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Abstract
Let G be a finite abelian group (written additively), with exponent exp(G) = m and
let A be a non-empty subset of {1, 2, . . . ,m� 1}. The constant ⌘A(G) (respectively
sA(G)) is defined to be the smallest positive integer t such that any sequence of
length t of elements of G contains a non-empty A-weighted zero-sum subsequence
of length at most m (respectively, of length equal to m). These generalize the
constants ⌘(G) and s(G), which correspond to the case A = {1}. In 2007, Gao et
al. conjectured that s(G) = ⌘(G) + exp(G)� 1 for any finite abelian group G; here
we shall discuss a similar relation corresponding to the weight A = {1,�1}.

1. Introduction

Let G be a finite abelian group written additively. By a sequence over G, we mean
a finite sequence of terms from G which is unordered and repetition of terms is
allowed and we view sequences over G as elements of the free abelian monoid F(G)
and use multiplicative notation. Our notation is consistent with [3], [4], and [6].

For S 2 F(G), if
S = x1x2 · . . . · xt =

Y
g2G

gvg(S),
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where vg(S) � 0 is the multiplicity of g in S,

|S| = t =
X
g2G

vg(S)

is the length of S. The sequence S contains some g 2 G, if vg(S) � 1.

If S and T are sequences over G, then T is said to be a subsequence of S if
vg(T )  vg(S) for every g 2 G and we write T |S; ST�1 denotes the sequence L
where vg(L) = vg(S)� vg(T ) for every g 2 G.

For a non-empty subset A of {1, 2, . . . ,m � 1}, where m is the exponent of G
(denoted by exp(G)), a sequence S = x1x2 ·. . .·xt over G is said to be an A-weighted
zero-sum sequence, if there exists ā = (a1, a2, · · · , at) 2 At such that

Pt
i=1 aixi = 0.

The constant ⌘A(G) (respectively, sA(G)) is defined to be the smallest positive
integer t such that any sequence of length t of elements of G contains a non-empty
A-weighted zero-sum subsequence of length at most m (respectively, of length equal
to m). These generalize the constants ⌘(G) and s(G), which correspond to the case
A = {1}.

The conjecture of Gao et al. [5] that s(G) = ⌘(G) + exp(G) � 1 holds for an
abelian group G, was established in the case of rank at most two by Geroldinger
and Halter-Koch [4]. Regarding the weighted analogue

sA(G) = ⌘A(G) + exp(G)� 1, (1)

for a finite cyclic group G = Zn, it coincides with a result established by Grynkiewicz
et al. [7].

Since by definition, there is a sequence S of length ⌘A(G)�1 which does not have
any non-empty A-weighted zero-sum subsequence of length not exceeding exp(G),
by appending a sequence of 0’s of length exp(G)� 1, we observe that

sA(G) � ⌘A(G) + exp(G)� 1. (2)

In the case of the weight A = {1,�1}, we write ⌘±(G) for ⌘{1,�1}(G) and similarly
for s{1,�1}(G).

When G is an elementary 2-group, then s±(G) = s(G) and ⌘±(G) = ⌘(G).

One has the following trivial bounds for the problem of Harborth [8]

1 + 2d(n� 1)  s(Zd
n)  1 + nd(n� 1). (3)

Since the number of elements of Zd
n having coordinates 0 or 1 is 2d, considering

a sequence where each of these elements are repeated (n�1) times, one obtains the
lower bound, while the upper bound follows from the fact that in any sequence of
1 + nd(n� 1) elements of Zd

n, at least one element will appear at least n times.
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When n = 2, from (3), we have

s±(Zd
2) = s(Zd

2) = 1 + 2d.

Since a sequence of length 2d � 1 of all distinct non-zero elements of Zd
2 does not

have any zero-sum subsequence of length  2, ⌘±(Zd
2) = ⌘(Zd

2) � 2d.

Therefore, by (2),

1 + 2d = s±(Zd
2) � ⌘±(Zd

2) + 1 � 2d + 1,

and hence
s±(Zd

2) = 1 + 2d = ⌘±(Zd
2) + 1.

