names of some set configurations in order to be e�cient and
informative in describing them in part 4 of Theorem 2.2.

Definition 1.7. Let B ✓ [u, v].

• B is anti-symmetric in [u, v] if

B \ (u + v �B) = ; and B [ (u + v �B) = [u, v];

• B is half dense in [u, v] if B(u, v) = 1
2 (v � u + 1);

• A half dense set B in [u, v] is a forward triangle in [u, v] if B(u, x) >
1
2 (x � u + 1) for any x 2 [u, v � 1]. We denote FT [u, v] for the collection of
all forward triangles in [u, v];

• A half dense set B in [u, v] is a backward triangle in [u, v] if B(x, v) >
1
2 (v� x + 1) for any x 2 [u + 1, v]. We denote BT [u, v] for the collection of all
backward triangles in [u, v];

• B 2 FT [u, v] is additively minimal if

|2(B [ {v + 1})| = 3(|B|+ 1)� 3;

• B 2 BT [u, v] is additively minimal if

|2(B [ {u� 1})| = 3(|B|+ 1)� 3;

• Let FTam[u, v] and BTam[u, v] denote the collection of all additively minimal
forward triangles and the collection of all additively minimal backward trian-
gles, respectively.

We call the interval [u, v] in Definition 1.7 the host interval of B because B is
half dense in [u, v] even though u or v may not be in B.

The following are some consequences of Definition 1.7. For simplicity, we some-
times list only the properties of forward triangles. For backward triangles, one can
easily formulate symmetric properties.

Proposition 1.8. Let B ✓ [u, v].

1. B is anti-symmetric in [u, v] if and only if B(u, v) is half dense in [u, v] and
u + v 62 2B.

2. If B 2 FT [u, v] and v � u > 1, then u, u + 1 2 B and v, v � 1 62 B.

3. If B 2 FT [u, v] and b > v, then

2(B [ {b}) ◆ [2u, u + v � 1] [ (b + (B [ {b})),

which implies that |2(B [ {b})| > 3|B [ {b}|� 3.
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4. If B 2 FT [u, v], then B is additively minimal if and only if B is anti-
symmetric in [u, v] and

(2B) \ (v + 1 + [u, v]) ✓ v + 1 + B.

5. If B 2 FT [u, v], then either B =
⇥
u, 1

2 (u + v � 1)
⇤

or |2(B [ {b})| > 3|B [
{b}|� 3 for any b > v + 1.

6. If C 2 BTam[1, u] and D 2 FTam[u + 2, n � 1] for some 4 6 u 6 n � 6 and
A = {0} [ C [D [ {n}, then |2A| = 3|A|� 3.

7. If P = {0, 2, . . . , 2(m�1)} and B 2 FTam[2m,n�1] for m 2
⇥
0, 1

2n� 2
⇤
, and

A = P [B [ {n}, then |2A| = 3|A|� 3.

Proof. Parts 1, 2, and 3 are easy.
Part 4: Let b = v + 1 in part 3. Then B is additively minimal if and only if two

sides of the displayed expression in part 3 are the same set, which is true if and only if
u+v 62 2B and (2B)\(v+1+[u, v]) ✓ v+1+B. Now B is anti-symmetric if and only
if u+v 62 2B by part 1 above. Notice that |[2u, u+v�1]| = v�u = 2|B[{v+1}|�3.

Part 5: For convenience we can assume, without loss of generality, that u = 0.
Suppose that B is not an interval.

Let a = maxB. Then a > 1
2 (v � 1), which implies a > v � a. If v � a 62 B, then

a > v � a because a 2 B. Let b > v + 1. It su�ces to show that either v 2 2B or
v + 1 2 2B by part 3. Suppose that v 62 2B. Then B is anti-symmetric in [0, v] and
v � a 62 B. Hence
1
2
(v + 1) = B(0, v) = B(0, v � a� 1) + B(v � a + 1, a) 6 v � a + B(v � a + 1, a),

which implies that B(v � a + 1, a) > 1
2 (2a� v + 1) > 1

2 (2a� v). Hence

v + 1 = a + (v � a + 1) 2 2(B \ [v � a + 1, a]) ✓ 2B

by Proposition 1.5.
Part 6: Let A = {0}[C[D[{n}. Then |A| = |C|+|D|+2 = 1

2u+ 1
2 (n�u�2)+2 =

1
2 (n + 2). By the additive minimality of the triangles C and D we have

|2A| = |0 + ({0} [ C)|+ |[u + 2, u + 2 + n� 2]|+ |n + (D [ {n})|

= |A|+ n� 1 = 3|A|� 3.

Part 7: Let A = P[B[{n}. Then |A| = |P |+|B|+1 = m+ 1
2 (n�2m)+1 = 1

2n+1.
By the additive minimality of the triangle B and the fact that 2m, 2m + 1 2 B, we
have that

|2A| = |P |+ |[2m, 2m + n� 2]|+ |B|+ 1

= m + n� 1 +
1
2
(n� 2m) + 1 =

3
2
n = 3|A|� 3.
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Remark 1.9. Part 4 of Proposition 1.8 gives the structure of an additively minimal
forward triangle. A symmetric structure can be described for an additively minimal
backward triangle.

Part 5 of Proposition 1.8 justifies the definition of a forward triangle being ad-
ditively minimal by looking at the cardinality of 2(B [ {v + 1}) instead of the
cardinality of 2(B [ {b}) for any b > v + 1. Since v + 1 is implicitly determined by
the definition of additive minimality, we can call B additively minimal in its host
interval [u, v] without mentioning the element v + 1.

Blank Assumption. After normalization, we can always assume, throughout this
paper, that the set A satisfies (2) below with letters n and k reserved throughout
this paper.

0 = minA, gcd(A) = 1, n = maxA, and k = |A|. (2)

Proposition 1.10. Suppose that 0 < a < b < n and A \ [a, b] = {a, b}.

1. Clearly,
(2(A \ [0, b])) \ (2(A \ [a, n])) = {2a, a + b, 2b}. (3)

2. If |2A| = 3k � 3,

|2(A \ [0, b])| > 3A(0, b)� 3, and |2(A \ [a, n])| > 3A(a, n)� 3,

then |2(A \ [0, b])| = 3A(0, b)� 3, |2(A \ [a, n])| = 3A(a, n)� 3, (4)

and (2A) r ((2(A \ [0, b])) [ (2(A \ [a, n]))) = ;. (5)

3. Let B ✓ [u, v], u, v 2 B, and gcd(B � u) = 1. If |B| 6 1
2 (v � u + 3), then

|2B| > 3|B|� 3. If |2B| = 3|B|� 3 and |B| 6 1
2 (v � u + 1), then B is either

a bi-arithmetic progression or a Freiman isomorphism image of K6 defined in
(1).

Proof. Part 1 is trivial. Part 2 follows from the inequalities

3k � 3 = |2A|
> |2(A \ [0, b])|+ |2(A \ [a, n])|
�|{2a, a + b, 2b}|

> 3A(0, b)� 3 + 3A(a, n)� 3� 3
= 3A(0, a� 1) + 3 + 3A(a, n)� 6 = 3k � 3,

which imply (4) and |2A| = |2(A \ [0, b])|+ |2(A \ [a, n])|� 3.
Part 3 follows from Theorem 1.1 and Theorem 1.2.
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2. Main Theorem

Definition 2.1. For any m 2
⇥
0, 1

2n� 2
⇤

let

TPIm,n := {{0, 2, . . . , 2(m� 1)} [B [ {n} : B 2 FTam[2m,n� 1]} . (6)

For any u 2 [4, n� 6], let

TPIIu,n := {{0} [ C [D [ {n} : (7)
C 2 BTam[1, u] and D 2 FTam[u + 2, n� 1]}.