Recently, it has been shown in [9] that in the case of the weight A = {1,�1},
the relation (1) does not hold for G = Zn �Zn, for an odd integer n > 7. However,
in the same paper, it was shown that the relation holds with A = {1,�1}, for any
abelian group G of order 8 and 16.

Here, in Section 2, as a corollary to Theorem 3, we shall observe that in the case
of the weight A = {1,�1}, the relation (1) holds for the groups Z2 � Z2n, when n
is a power of 2. In Section 3, in Theorem 4, we show that the relation (1) holds for
any abelian group G of order 32. We shall also make some related observations.

Regarding the relation (1) with A = {1,�1}, we are tempted to make the fol-
lowing conjecture.

Conjecture 1. The relation s±(G) = ⌘±(G) + exp(G) � 1 holds for any finite
abelian 2-group G.

2. General Results and Lemmas

We shall need a recent result on a weighted analogue of the Harborth constant of a
class of finite abelian groups. The Harborth constant g(G), of a finite abelian group
G, is the smallest positive integer l such that any subset of G of cardinality l has a
subset of cardinality equal to exp(G) whose elements sum to the identity element.
For the plus-minus weighted analogue g±(G), one requires a subset of cardinality
exp(G), a {±1}-weighted sum of whose elements is equal to the identity element.

We shall require the following theorem of Marchan et al. (Theorem 1.3, [10]).

Theorem 1. Let n 2 N. For n � 3 we have g±(Z2 � Z2n) = 2n + 2. Moreover,
g±(Z2 � Z2) = g±(Z2 � Z4) = 5.

We shall also need the following theorem (Theorem 4.1, [2]).
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Theorem 2. Let G be a finite and nontrivial abelian group and let S 2 F(G) be a
sequence.

1. If |S| � log2 |G| + 1 and G is not an elementary 2-group, then S contains a
proper nontrivial {±1}-weighted zero-sum subsequence.

2. If |S| � log2 |G| + 2 and G is not an elementary 2-group of even rank, then
S contains a proper nontrivial {±1}-weighted zero-sum subsequence of even
length.

3. If |S| > log2 |G|, then S contains a nontrivial {±1}-weighted zero-sum subse-
quence, and if |S| > log2 |G| + 1, then such a subsequence may be found with
even length.

Now we state our first theorem.

Theorem 3. We have s±(Z2 � Z2n)  2n + dlog2 2ne+ 1.

Proof. Let S be a sequence over G = Z2 � Z2n of length |S| = 2n + dlog2 2ne+ 1.
We write S = T 2U , where T and U are subsequences of S and U is square-free. If
2|T |  dlog2 2ne � 1, then |U | = |S| � 2|T | � 2n + 2 and by Theorem 1, U has a
{±1}-weighted zero-sum subsequence of length exp(G) = 2n and we are through.
So we assume that

2|T | � dlog2 2ne,

and therefore we may write, S = V 2W where 2|V | = dlog2 2ne+�, where � = 0 or 1
according as dlog2 2ne is even or odd, W being the remaining part of the sequence
S. We have, |W | = |S|� dlog2 2ne � � = 2n + 1� �.

Since by Part (2) of Theorem 2, any sequence of length at least dlog2 2ne+3 has
a proper non-trivial {±1}-weighted zero-sum subsequence of even length, we get
pairwise disjoint {±1} zero-sum subsequences A1, . . . , Al of W , each of even length,
such that |W |�

Pl
i=1 |Ai|  dlog2 2ne+ 2, and hence

2n� 1� � � dlog2 2ne 
lX

i=1

|Ai|  |W |.

Each |Ai| being even, when dlog2 2ne is even (and so � = 0), we have

2n� dlog2 2ne 
lX

i=1

|Ai|  2n,

and since 2|V | = dlog2 2ne, there exists a subsequence V1 of V such that V 2
1

Ql
i=1 Ai

is a {±1}-weighted zero-sum subsequence of length 2n.
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Similarly, when dlog2 2ne is odd and hence � = 1, we have

2n� dlog2 2ne � 1 
lX

i=1

|Ai|  2n,

and since 2|V | = dlog2 2ne + 1, there exists a subsequence V1 of V such that
V 2

1

Ql
i=1 Ai is a desired subsequence of S.

Corollary 1. If n is a power of 2, then

s±(Z2 � Z2n) = 2n + dlog2 2ne+ 1 = ⌘±(Z2 � Z2n) + 2n� 1.

Proof. We have

2n + dlog2 2ne+ 1 � s±(Z2 � Z2n) (by Theorem 3)
� ⌘±(Z2 � Z2n) + 2n� 1 (by (2))
� blog2 2nc+ 2n + 1.

Considering the sequence (1, 0)(0, 1)(0, 2) · . . . · (0, 2r), where r is defined by 2r+1 
2n < 2r+2, we have ⌘±(Z2 � Z2n) � blog2 2nc+ 2, giving the last inequality.

If n is a power of 2, then dlog2 2ne = blog2 2nc and hence the corollary.

Next we establish lower bounds of ⌘±(G) for a class of finite abelian groups G;
these bounds will be useful in the next section.

Lemma 1. For positive integers r and n, we have

⌘±(Zr
2 � Z2n) � max

⇢
blog2 2nc+ r +

�
r

2n� 1

⌫
, r + A(r, n)

�
+ 1,

where
A(r, n) =

⇢
1 if r  n,⌅

r
n

⇧
if r > n.

Proof. For n = 1, as observed in the introduction, ⌘±(Zr+1
2 ) = 2r+1, and the lower

bound in the lemma holds.

Now, we assume n > 1 and consider the sequence

S =
rY

i=1

ei

sY
t=0

ft

kY
j=1

gj ,

where s = blog2 2nc � 1, k =
j

r
2n�1

k
and ei, ft, and gj are defined as follows:

ei = (0, 0, . . . , 0, 1, 0, . . . , 0),
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having 1 at the i-th position, for 1  i  r,

ft = (0, 0, . . . , 0, 2t), for 0  t  s,

and gj+1 = (0, 0, . . . 0, 1, 1, . . . , 1, 0, . . . , 0, 1),

having 1 at the (r + 1)-th position and positions (2n � 1)j + 1, (2n � 1)j + 2, . . . ,
(2n� 1)j + 2n� 1, for 0  j  k � 1.

Now,
Qr

i=1 ei
Qs

t=1 ft is a zero-sum free sequence with respect to weight {1,�1},
and therefore any {±1}-weighted zero-sum subsequence of S must involve one or
more gi’s. However, any {±1}-weighted zero-sum subsequence containing one of
the gi’s, must have at least 2n � 1 elements among the ei’s and an element from
the fi’s. Thus the length of any {±1}-weighted zero-sum subsequence of S will be
at least 2n + 1, thereby implying that

⌘±(Zr
2 � Z2n) � r + blog2 2nc+

�
r

2n� 1

⌫
+ 1. (4)

We proceed to observe that

⌘±(Zr
2 � Z2n) � r + A(r, n) + 1. (5)

If r  n, then since the sequence S1 = f1
Qr

i=1 ei has no {±1}-weighted zero-sum
subsequence, we are done in this case.

If r > n, we consider the sequence S =
Qr

i=1 ei
Qu

j=1 hj , where u =
⌅

r
n

⇧
and

hj+1 = (0, 0, . . . 0, 1, 1, . . . , 1, 0, . . . , 0, 1),

having 1 at the (r + 1)-th position and the positions nj + 1, nj + 2, . . . , nj + n, for
0  j  u� 1.

Observing that
Qr

i=1 ei has no non-empty {±1}-weighted zero-sum subsequence,
any {±1}-weighted zero-sum subsequence of S must involve one or more hi’s. How-
ever, any {±1}-weighted zero-sum subsequence containing one of the hi’s must have
at least two hi’s, considering the last position, and hence has to be at least of length
2n + 2; and hence we have (5).

From (4) and (5), the lemma follows.

3. The Case of an Abelian Group of Order 32

After making a couple of remarks applicable to general abelian groups, we shall
have some lemmas dealing with di↵erent cases of abelian groups of order 32.

Remark I. If S = a1 · . . . · an is a square-free sequence (that is, the elements in
S are distinct) over an abelian group and

�n
2

�
> M , where M is the cardinality of
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a set containing the sums ai + aj 1  i < j  n, then ai + aj = ak + al for some
i, j, k, l 2 {1, 2, . . . , n} with {i, j} 6= {k, l}, and the assumption that S is square-
free forces that {i, j}\ {k, l} = ; and hence one obtains a {±1}-weighted zero-sum
subsequence of length 4.