A set in TPIm,n is said to have a type 1 structure and a set in TPIIu,n is said
to have a type 2 structure. If A has a type 1 structure or a type 2 structure, then
|2A| = 3k � 3 by Proposition 1.8.

The following is the main theorem.

Theorem 2.2. If |A| = k > 2 and

|2A| = 3k � 3, (8)

then one of the following must be true.

1. A is a bi-arithmetic progression;

2. 2A contains an interval of length 2k � 1;

3. k = 6 and A is a Freiman isomorphism image of K6 defined in (1).

4. k = 1
2n + 1 and either A or n � A is in TPIm,n defined in (6) for some

m 2
⇥
0, 1

2n� 2
⇤

or A is in TPIIu,n defined in (7) for some u 2 [4, n� 6].

Remark 2.3. Notice that there are generally more than one set in each of
FTam[u, v] and BTam[u, v]. For example, {0, 1, 2, 3, 4}, {0, 1, 3, 4, 7}, {0, 1, 2, 5, 6},
and {0, 1, 2, 4, 6} are all in FTam[0, 9].

Notice also that 2A contains an interval of length 2k � 3 when A 2 TPIm,n or
A 2 TPIIu,n.

Proof. of Theorem 2.2. If n+1 > 2k�1, then A is either a bi-arithmetic progression
or a Freiman isomorphism image of K6 by Theorem 1.2. Hence we can assume that
n + 1 6 2k � 1 or equivalently, k > 1

2n + 1.
Let H = [0, n] r A and h = |H|. The elements in H are called the holes of A.

Thus h counts the number of holes in H. A non-empty interval [x, y] ✓ H is called
a gap of A if x� 1, y + 1 2 A. We now divide the proof into two parts and devote
one subsection for each of them.



INTEGERS: 15A (2015) 8

2.1. Proof of Theorem 2.2 when k > 1
2
n + 1

For each x 2 [0, n], k > 1
2 (n + 2) implies that

either A(0, x) >
1
2
(x + 1) or A(x, n) >

1
2
(n� x + 1). (9)

So for any x 2 [0, n], either x 2 2A or x + n 2 2A by Proposition 1.5. Let

• H1 = {x 2 H : x 62 2A and x + n 2 2A} and h1 = |H1|,

• H2 = {x 2 H : x 2 2A and x + n 62 2A} and h2 = |H2|,

• H3 = {x 2 H : x 2 2A and x + n 2 2A} and h3 = |H3|.

In [3], the elements in H1 are called left stable holes, the elements in H2, right
stable holes, and the elements in H3, unstable holes. By (9) and Proposition 1.5,
we have that H = H1 [H2 [H3 and h = h1 + h2 + h3.

Since |A [ (n + A)| = 2k � 1, the following is true:

k � 2 = |(2A) r (A [ (n + A))|

by (8). It is easy to verify that three sets B1 = {x+n : x 2 H1}, B2 = {x : x 2 H2},
and B3 = {x, x + n : x 2 H3} are pairwise disjoint and B1 [B2 [B3 = (2A) r (A[
(n + A)). Hence k � 2 = h1 + h2 + 2h3, which implies that

k � 2� h = k � 2� h1 � h2 � h3 = h3. (10)

We now prove the following lemma which implies that 2A contains 2k � 1 con-
secutive integers when A is not a bi-arithmetic progression of di↵erence 1 or 4.

Lemma 2.4. Let l, r 2 [0, n] be such that A(0, l) 6 1
2 (l + 1) and A(n � r, n) 6

1
2 (r +1). If A is not a bi-arithmetic progression of di↵erence 1 or 4, then l < n� r.

Corollary 2.5. Let A, l, and r be in Lemma 2.4. If A is not a bi-arithmetic
progression of di↵erence 1 or 4, then 2A contains 2k � 1 consecutive integers.

Proof. Let l and r be maximal so that for any x 2 [l+1, n] we have A(0, x) > 1
2 (x+1)

and for any x 2 [0, n � r � 1] we have that A(x, n) > 1
2 (n � x + 1). By Lemma

2.4 we have l < n � r. Let x 2 [l + 1, 2n � r � 1]. If x 6 n, then x 2 2A because
A(0, x) > 1

2 (x + 1). If x > n, then x 2 2A because A(x � n, n) > 1
2 (2n � x + 1).

Hence [l + 1, 2n� r � 1] ✓ 2A. Note that

k = A(0, l) + A(l + 1, n� r � 1) + A(n� r, n)

6
1
2
(l + 1) + (n� r � l � 1) +

1
2
(r + 1) = n� 1

2
(l + r),

which implies 2k � 1 6 2n� l � r � 1 = |[l + 1, 2n� r � 1]|.
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Proof. of Lemma 2.4. Without loss of generality, we can assume that A is not a
bi-arithmetic progression of di↵erence 1 or 4. Assume to the contrary that l > n�r.
Clearly, l 6= n� r by (9). Hence we can assume that l > n� r. Let

r0 = min
⇢

x 2 [n� l, r ] : A(n� x, n) 6
1
2
(x + 1)

�
. (11)

By (9) we have that n� r0 < l. Let

l0 = min
⇢

x 2 [n� r0, l] : A(0, x) 6
1
2
(x + 1)

�
. (12)

We have that n�r0 < l0 again by (9). By the minimality of l0 and r0, it is true that
A(0, x) > 1

2 (x + 1) and A(x, n) > 1
2 (n� x + 1) for any x 2 H \ [n� r0 + 1, l0 � 1].

So every hole in [n� r0 + 1, l0 � 1] is an unstable hole. Thus

H(n� r0 + 1, l0 � 1) 6 h3. (13)

Now we have that

h > H(0, l0) + H(n� r0, n)�H(n� r0, l0) (14)

>
1
2
(l0 + 1) +

1
2
(r0 + 1)�H(n� r0, l0) (15)

>
1
2
(n + 1) +

1
2
(l0 � (n� r0) + 1)�H(n� r0, l0) (16)

>
1
2
(k + h)� 1

2
H(n� r0, l0). (17)

By solving the inequality above, we get that h > k �H(n � r0, l0), which implies
that

0 > k � 2� h�H(n� r0, l0) + 2 > h3 �H(n� r0 + 1, l0 � 1) > 0 (18)

by (10) and (13). Thus all inequalities in (14)–(18) become equalities. In particular,
it is true that

H(n� r0, l0) = l0 � (n� r0) + 1 = h3 + 2. (19)

Notice that (19) implies that [n�r0, l0]\A = ; and H3 = [n�r0 +1, l0�1]. Notice
also that l0 is a left stable hole and n � r0 is a right stable hole. These facts are
important for the rest of the proof.

All arguments above this line are due to Freiman in [3]. The remaining part of the
proof is new. Notice that if |2A| < 3k� 3, then (10) becomes k� 2�h > h3, which
leads to a contradiction that 0 > 0 in (18). So the rest of the proof is needed only
because (18) does not lead to a contradiction so far. Notice also that l0 > n � r0

can happen when, for example, A = [0, 10] [ [22, 32] or A = {0, 4, 8, . . . , 40} [
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{1, 5, 9, . . . , 41}. Fortunately, in these two cases, A is a bi-arithmetic progression of
di↵erence 1 or 4, respectively.