Remark II. If S = a1 · . . . · an with n � 4 is a sequence over an abelian group,
and a1 = a2, so that a1a2 is a {±1}-weighted zero-sum subsequence of length 2,
writing T = a3a4 · . . . · an, if we want to avoid having a {±1}-weighted zero-sum
subsequence of S of length 4, we must assume that the elements in T are distinct.

Lemma 2. We have

s±(Z3
2 � Z4) = 10 and ⌘±(Z3

2 � Z4) = 7.

Proof. We first observe that the sum of two distinct elements of order at most two
in the group Z3

2 � Z4 is of order two, and the sum of two elements of order four in
Z3

2 � Z4 is of order at most two.
Let S = a1 · . . . · a10 2 F(Z3

2 � Z4).
Suppose that S is square-free. Since

�10
2

�
= 45 > 32, by Remark I above, we

obtain a {±1}-weighted zero-sum subsequence of length 4.

Without loss of generality, we now assume that a1 = a2 and writing T = a3a4 ·
. . . · a10, by Remark II, we can assume that the elements in T are distinct.

If T has at most one element of order 4, we have at least seven elements, say
a3, a4, a5, a6, a7, a8, a9, of order at most two. Since

�7
2

�
= 21 > 15, and the number

of elements of order 2 in the group Z3
2 � Z4 is 15, by the observation made in the

beginning of this proof and Remark I, we get a {±1}-weighted zero-sum subsequence
of length 4.

So, we assume that T has at least two elements of order 4 and consider the
collection of weighted sums:

D = {ai ± aj , 3  i < j  10, ai, aj are of order 4}
[{ar + as, 3  r < s  10, ar, as are of order 2}.

Consider 2 ·
�c
2

�
+

�d
2

�
, where c and d are the numbers of ai’s with 3  i  10, of

order 4 and of order 2, respectively (so that c + d = 8). Observing that 2 ·
�c
2

�
+

�d
2

�
is not less than 16, as c varies from 2 to 8, two weighted sums in D must be equal.

If one of the {±1}-weighted sums ai ± aj , where ai, aj are of order 4, is equal
to some ar + as, where ar, as are of order 2, we get a {±1}-weighted zero-sum
subsequence of length 4.

If two distinct sums ar + as, au + av are equal, we are through by Remark I.

The following observation is being noted for future use.
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Observation I. If some ai ± aj is equal to some ap ± aq, where ai, aj , ap, aq are of
order 4, there must be a {±1}-weighted zero-sum subsequence of length 4 or 2.

If {i, j}\{p, q} = ;, then we get a {±1}-weighted zero-sum subsequence of length
4.

Since aj is of order 4, ai + aj 6= ai � aj . Hence, the other possibilities are

ai + ✏aj = ap + �aq,

for some i, j, p, q, i < j, p < q, |{i, j} \ {p, q}| = 1 and ✏, � 2 {1,�1}.
If i = p, one gets a {±1}-weighted zero-sum subsequence of length 2. If i = q

(by symmetry, the case p = j is similar), and � = 1, then once again we get a
{±1}-weighted zero-sum subsequence of length 2. If i = q, and � = �1, we shall
get an expression of the form

as + �at = 2au, where {s, t, u} = {i, j} [ {p, q}, � 2 {1,�1}. (6)

If j = q, then since i 6= p and hence ai 6= ap by our assumption, it is forced that
✏ 6= � and once again we get an expression of the form (6).

Now, (6) implies that as + (� + 2)at = 2(au + at) = 0, since a sum of two order
4 elements here is of order 2.

Since � + 2 2 {1, 3} and 3at = �at we get asat to be a {±1}-weighted zero-sum
subsequence of length 2.

Hence, the observation.
Therefore, we have proved that s±(Z3

2 � Z4)  10. Again, by Lemma 1,

⌘±(Z3
2 � Z4) � blog2 4c+ 3 +

�
3

4� 1

⌫
+ 1 = 7.