It is easy to verify that

A(0, l0) =
1
2
(l0 + 1) and A(n� r0, n) =

1
2
(r0 + 1). (20)

Since (20), l0 is left stable hole, and n � r0 is a right stable hole, we have, by
Proposition 1.8, that A \ [0, l0] and and A \ [n� r0, n] are anti-symmetric. Let

a = max(A \ [0, n� r0]) and b = min(A \ [l0, n]). (21)

Then a < n� r0, b > l0, and b� a > 2 + l0 � (n� r0) > 3. Since

A(0, a) = A(0, l0) =
1
2
(l0 + 1) >

1
2
(a + 3) >

1
2
(a + 1) + 1,

we have that a > 0 and
gcd(A \ [0, a]) = 1. (22)

By the same reason, we have that b < n and

gcd(A \ [b, n]� b) = 1. (23)

By part 3 of Proposition 1.10, we can assume that |2(A\ [0, b])| > 3A(0, b)� 3 and
|2(A \ [a, n])| > 3A(a, n)� 3. Hence (3), (4), and (5) are true by Proposition 1.10.
We now use these facts to derive contradictions. Let

a0 = maxA \ [0, a� 1] and b0 = minA \ [b + 1, n].

A contradiction will be derived under each of the following conditions:
b0 � b < a� a0,
b0 � b > a� a0,
b0 � b = a� a0 > b� a,
1 < b0 � b = a� a0 6 b� a, and
b0 � b = a� a0 = 1.

Assume that b0� b < a�a0. Then a0 + b0 = 2a by (3) and (5), which implies that
2a 62 b + A \ [0, b]. The fact that 2a 62 b + A \ [0, b] will be used in the next several
paragraphs to show that |2(A \ [0, b])| > 3A(0, b)� 3, which contradicts (4).

Let z = max
�
x 2 [�1, l0 � 1] : A(0, x) 6 1

2 (x + 1)
 
. Clearly, z + 1 2 A and

A(0, z) = 1
2 (z +1) by the maximality of z. Notice that A\ [z +1, l0] 2 FT [z +1, l0].

If z = �1, then |2(A \ [0, b])| > 3A(0, b) � 2 > 3A(0, b) � 3 by part 3 and 4 of
Proposition 1.8.

Suppose that z > �1. Then z > 0 because A(0, 0) = 1 > 1
2 .
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If gcd(A \ [0, z + 1]) = 1, then |2(A \ [0, z + 1])| > 3A(0, z + 1)� 3 by part 3 of
Proposition 1.10. If z 2 A, then z + b 2 2A and

|2(A \ [0, b])|
> |2(A \ [0, z + 1])|� 1

+|[2z + 2, z + l0]|+ |(b + A \ [z, b]) [ {2a}|
> 3A(0, z) + 3A(z + 1, b)� 2 > 3A(0, b)� 3.

So we can assume that z 62 A. Let

z0 = maxA \ [0, z � 1].

Then z0 + z + 2 2 (2A) r (2(A \ [0, z + 1])). Hence

|2(A \ [0, b])|
> |(2(A \ [0, z + 1])) [ {z0 + z + 2}|� 1

+|[2z + 2, z + l0]|+ |(b + A \ [z + 1, b]) [ {2a}|
> 3A(0, z) + 3A(z + 1, b)� 2 > 3A(0, b)� 3.

Thus we can assume that gcd(A \ [0, z + 1]) = d > 1. Clearly, d = 2 and
A \ [0, z + 1] is an arithmetic progression of di↵erence 2 by the fact that A(0, z) =
1
2 (z + 1). Hence

|2(A \ [0, b])|
> |A \ [0, z � 1] + A \ [0, z + 1]|+ |(z + 2) + A \ [0, z � 1]|

+|[2z + 2, z + l0]|+ |(b + A[z + 1, b]) [ {2a}|
> 3A(0, b)� 2 > 3A(0, b)� 3.

Notice that |2(A\ [0, b])| > 3A(0, b)�3 is true if 2a, which is not in b+A\ [0, b],
is replaced by any element c 2 (2A \ [b + z + 1, 2b]) r (b + A \ [z + 1, b]) in the
argument above.

Assume that a�a0 < b0�b. The proof is symmetric to the case for a�a0 > b0�b.

Assume that b0 � b = a� a0 = d0.
If d0 > b � a, then 2a 62 b + A \ [0, b]. Hence |2(A \ [0, b])| > 3A(0, b) � 3 by

the same argument as above, which contradicts (4). Thus, we can assume that
d0 6 b� a.

Suppose that 1 < d0 6 b� a. Let a00 be the greatest element in A \ [0, a0] which
is not congruent to a modulo d0. The number a00 exists by (22).

If b0+a00 2 2(A\[a, n]), then b0+a00 = 2a by (3), which implies 2a = b+(d0+a00) 62
b + A \ [0, b] by the maximality of a00. Hence |2(A \ [0, b])| > 3A(0, b) � 3. So by
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(5), we can assume that b0 +a00 2 2(A\ [0, b]). Notice that b0 +a00 > b+ z +1. This
is true because b0 > b + 2 and a00 > z � 1 due to the facts that d0 > 1, a + 1 < l0,
and A \ [z + 1, l0] 2 FT [z + 1, l0]. Clearly, b0 + a00 62 b + A \ [0, b]. Hence, again,
|2(A \ [0, b])| > 3A(0, b)� 3 by the same argument as above.

We can now assume that d0 = 1, i.e.,

a0 = a� 1 2 A and b0 = b + 1 2 A. (24)

The derivation of a contradiction under this case is much harder that the previous
cases. The reason for this is perhaps that A satisfies (24) when A is a bi-arithmetic
progression of di↵erence 1 or 4.

Since A \ [0, l0] and A \ [n � r0, n] are anti-symmetric and [n � r0, l0] \ A = ;,
we have that [0, l0 � (n� r0)] ✓ A and [2n� l0 � r0, n] ✓ A. In particular, we have
that

0, 1, n� 1, n 2 A. (25)

Next we prove four claims for the existence of unstable holes if A has a certain
configuration. These claims will be used to derive a contradiction.

Claim 1. If z 2 A, then z � 1 2 A or z + 1 2 A.

Proof. Suppose that Claim 1 is not true. Then z 2 [3, n� 3] r [a� 2, b + 2] by (24)
and (25). If A(0, z�1) > 1

2z, then z�1 2 H3 because n+ z�1 = (n�1)+ z 2 2A.
Symmetrically, if A(z + 1, n) > 1

2 (n � z), then z + 1 2 H3. Both contradicts (19).
However, A(0, z � 1) 6 1

2z and A(z + 1, n) 6 1
2 (n� z) contradicts the assumption

k > 1
2n + 1.

Claim 1 says that A does not contains any isolated points in A.

Claim 2. If z 2 H, then either z � 1 2 H or z + 1 2 H.

Proof. If z�1, z+1 2 A and z 2 H, then z 62 [n�r0, l0] and z = (z�1)+1, z+n =
(z + 1) + (n� 1) 2 2A, which contradict (19).

Claim 2 says that there do not exist any isolated holes of A.

Claim 3. (a) If 0 < x < y < z < n are such that x, z, z + 1 2 H, y 2 A, and
A(0, z) = 1

2 (z + 1), then z + 1 is an unstable hole.
(b) If 0 < x < y < z < n are such that x � 1, x, z 2 H, y 2 A, and A(x, n) =

1
2 (n� x + 1), then x� 1 is an unstable hole.