From these and (2), we have

10 � s±(Z3
2 � Z4) � ⌘±(Z3

2 � Z4) + 3 � 10,

and we are done.

Lemma 3. We have

s±(Z2 � Z4 � Z4) = 9 and ⌘±(Z2 � Z4 � Z4) = 6.

Proof. Let S = a1 · . . . · a9 2 F(Z2 � Z4 � Z4).
If S is square-free, then since

�9
2

�
= 36 > 32, by Remark I, one obtains a {±1}-

weighted zero-sum subsequence of length 4.
Without loss of generality, we now assume that a1 = a2 giving a {±1}-weighted

zero-sum subsequence S1 = a1a2. By Remark II, the elements in T = a3a4 · . . . · a9

are assumed to be distinct.
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We shall now show that T has a {±1}-weighted zero-sum subsequence of length
2 or 4. Noting that the group Z2 � Z4 � Z4 consists of the identity element, seven
elements of order 2 and twenty-four elements of order 4, we shall proceed to take
care of various cases depending on the number of elements of order 4 in the sequence
T .

If (x, y, z) 2 Z2 �Z4 �Z4 is an element of order 4, depending on whether only y
or only z is of order 4 in Z4, we call it respectively of Type 1 and Type 2; if both y
and z are of order 4 in Z4, we call it of Type 3. One observes that the sum of two
order 4 elements of the same type is of order 2, the sum of two order 4 elements of
di↵erent types is of order 4 and the sum of three elements of order 4, one from each
type, is of order 2. From the fact that the sum of two order 4 elements of di↵erent
types is of order 4, we have the following.

Observation II. If ai, aj , ak are order 4 elements of distinct types, then the four
sums ai ± aj ± ak are distinct.

Case (i). If T does not have more than two elements of order 4, so that it has at
least five elements, say a3, a4, a5, a6, a7, of order at most 2, since

�5
2

�
= 10 > 8, as

before by Remark I, we have a {±1}-weighted zero-sum subsequence of length 4.

Case (ii). Suppose T has exactly three elements, say a7, a8, a9, of order 4, so
that a3, a4, a5, a6 are of order 2.

The number of subsequences of length two of a3a4a5a6 is
�4
2

�
= 6 and corre-

sponding to each such subsequence aiaj , 3  i < j  6, we have an order 2 element
ai + aj .

Now, if among a7, a8, a9, at least two elements, say a7, a8, are of the same type,
then consider the elements a7±a8. Since a8 is of order 4, we have a7 +a8 6= a7�a8.

Therefore, if none of the elements ai + aj , 3  i < j  6, and a7 ± a8 is 0, then
either two among the distinct sums ai + aj , 3  i < j  6, will be equal, or one of
the sums ai + aj , 3  i < j  6, will be equal to one of the sums a7 ± a8. Thus in
any case we shall get a {±1}-weighted zero-sum subsequence S2 of length 4 or 2. If
|S2| = 2, then S1S2 is a {±1}-weighted zero-sum subsequence of length 4.

If the three elements a7, a8, a9 are of three distinct types, then by Observation II
above, the four sums a7±a8±a9 are distinct elements of the subgroup Z2�Z2�Z2.
If one of the elements a3, a4, a5, a6 is equal to one of the sums a7 ± a8 ± a9, it gives
us a {±1}-weighted zero-sum subsequence of length 4. Otherwise, the elements
a3, a4, a5, a6 together with the four sums a7±a8±a9 will be all the distinct elements
of the subgroup Z2�Z2�Z2, and since, for k > 1, the sum of all the distinct elements
of Zk

2 is zero, observing that 4a7 = 0 (a7 being an element in a group of exponent
4), here we have a3 + a4 + a5 + a6 = 0, and we are through.

Case (iii). Suppose T has four elements, say a6, a7, a8, a9, of order 4, so that
a3, a4, a5 are of order 2.
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Now, if among a6, a7, a8, a9, at least three elements, say a6, a7, a8, are of the same
type, then considering the elements a6 ± a7, a6 ± a8, a7 ± a8, along with three sums
ai + aj , 3  i < j  5, two of them must be equal, and hence by Observation I in
the proof of Lemma 2, we have a {±1}-weighted zero-sum subsequence of length 4.