Proof. We prove (a) only and (b) follows by symmetry. Without loss of generality,
let x = maxH \ [0, y]. Notice that z 62 2A because z 62 H3. Now A(0, z) = 1

2 (z + 1)
implies that c = z � x 2 A. Hence z + 1 = c + (x + 1) 2 2A.
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Claim 3 (a) implies that if [0, a] 6✓ A, then b = l0 + 1 because b > l0 + 1 implies
that l0 + 1 is an unstable hole, which contradicts (19). By symmetry, Claim 3 (b)
implies that a = n� r0 � 1 if [b, n] 6✓ A.

Claim 4. If [x, y] ✓ H is a gap of A with y � x > 2, H \ [0, x � 1] 6= ;, and
H \ [y + 1, n] 6= ;, then [x, y] contains an unstable hole.

Proof. If A(0, x) 6 1
2 (x + 1), then x 2 H3. If A(y, n) 6 1

2 (n� y + 1), then y 2 H3.
Otherwise, one can find a t 2 [x + 1, y � 1] such that t 2 H3 by Claim 3.

Claim 4 says that if A has a gap [x, y] of length at least 3, i.e., y � x > 2, then
[x, y] is either the first gap or the last gap or the middle gap [a + 1, b� 1] of A.

We now continue the proof of Theorem 2.2 by deriving a contradiction under the
assumption that d0 = 1, i.e., a� 1, a, b, b + 1 2 A.

If n� b < b�a and a < b�a, then A is a subset of the bi-arithmetic progression
[0, a] [ [b, n] of di↵erence 1. So |2A| = 3k � 3 implies that A = [0, a] [ [b, n] by
Theorem 1.1. Thus we can now assume that either n� b > b� a or a > b� a.

Without loss of generality, let a > b� a. So we have H \ [0, a] 6= ;. Let

z = min
⇢

x 2 [0, l0] : A(0, x) 6
1
2
(x + 1)

�
. (26)

Then z 6= a.

Case 1 z > a. It is easy to see that z > a implies z = l0. Let y = minH \ [0, a].
Then y 62 [n� r0 + 1, l0 � 1]. Since y 2 2A by Proposition 1.5 and the minimality
of z, and y + n = (y + 1) + (n� 1) 2 2A, we have y 2 H3, which contradicts (19).

Case 2 z < a. Notice that z 62 A by the minimality of z and z > 2. By the same
argument as in Case 1, we have that A\[0, z] =

⇥
0, z�1

2

⇤
. If A(z�1, n) > 1

2 (n�z+2),
then z � 1 is an unstable hole below a by Proposition 1.5. Hence we can assume
that A(z � 1, n) 6 1

2 (n� z + 2). Since

A(z � 1, n) = k �A(0, z � 2)

= k �A(0, z) >
1
2
(n + 3)� 1

2
(z + 1) =

1
2
(n� z + 2),

we have that
A(z � 1, n) =

1
2
(n� z + 2). (27)

By Claim 3 (b), we can assume that z � 2 2 A because otherwise z � 2 becomes
an unstable hole below a. So z � 2 = 1

2 (z � 1), which implies that z = 3 and
A \ [0, z] = [0, 1].

It is worth mentioning that (27) and A(0, z) 6 1
2 (z + 1) imply

k =
1
2
(n + 3) =

1
2
(k + h + 2), (28)
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which implies k � 2 = h and

h3 = k � 2� h = 0. (29)

So A has no unstable holes and n� r0 = l0 � 1.
Let

V = {x 2 [0, n] : x ⌘ 0, 1 (mod 4)}.

We can assume that A 6= V because otherwise A is a bi-arithmetic progression of
di↵erence 4. Let

z0 = min{x 2 [0, n] : A \ [0, x] 6= V \ [0, x]}.

Notice that n > z0 > z = 3 and A \ [0, z0 � 1] = V \ [0, z0 � 1] is the maximal
bi-arithmetic progression of di↵erence 4 inside A containing 0, 1. The rest of the
proof is divided into four cases in terms of the value of z0 modulo 4.

Case 2.1 z0 ⌘ 0 (mod 4). Clearly, z0 62 A because otherwise A\[0, z0] = V \[0, z0].
If z0 > 4, then A\ [0, z0] = {0, 1, 4, 5, . . . , z0� 4, z0� 3} and z0 is at least 8. Since

A(0, z0 � 1) = 1
2z0 by the definition of V , and since 3, z0 � 1, z0 2 H, and 4 2 A, we

have that z0 is an unstable hole by Claim 3, which contradicts (29).
So we can now assume that z0 = 4, which implies that A \ [0, 4] = {0, 1}.
Let c = minA \ [z0, a].
Recall that l0 is a left stable hole and A \ [0, l0] is anti-symmetric in [0, l0] by

Proposition 1.8. Since 0, 1, c 2 A and [2, c�1] ✓ H, we have that l0, l0�1, l0�c 62 A
and [l0� c+1, l0� 2] ✓ A. Consequently, l0� 2 = a by (21). Clearly, c 6 l0� c+1.
Since [2, c� 1] is a gap of A with length at least 3, [l0 � c + 1, a] is an interval in A
with length at most 3.

Suppose that c < l0� c+1. Then c < l0� c and t = l0� c 2 H because A\ [0, l0]
is anti-symmetric in [0, l0]. Since t + 1 2 A, we have that t� 1 62 A by Claim 2. If
t � 2 2 H, then the gap I of A containing t has a length at least three. Hence I
contains an unstable hole by Claim 4. But if t� 2 2 A, then t� 1+n 2 2A because
A(t� 1, n) = A(t� 1, a) + A(n� r0, n) > 1

2 (n� t + 2), and t� 1 = (t� 2) + 1 2 2A.
Hence t� 1 is an unstable hole. Both contradicts (29).

We can now assume that c = l0 � c + 1, which implies that A \ [0, b] = {0, 1} [
[c, a] [ {b}. So

2(A \ [0, b]) ◆ [0, 2] [ [c, a + 1] [ [2c, a + b] [ {2b} and

|2(A \ [0, b])| > 3 + a� c + 2 + a + b� 2c + 1 + 1
= 3a� 3c + 10 = 3A(0, b)� 12 + 10 = 3A(0, b)� 2.

Case 2.2 z0 ⌘ 1 (mod 4). We have that z0 62 A, z0� 1 2 A, and z0� 2 62 A. Hence
z0 � 1 is an isolated point of A, which contradicts Claim 1.
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Case 2.3 z0 ⌘ 2 (mod 4). We have that z0, z0 � 1, z0 � 2 2 A and z0 � 3 62 A.
Let c = max{x > z0 : [z0, x] ✓ A}.
Notice that [z0�2, c] ✓ A. The proof of Case 2.3 is divided into four subcases for

c = n, b < c < n, c = a, or c < a. Notice that c = b is impossible because c�1 2 A.

Case 2.3.1 c = n. Since A = (V \ [0, z0 � 3]) [ [z0 � 2, n], we have that

k = A(0, z0 � 3) + A(z0 � 2, n) =
1
2
(z0 � 2) + n� z0 + 3

=
1
2
(n + 1) +

1
2
(n� z0 + 3) >

1
2
(n + 1) +

3
2

=
1
2
(n + 4),

which contradicts (28).

Case 2.3.2 b < c < n. Clearly, b 6 z0�2. Recall that a+3 = b. Let x = 2n�r0�c
and y = 2n� r0 � z0 + 2. Since z0 � 3 62 A, [z0 � 2, c] ✓ A, and c + 1 62 A, and since
n� r0 is a right stable hole and A \ [n� r0, n] is anti-symmetric in [n� r0, n], we
have that [x, y] is a gap of A with length y � x + 1 = c � z0 + 3 > 3. Notice also
that n � 2 62 A because b = n � r0 + 2 2 A. Notice that c < x because gaps of A
below c are also gaps of V with length 2 while the length of [x, y] is at least 3. By
Claim 4 we can assume that [y + 1, n] ✓ A. Hence y = n� 2.