If there are two elements, say a6, a7, of a particular type, and a8, a9, of another,
we consider the elements a6±a7, a8±a9, along with three sums ai+aj , 3  i < j  5.
If any two of these are equal, or any one of them is zero, then we are through. If it
is not the case, then being all the non-zero elements of order 2, as was observed in
the previous case, their sum is 0; however, since the sum is 2(a6 +a8), and (a6 +a8)
is of order 4, it is not possible.

Finally, if two elements, say a6, a7, are of a particular type, and among the
remaining elements a8, a9, one element each is in the remaining types, consider the
collection

a5 + a6 ± a8 ± a9, a6 + a7, a6 + a7 + a3 + a5, a6 + a7 + a4 + a5.

Once again, if any two of these are equal, or any one of them is zero, then we are
through. Otherwise, their sum 3a6 + 3a7 + a3 + a4 = �a6 � a7 + a3 + a4 is zero,
providing us with a {±1}-weighted zero-sum subsequence of length 4.

Case (iv). Suppose there are at least six elements, say a4, a5, a6, a7, a8, a9, which
are of order 4.

If there are four elements, say a4, a5, a6, a7, which are of the same type, then
consider

a4 ± aj , j 2 {5, 6, 7}, and a5 ± a6.

If all of them are distinct, then one of them is 0, thus providing us with a {±1}-
weighted zero-sum subsequence of length 2. If two of them are equal, then once
again we are through by the argument in Observation I made during the proof of
Lemma 2.

If there are not more than three elements of a particular type, then we have the
following possibilities.

If it happens that there are three elements of a particular type, so that at least
two are of another type, without loss of generality, let a4, a5, a6 be of one type,
and a7, a8 of another, and we are through by considering the elements a4 ± a5, a4 ±
a6, a5 ± a6, a7 ± a8.

Otherwise, there are two elements of order 4 of each type. Let a4 and a5 be of
type 1, a6 and a7 be of type 2, and a8 and a9 be of type 3.

By Observation II, the elements a4 ± a6 ± a8 are four distinct elements and
similarly, a4 ± a7 ± a9 are four distinct elements.

If one among the first group is equal to one of the second group, we get a {±1}-
weighted zero-sum subsequence of length 4. Otherwise, it gives the complete list of
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eight distinct elements of order 2. If a3 is of order 2, then it is equal to one of these,
and once again, we get a {±1}-weighted zero-sum subsequence of length 4. If a3 is
of order 4, then there are three elements of a particular type and two of another, a
case which has been already covered.

Case (v). The last case to deal with is the one where T has five elements, say
a5, a6, a7, a8, a9, of order 4, so that a3, a4 are of order 2.

Among the elements of order 4, if there are four elements of the same type, or
there are three elements of a particular type and two of another, it has been taken
care of while dealing with Case (iv).

If none of these happens, then there are order 4 elements of all the three types.
In fact, the following two situations will arise.

Suppose there is one element, say a5, of a particular type, two elements, say
a6, a7, are of another type, and a8, a9 are of the remaining type. In this situation, if
one among the four distinct elements a5±a6±a8 is equal to one among the distinct
elements a5 ±a7 ±a9, we get a {±1}-weighted zero-sum subsequence of length 4. If
all these eight elements are distinct, a3 must be equal to one of these, thus giving
us a {±1}-weighted zero-sum subsequence of length 4.

In the second possible situation, there will be three elements, say a5, a6, a7, of
a particular type and from the remaining elements a8, a9, one element each in the
remaining types. Consider the elements

a5 ± a8 ± a9, a5 ± a6 + a3, a5 ± a7 + a3,

where, as seen before, equality of two of these will make us through. If they are
distinct, as argued before, a4 is equal to one of these and we get a {±1}-weighted
zero-sum subsequence of length 4.