Suppose that c + 1 < x. Since c 2 A and c + 1 62 A, we have that c + 2 62 A
by Claim 2. If c + 3 62 A, then the gap I of A with c + 1 2 I contains an unstable
hole by Claim 4. So we can assume that c + 3 2 A. By the fact that the interval
[z0�2, c] contains at least three elements, we have that A(0, c+2) > 1

2 (c+3), which
implies that c + 2 2 2A by Proposition 1.5. Also c + 2 + n = (c + 3) + (n� 1) 2 2A.
Hence c + 2 2 H3, which contradicts (29).

Thus we can assume that c + 1 = x. Now we have that

A \ [a, n] = {a} [ [b, c] [ {n� 1, n}.

Hence

2(A \ [a, n]) = {2a} [ [a + b, 2c] [ [n� 1 + b, n + c] [ [2n� 2, 2n] and

|2(A \ [a, n])| = 1 + 2c� a� b + 1 + c� b + 2 + 3
= 3c� 3b + 10 = 3A(a, n)� 12 + 10 = 3A(a, n)� 2.

Case 2.3.3 c = a. Since A \ [0, l0] is anti-symmetric in [0, l0], we have that
[x, y] = l0 � [z0 � 2, a] = [2, l0 � z0 + 2] ✓ H is a gap of A below z0 � 2 with length
at least 3, which is impossible because all gaps of A below z0 � 2 must be the gaps
of V with length 2.

Case 2.3.4 c < a. Since A \ [0, l0] is anti-symmetric in [0, l0], we have that
[x, y] = [l0 � c, l0 � z0 + 2] ✓ H is a gap of A with length at least 3. Since gaps of
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A below z0 � 2 has length 2, we have that c < x. By Claim 4, [x, y] contains an
unstable hole, which contradicts (29).

Case 2.4 z0 ⌘ 3 (mod 4). By the definition of z0 we have that z0, z0 � 2 2 A and
z0 � 1 62 A. Therefore, z0 � 1 is an isolated hole, which contradicts Claim 2.

This completes the proof of Lemma 2.4 as well as Theorem 2.2 when k > 1
2 (n +

2).

Remark 2.6. Part 2 of Theorem 2.2 is a structural property for 2A. So it is an
indirect description of a structural property of A. Let l0 and r0 be the maximal l
and r, respectively, as defined in Lemma 2.4. Then l0 < n � r0, which is a direct
description of a structural property of A. The conclusion that l0 < n� r0 in Lemma
2.4 not only implies part 2 of Theorem 2.2 (the converse is not true), but also gives
some geometric information for A. Roughly speaking, l0 < n� r0 indicates that A
is thin in [0, l0] and in [n� r0, n], and A is thick in [l0 + 1, n� r0 � 1]. Therefore, we
can say that Lemma 2.4 is a more detailed description of the structural property of
A than part 2 of Theorem 2.2 when k > 1

2 (n + 3).

2.2. Proof of Theorem 2.2 when k = 1
2
n + 1

Throughout this subsection we set that

k =
1
2
(n + 2). (30)

Notice that (30) cannot occur when n is an odd number.
Let x be a hole in A. We call x a balanced hole if A(0, x) = 1

2 (x + 1) and
A(x, n) = 1

2 (n�x+1). Notice that if A(0, y) = 1
2 (y +1) and A(y, n) = 1

2 (n�y +1)
for some y 2 [0, n], then y 62 A and if A(0, x) = 1

2 (x + 1) for some hole x in A, then
x is a balanced hole by (30).

We want to show that A 2 TPIm,n or n � A 2 TPIm,n or A 2 TPIIu,n where
TPIm,n and TPIIu,n are defined in Definition 2.1. It is worth mentioning that if
n = 10 and B is a Freiman isomorphism image of K6 in (1), then |B| = 1

2 (n + 2)
and B = Bi for i = 1, 2, 3, or 4 where Bi’s are defined in part 4 of Proposition 1.6.
Notice that B1 2 TPI0,10 and B2 2 TPI2,10.

Case 1 0, 1 2 A. In this case we want to show that A 2 TPI0,n or A is an
arithmetic progression of di↵erence 1 or 4. Let

z = min
⇢

x 2 [0, n] : A(0, x) 6
1
2
(x + 1)

�
. (31)

Then z > 3 and z � 1, z 62 A, A(0, z) = 1
2 (z + 1), and A \ [0, z] 2 FT [0, z] by the

minimality of z. Notice that z is a balanced hole.
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If z = 2k�3 = n�1, then 2A ◆ [0, n�2][ (n+A). Hence |2A| = 3k�3 implies
that 2A = [0, z � 1] [ (n + A). So A 2 TPI0,n. Therefore, we can now assume that
z < 2k � 3 = n� 1.

We now want to show that either |2A| > 3k�3 or A is a bi-arithmetic progression
of di↵erence 1 or 4.

Let a = maxA \ [0, z] and b = minA \ [z, n]. By part 3 of Proposition 1.10, we
can assume that

|2(A \ [0, b])| > 3A(0, b)� 3. (32)

Since A(z, n) = A(b, n) = 1
2 (n � z + 1) > 1

2 (z + 2 � z + 1) > 1, the set A \ [a, n]
contains at least three elements.

Suppose that gcd(A \ [b, n] � b) > 1. Then A(z, n) = 1
2 (n� z + 1) implies that

b = z + 1 and A \ [b, n] is an arithmetic progression of di↵erence 2. Since A \ [b, n]
is an arithmetic progression of di↵erence 2, we have that

2A ◆ [0, z � 1] [ (A \ [b, n� 2] + {0, 1}) [ (n + A). (33)

So |2A| = 3k � 3 implies that two sides in (33) are the same set. Let E0 be the set
of all even numbers and O0 be the set of all odd numbers in A \ [0, a]. If there is
an x > 0 such that x 62 E0 and x + 2 2 E0, then n + x = (n� 2) + (x + 2) is in 2A
but not in the right side of (33). So E0 is a set of consecutive even numbers. By
the same reason we can assume that O0 is a set of consecutive odd numbers.

If a = z � 1 = b � 2, then a is even and A(0, z) = 1
2 (z + 1) = |E0|. So O0 = ;,

which contradicts 1 2 A. Hence we can assume that a < b� 2 and b� 2 62 A. Now
b + (n� 2) is in 2A but not in the right side (33), a contradiction to the fact that
two sides of (33) are the same set.

Remark 2.7. Notice that in the proof above we have that |2A| > 3k � 2 by
identifying an element in ((2A) r (n + A)) \ [n, 2n]. If in some case we can also
show that z 2 2A, then |2A| > 3k � 1. This fact will be mentioned later.

We can now assume that gcd(A \ [b, n]� b) = 1.
By part 3 of Proposition 1.10, we have that |2(A\[a, n])| > 3A(a, n)�3. Together

with (32), we conclude that (3), (4), and (5) are true.

Case 1.1 H\ [0, a] = ;. This case implies that z = 2a+1, 2a < b, and A\ [0, b] =
[0, a] [ {b}.

By applying Theorem 1.2 we have that one of the following is true: (i) A\ [a, n]
is a bi-arithmetic progression, (ii) n � a + 1 6 2A(a, n) � 1, or (iii) A \ [a, n] is
Freiman isomorphic to K6 in (1).