Therefore,
s±(Z2 � Z4 � Z4)  9. (7)

Since the sequence g1 · . . . · g5, where gi’s are defined by

g1 = (1, 0, 0), g2 = (0, 1, 0), g3 = (0, 2, 0), g4 = (0, 0, 1), g5 = (0, 0, 2),

does not have a non-empty {±1}-weighted zero-sum subsequence, we have

⌘±(Z2 � Z4 � Z4) � 6. (8)

From (7), (8) and (2), we have

9 � s±(Z2 �Z4 �Z4) � ⌘A(Z2 �Z4 �Z4) + exp(Z2 �Z4 �Z4)� 1 � 6 + 4� 1 = 9,

and hence the lemma.
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Lemma 4. If G be an abelian group of order 32 with exp(G) = 8, then

s±(G) = 13 and ⌘±(G) = 6.

Proof. Let S = a1 ·. . .·a13 2 F(G). We proceed to show that S has a {±1}-weighted
zero-sum subsequence of length 8.

Case (A). If S is square-free, then observing that
�13

2

�
= 78 > 32, by Remark

I, we obtain a {±1}-weighted zero-sum subsequence S1 = aiajakal of length 4.
Since

�9
2

�
= 36 > 32, the sequence SS�1

1 being of length 9, it will have another
{±1}-weighted zero-sum subsequence S2 of length 4. This shows that S has a
{±1}-weighted zero-sum subsequence S1S2 of length 8, in this case.

Case (B). If S is not square-free, let a1 = a2, so that T = a1a2 is a {±1}-weighted
zero-sum subsequence of length 2.

Subcase (B-1). If ST�1 is square-free, then observing that
�11

2

�
> 32, we have

a {±1}-weighted zero-sum subsequence T1 of ST�1 of length 4.

Since |ST�1T�1
1 | = 7, by Part (3) of Theorem 2, ST�1T�1

1 has a {±1}-weighted
zero-sum subsequence T2 with |T2| 2 {2, 4, 6}.

If |T2| = 2, then TT1T2 is a {±1}-weighted zero-sum subsequence of length 8.
Considering, T1T2 when |T2| = 4, and TT2 when |T2| = 6, we get the required
{±1}-weighted zero-sum subsequence of length 8.

Subcase (B-2). If ST�1 is not square-free, let a3 = a4 so that U1 = a3a4 is
a {±1}-weighted zero-sum subsequence of length 2. Since |ST�1U�1

1 | = 9, and�9
2

�
> 32, ST�1U�1

1 will have a {±1}-weighted zero-sum subsequence U2 of length
2 or 4. If |U2| = 4, we are through; if |U2| = 2, so that |ST�1U�1

1 U�1
2 | = 7, we

invoke Part (3) of Theorem 2, as in the above subcase, and we are through.

Thus we have established that

s±(G)  13. (9)

Now, G can be Z4�Z8 or Z2
2�Z8. If G = Z4�Z8, then the sequence b1 · . . . · b5,

where bi 2 G are defined by

b1 = (0, 1), b2 = (0, 2), b3 = (0, 4), b4 = (1, 0), b5 = (2, 0),

does not have a non-empty {±1}-weighted zero-sum subsequence. If G = Z2
2 � Z8,

then the sequence c1 · . . . · c5, where ci 2 G are defined by

c1 = (0, 0, 1), c2 = (0, 0, 2), c3 = (0, 0, 4), c4 = (0, 1, 0), c5 = (1, 0, 0),

does not have a non-empty {±1}-weighted zero-sum subsequence. Therefore,

⌘±(G) � 6. (10)
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From (9), (10) and (2) we have

13 � s±(G) � ⌘±(G) + exp(G)� 1 � 6 + 8� 1 = 13,

and hence the lemma.

Theorem 4. If G is an abelian group of order 32, the following relation holds:

s±(G) = ⌘±(G) + exp(G)� 1.

Proof. In the case of any finite cyclic group G, the result was established in [1]; and
as mentioned in the introduction, in this case the corresponding result for general
weights was established by Grynkiewicz et al. [7].

Also, as mentioned in the introduction, when the finite group G is an elementary
abelian 2-group, the relation stated in the theorem holds.

If G = Z2�Z16, the theorem follows from our corollary to Theorem 3 in Section
2, and if exp(G) = 8, the theorem follows from Lemma 4.

Finally, Lemmas 2, 3, take care of the remaining case exp(G) = 4.

Acknowledgement. We thank the referee and Prof. Bruce Landman for point-
ing out several typos and for some suggestions which helped us to improve the
presentation of the paper.
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