Notice that n�a+1 6 2A(a, n)�1 = (n�z+1)+1 implies that 2a+1 = z 6 a+1,
which is absurd. So we can assume that A\[a, n] is either a bi-arithmetic progression
or Freiman isomorphic to K6.
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Case 1.1.1 A\ [a, n] is Freiman isomorphic to K6 in (1). Let ' : K6 7! A\ [a, n]
be the Freiman isomorphism. Notice that A(b + 1, n� 1) = 3.

Suppose that b + 1 62 A. Let b0 = minA \ [b + 1, n].
If a > 1, then there is an x 2 {a � 1, a � 2} such that x + b0 62 {2a, a + b, 2b}.

Hence x + b0 is in the set in (5), which contradicts that the set is empty.
If a = 1, then z = 3, b > 4, and n = 12 because k = 7. If 2b 6= b0, then b0 is in

the set in (5). So we can assume that b0 = 2b > 8. Notice that a = 1 is a vertex
of '(K6) and b is not a vertex by part 2 of Proposition 1.6. So 2b � a = 2b � 1 is
another vertex of '(K6). This contradicts the minimality of b0.

We can now assume that b + 1 2 A. If b + 1 is a vertex of '(K6), then c =
1
2 (a + b + 1) 2 A \ [a + 1, b � 1], which contradicts A \ [a + 1, b � 1] = ;. So
b + 1 is not a vertex in '(K6). Hence 2b + 2 � a is in A and is a vertex. So A =
[0, a][{b, b+1, 2b�a, 2b�a+1, 2b�a+2}, which implies that (a�1)+(2b�a) = 2b�1
is in the empty set in (5).

Case 1.1.2 A\[a, n] is a bi-arithmetic progression of di↵erence d. Let A\[a, n] =
I0 [ I1 be the bi-arithmetic progression decomposition and a 2 I0.

If d = 1, then A\[a, n] = {a}[[b, n] such that n�b > b�a. Hence A = [0, a][[b, n]
is a bi-arithmetic progression of di↵erence 1.

If d = 2, then gcd((A \ [b, n]) � b) = 2 because b � a > 3. But this contradicts
the assumption that gcd((A \ [b, n])� b) = 1.

If d = 3, then b 2 I0 and b � a = 3. Hence z = a + 2, which implies that a = 1
because z = 2a + 1. Let c = min I1. If c = b + 2, then a� 1 + c is in the set in (5).
If c = b + 1 or c > b + 3, then a� 1 + b + 3 is in the set in (5). But both contradict
that the set in (5) is empty.

If d = 4, then A(b+1, b+3) 6 1. If a 6⌘ b (mod 4), then b = a+3 because b�a > 3
and a + 4 2 I0. But b = a + 3 implies a = 1. So A is a bi-arithmetic progression
of di↵erence 4. Hence we can assume that a ⌘ b (mod 4). If A(b + 1, b + 3) = 0 or
b + 1 2 A, let x = b + 4. If b + 3 2 A, let x = b + 3. Then a� 1 + x is in the empty
set in (5). Notice that b + 2 62 A because otherwise gcd(A \ [b, n]� b) = 2.

If d > 5, then 1
2 (n�z+1) = A(z, n) 6 2

5 (n�z+3), which implies that n�z 6 7.
Now A(z, n) = 1

2 (n�z +1), z < b, and d = 5 imply that n�z = 7, d = 5, b = z +1,
and A \ [b, n] = {b, b + 1, b + 5, b + 6}. If a ⌘ b (mod 5), then a� 1 + b + 5 is in the
empty set in (5). If a 6⌘ b (mod 5), then b�a = 4, which implies that a = 2 because
a + 3 = z = 2a + 1. Hence b + 5 = (a� 2) + (b + 5) = 2b� 1 is in the empty set in
(5).

Case 1.2 H \ [0, a] 6= ;. Notice that z 6 2a. If b > z + 1, then |2(A \ [0, b])| >
3|A \ [0, b]|� 3 by part 5 of Proposition 1.8. Hence we can assume that b = z + 1.
By (4), A \ [0, z] is an additively minimal backward triangle. Hence A \ [0, z] is
anti-symmetric.

Since A\ [0, z] is anti-symmetric and 1 2 A, we have that z�1 62 A. So b�a > 3.
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If n� a + 1 6 2A(a, n)� 1 = (n� z + 1) + 1, then z� 1 6 a. Hence we can assume,
by Theorem 1.2, that A \ [a, n] is either a bi-arithmetic progression or a Freiman
isomorphism image of K6 in (1).

Case 1.2.1 A\ [a, n] is Freiman isomorphic to K6 in (1). Let ' : K6 7! A\ [a, n]
be the Freiman isomorphism.

Since A(z, n) = 5 = 1
2 (n � b + 2), we have that n � b = 8. Notice that a is a

vertex, b is not a vertex, and 2b� a is a vertex of '(K6). Let c be the third vertex
in '(K6). If 2b� a = n, then 1

2 (a + c) 2 A \ [a + 1, b� 1] = ;, which is absurd. So
we can assume that 2b� a < c = n.

Notice that 1
2 (n+2b�a) is in A\[b, n]. Clearly, n�(2b�a) is even and 6 5 because

n�b = 8 and b�a > 3. If n�(2b�a) = 4, then A\[b, n] = {b, b+2, b+4, b+6, b+8},
which contradicts gcd(A \ [b, n] � b) = 1. If n � (2b � a) = 2, then A \ [b, n] =
{b, b + 1, b + 6, b + 7, b + 8} and a = b� 6. If a� 1 2 A, then (a� 1) + (b + 6) is in
the empty set in (5). So we can assume that a� 1 62 A. Let a0 = maxA\ [0, a� 1].
If a0 + b + 1 6= 2a, then a0 + b + 1 is in the empty set in (5). If a0 + b + 1 = 2a, then
a0 + b + 6 is in the empty set in (5). Both are absurd. This completes the proof of
Case 1.2.1.

Case 1.2.2 A\[a, n] is a bi-arithmetic progression of di↵erence d. Let A\[a, n] =
I0 [ I1 be the bi-arithmetic progression decomposition and a 2 I0.

If d = 1, then A\[a, n] = {a}[[b, n] with n�b < b�a. Let A0 = n�A, z0 = n�z,
b0 = n� a, and a0 = n� b. Then A0 \ [0, z0] = [0, a0], A0 \ [a0, b0] = [0, a0][ {b0}, and
z0 is a balanced hole of A0. The same proof for Case 1.1 works for A0.

If d = 2, then gcd((A \ [b, n])� b) = 2 because b� a > 3, which contradicts the
assumption that gcd((A \ [b, n])� b) = 1.

If d = 3, then a, b 2 I0, b � a = 3, and z = a + 2. Let c = min I1 and
a0 = maxA\ [0, a� 1]. If a0 = a� 1, then A(0, a0� 1) = 1

2a0, which contradicts the
minimality of z. Thus we can assume that a0 < a� 1. If a0 ⌘ a (mod 3), then c + a0

is in the empty set in (5). So we can assume that a0 6⌘ a (mod 3). If c = b + 1, then
c + a0 is in the empty set in (5). So we can assume that c > b + 1. If b + 3 62 A,
then c = b + 2 and A \ [z, n] = {b, b + 2} by the fact that A(z, n) = 1

2 (n � z + 1),
which contradicts the assumption that gcd(A \ [b, n] � b) = 1. So we can assume
that b + 3 2 A. But now a0 + b + 3 is in the empty set in (5).

If d = 4, then b � a = 4 or b � a = 3 because gcd(A \ [b, n] � b) = 1. Let
a0 = max(A \ [0, a� 1]) and c = min{x 2 A \ [b + 1, n] : x 6⌘ b (mod 4)}.

Suppose that a0 = a� 1. If b� a = 4, then c 6= b + 2 and b + 4 2 A by the fact
that A(b� 1, n) = 1

2 (n� b). If c 6= b + 3, then a0 + b + 4 is in the empty set in (5).
If c = b + 3, then a0 + c is in the empty set in (5). If b� a = 3, then z � a = 2 and
A(0, a0 � 1) = 1

2a0, which contradicts the minimality of z.
So we can now assume that a0 < a�1. If b+1 2 A, then a0+b+1 is in the empty

set in (5) unless a0 + b + 1 = 2a. If a0 + b + 1 = 2a, then 2a 62 (b + A\ [0, b]), which
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leads to a contradiction to (4). So we can assume that b + 1 62 A, which implies
that b 6= a + 3. So we have that b = a + 4. Since A(z, n) = 1

2 (n� z + 1), we have
that b + 3 2 A and n > b + 4. If a0 ⌘ a (mod 4), then a0 + b + 3 is in the empty set
in (5). If a0 6⌘ a (mod 4), then a0 + b + 4 is in the empty set in (5).

If d > 5, then 1
2 (n � z + 1) = A(z, n) 6 2

5 (n � z + 3), which implies that
n � z = 7 and A \ [b, n] = {b, b + 1, b + 5, b + 6}. Notice that b � a is 5 or 4. Let
a0 = maxA \ [0, a� 1].

If a0 < a� 1, then a0 + b + 1 is in the empty set in (5) unless a0 + b + 1 = 2a. If
a0 + b + 1 = 2a, then 2a 62 (b + A \ [0, b]), which leads to a contradiction to (4). So
we can assume that a0 = a� 1. If a� b = 5, then a0 + b + 5 is the empty set in (5).
If a � b = 4, then let a00 = max{x 2 A \ [0, a � 1] : x 6⌘ b, b + 1}. Notice that a00

exists because otherwise A is a subset of a bi-arithmetic progression of di↵erence 5,
which contradicts the assumptions that H \ [0, a] 6= ; and A \ [0, z] is a backward
triangle in [0, z]. If a00 ⌘ b + 2 or b + 3 (mod 5), then a00 + b + 1 is in the empty set
in (5). If a00 ⌘ b + 4 (mod 5), then a00 + b + 5 is the empty set in (5).

This completes the proof of Case 1.2.2 as well as Case 1.

Case 2 1 62 A. If n�1 2 A, then by the proof of Case 1 for n�A, we can conclude
that n�A 2 TPI0,n or A is an arithmetic progression of di↵erence 1 or 4. Thus we
can assume that n� 1 62 A.

We want to show that A 2 TPIm,n or n�A 2 TPIm,n for some m 2
⇥
1, 1

2n� 2
⇤

or A 2 TPIIu,n for some u 2 [4, n� 6]. Let E be the set of all even numbers and

a = max{x 2 [0, n] : A \ [0, x] = E \ [0, x]}.

Notice that 2 6 a 6 n� 2. Notice also that a 2 A implies a + 1 2 A and if a 62 A
implies a + 1 62 A by the maximality of a.

Case 2.1 a 2 A. In this case we show that A 2 TPIm,n for m = a/2.
Let A0 = A \ [a, n]. Then a, a + 1 2 A. Notice that

3k � 3 = |2A|
> |2(A \ [0, a])|+ |a + 1 + A \ [0, a� 2]|+ |2(A \ [a, n])|� 1
= 3A(0, a� 2) + |2(A \ [a, n])|.

Hence |2(A \ [a, n])| 6 3A(a, n) � 3. Notice also that A(a, n) = 1
2 (n � a + 2). So

|2(A \ [a, n])| = 3A(a, n) � 3 by part 3 of Proposition 1.10. Let n0 = n � a. Now
A0 = A\ [a, n]�a in [0, n0] satisfies all conditions for Case 1. So either A0 2 TPI0,n0

or A0 is a bi-arithmetic progression of di↵erence 1 or 4.
Suppose that A0 is a bi-arithmetic progression of di↵erence 1. Since n � 1 62 A,

we have that A\ [a, n] = [a, x][ {n}. Since |A\ [a, n]| = 1
2 (n�a+1), we have that

A0 2 TPI0,n0 . Hence A 2 TPIm,n for m = a/2.
Suppose that A0 is a bi-arithmetic progression of di↵erence 4. If a + 5 62 A, then

A0 = {0, 1, 4} by the fact that |A0| = 1
2 (n0 + 2). Since {0, 1, 4} 2 TPI0,4, we have
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again that A 2 TPIm,n for m = a/2. If a + 5 2 A, then

3k � 3 = |2A| > |2(A \ [0, a])|+ |a + 1 + A \ [0, a� 2]|
+|{(a + 5) + (a� 2)}|+ |2(A \ [a, n])|� 1

> 3A(0, a� 2) + 1 + 3A(a, n)� 3 = 3k � 2,

which is absurd.

Case 2.2 a 62 A. In this case we show that a > 1 implies |2A| > 3k� 3 and a = 1
implies that either n�A 2 TPIm,n or A 2 TPIIu,n.

Recall that a + 1 62 A and a � 1 2 A. Notice that A(0, a) = 1
2 (a + 1). Thus a

is a balanced hole. Notice also that A(a, n� 2) = 1
2 (n� a� 1) because n 2 A and

n� 1 62 A. Let

u = min
⇢

x 2 [a, n� 2] : A(a, x) >
1
2
(x� a + 1)

�
. (34)

Notice that u > a + 2 because a, a + 1 62 A. Notice also that u, u � 1 2 A,
A(a, u) = 1

2 (u � a + 1), and A(x, u) > 1
2 (u � x + 1) for every x 2 [a + 1, u] by

the minimality of u. So A \ [a, u] is a backward triangle in [a, u]. Notice that
A(u, n) = 1

2 (n� u + 2).

Case 2.2.1 a > 1. In this case we derive a contradiction by showing |2A| > 3k�3.
Since 0, 2 2 A and 1 62 A, A as well as A \ [0, u] can be neither a bi-arithmetic

progression of di↵erence 1 nor a bi-arithmetic progression of di↵erence 4. Notice
that since 0, 2 2 A and 1 62 A, u�(A\[0, u]) cannot be in TPI0,u. Hence by applying
the proof of Case 1 to u� (A \ [0, u]), we have that |2(A \ [0, u])| > 3A(0, u)� 3.

If gcd(A \ [u, n]� u) > 1, then

|2A| > |2(A \ [0, u])|+ |2(A \ [u, n])|� 1 + |u� 1 + A \ [u + 2, n]| > 3k � 3.

So we can assume that gcd(A\ [u, n]�u) = 1. Hence |2(A\ [u, n])| > 3A(u, n)� 3.
Let v = minA \ [u + 1, n].

If v > u + 1, then u� 1 + v is in

(2A) r ((2(A \ [0, u])) [ (2(A \ [u, n]))). (35)

Hence
|2A| > |2(A \ [0, u])|+ |2(A \ [u, n])| > 3k � 3.

Thus we can assume that v = u + 1.
Recall that in the argument in the proof of Case 1 before case 1.1, we showed

that if b < n, gcd(A \ [b, n] � b) > 1, and z = b � 1 2 2A then |2A| > 3k � 1 (see
Remark 2.7). So we can apply the same argument to A0 = u � (A \ [0, u]) with
z0 = u� a and b0 = u� a + 1 to show that

|2(A \ [0, u]) [ {u + a}| = |(2A0) [ {z0}| > 3|A0|� 1 = 3A(0, u)� 1.
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Hence

|2A| > |2(A \ [0, u]) [ {a� 1 + v}|+ |2(A \ [u, n])|� 1
> 3A(0, u)� 1 + 3A(u, n)� 4 = 3k � 2.

Case 2.2.2 a = 1. In this case we show that either n � A 2 TPIm,n for some
m > 0 or A 2 TPIIu,n for some u 2 [4, n� 6].

Notice that A\[1, u] is a backward triangle in [1, u] and |2(A\[0, u])| > 3A(0, u)�
3 by part 3 of Proposition 1.10.

Case 2.2.2.1 u + 1 2 A. If |2(A \ [0, u])| > 3A(0, u)� 3, then

3k � 3 = |2A| > |2(A \ [0, u])|+ |2(A \ [u, n])|� 1
> 3A(0, u)� 2 + 3A(u, n)� 3� 1 = 3k � 3.

Hence |2(A \ [u, n])| = 3A(u, n) � 3. By applying the proof of Case 1 to the set
A0 = A \ [u, n] � u and n0 = n � u, we can conclude that either A0 2 TPI0,n0 or
A0 is a bi-arithmetic progression of di↵erence 1 or 4. We now want to show that
|2A| > 3k � 3 by identifying one element in the set in (35), which implies that
|2A| > 3A(0, u)� 3 + 3A(u, n)� 3� 1 + 1 = 3k � 3.

If A0 2 TPI0,n0 , then u � 1 + n is in the set in (35). If A0 is a bi-arithmetic
progression of 1, then A \ [u, n] = [u, x] [ {n}. So again A0 2 TPI0,n0 . If A0 is a
bi-arithmetic progression of di↵erence 4, then u� 1 + u + 4 is in the set in (35).

Thus we can assume that |2(A\ [0, u])| = 3A(0, u)�3. So A0 = u� (A\ [0, u]) 2
TPI0,n0 for n0 = u or A0 is a bi-arithmetic progression of di↵erence 1 or 4. Notice that
if A0 is a bi-arithmetic progression of di↵erence 1, then A0 2 TPI0,n0 because 1 62 A.
And if A0 is a bi-arithmetic progression of di↵erence 4, then A0 = {0, 1, 4} 2 TPI0,4

because A0 is an forward triangle in [0, u � 1] and A0(0, 3) = 1
2 (n0 + 1). As a

consequence we have that u + 1 is in the set in (35).
If |2(A\ [u, n])| > 3A(u, n)� 3, then |2A| > 3A(0, u)� 3+3A(u, n)� 3 = 3k� 3.

Hence we can now assume that |2(A \ [u, n])| = 3A(u, n)� 3.
Recall that we have assumed that |2(A \ [0, u])| = 3A(0, u)� 3, |2(A \ [u, n])| =

3A(u, n)� 3, {u� 1, u, u + 1} ✓ A, and u� (A \ [0, u]) 2 TPI0,u. By applying the
proof of Case 1 to A0 = (A\[u, n])�u, we have that either (A\[u, n])�u 2 TPI0,n�u

or (A\ [u, n])�u a bi-arithmetic progression of di↵erence 4. Notice that if A\ [u, n]
is a bi-arithmetic progression of di↵erence 1, then (A \ [u, n])� u 2 TPI0,n�u. We
now want to show that |2A| > 3k� 3 by identifying two elements in the set in (35),
which implies that |2A| > 3k � 2.

If (A \ [u, n]) � u 2 TPI0,n�u, then u + 1, u � 1 + n are in the set in (35). If
A\ [u, n] is a bi-arithmetic progression of di↵erence 4, then 0 + u + 1, u� 1 + u + 4
are in the set in (35).

Case 2.2.2.2 u+1 62 A. Let v = minA\ [u+1, n]. Notice that v+u�1 is in the
set in (35). If |2(A\ [0, u])| > 3A(0, u)�3, then |2A| > 3k�3. Hence we can assume
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that |2(A \ [0, u])| = 3A(0, u) � 3. By applying the proof of Case 1, we have that
u� (A\ [0, u]) 2 TPI0,u. If gcd((A\ [u, n])� u) = d > 1, then d = 2 and A\ [u, n]
is an arithmetic progression of di↵erence 2. So n�A 2 TPIm,n for m = (n� u)/2.
Hence we can assume that gcd(A\ [u, n]� u) = 1. If |2(A\ [u, n])| > 3A(u, n)� 3,
then |2A| > 3k � 3. Hence we can assume that |2(A \ [u, n])| = 3A(u, n)� 3.

Suppose that v = u + 2. We want to show that A 2 TPIIu,n.
Let a0 = max{x 2 [u, n] : A \ [u, x] = (u + E) \ [u, x]}. The number a0 is

well-defined because gcd((A \ [u, n])� u) = 1. Notice that a0 > u + 2.
If a0 62 A, then a0 > u+2. By the proof of Case 2.2.1 we have that |2(A\[u, n])| >

3A(u, n)� 3. So we can assume that a0 2 A, which implies that a0 + 1 2 A by the
maximality of a0. By applying the proof of Case 2.1 to the set A0 = (A\ [u, n])�u,
we have that A0 2 TPIm,n�u. Hence

A = {0} [ C [ {u, u + 2, . . . , u + 2m} [D [ {n}

where C 2 BTam[1, u], and D 2 FTam[u + 2m,n� 1]. Thus

|2A| = |2(A \ [0, u])|+ |[2u + 1, 2u + 4m� 1]|+ |2(A \ [u + 2m,n])|
= 3A(0, u)� 3 + 4m� 1 + 3A(u + 2m,n)� 3
= 3A(0, u)� 3 + 4A(u + 2, u + 2m� 2) + 3 + 3A(u + 2m,n)� 3
= 3k � 3 + A(u + 2, u + 2m� 2) > 3k � 3

unless m = 1. If m = 1, then A 2 TPIIu,n.
Now we assume that v > u + 2. We show that |2A| > 3k � 3 by identifying two

elements in the set in (35).
If u� 2, u� 3 62 A, then u = 4 and A \ [0, u] = {0, 3, 4} by the minimality of u.

If A is not a bi-arithmetic progression of di↵erence 4, we can define

c = min{x 2 [u, n] : A \ [0, x]
is not a subset of a bi-arithmetic progression of di↵erence 4}.

Since 3, 4 2 A, we have that c is either congruent to 5 or congruent to 6 modulo 4.
Suppose that c = v. Recall that v > 6. So we can assume that v > 9. Then

v + 3, v + 0 are in the set in (35).
Suppose that c > v. Then v is congruent to 3 or 4 modulo 4. If c ⌘ 5 (mod 4),

then c + 0, v + 3 are in the set in (35). If c ⌘ 6 (mod 4), then c + 3, v + 3 are in the
set in (35).

So we can assume that A(u � 3, u) > 3. If u � 2 2 A, then v + u � 1, v + u � 2
are in the set in (35). So we can assume that u� 2 62 A and u� 3 2 A.

If v > u + 4, then v + u� 1, v + u� 3 are in the set in (35). So we can assume
that v = u + 3. Let v0 = minA \ [v + 1, n]. If v0 = v + 1, then v + u� 1, v0 + u� 3
are in the set in (35). If v0 > v + 1, then v + u� 1, v0 + u� 1 are in the set in (35)
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unless v0 + u� 1 = 2v. But if v0 + u� 1 = 2v, then v + u� 1, v0 + u� 3 are in the
set in (35).

This completes the proof of Theorem 2.2.
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