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Abstract
We consider several families of palintiples (also known as reverse multiples) whose
carries themselves are digits of lower-base palintiples and give some methods for
constructing them from fundamental palintiple types. We also continue the study
of palinomials introduced in an earlier paper by revealing a more direct relationship
between the digits of certain palintiple types and the roots of their palinomials. We
explore the consequences of this relationship for palinomials induced by palintiple
families derived from lower-base palintiples. Finally, we pose some questions regard-
ing Young graphs of derived palintiple families and consider the implications our
general observations might have for relations between Young graph isomorphism
classes.

1. Introduction

In a previous paper on palintiple numbers [3] (also known as reverse multiples
[4, 8, 10, 11]) it is noted that “the carries [of a palintiple]...play as critical a role
as the digits themselves.” Indeed, the full measure of this statement is realized
when one notices that the carries of a palintiple are often themselves the digits
of a palintiple of a lower base. Consider the example of the (10, 139)-palintiple
(28, 25, 108, 113, 2)139 which has carries given by (c4, c3, c2, c1, c0) = (8, 7, 1, 2, 0).
One immediately notices that the nontrivial carries are digits of the well-known
(4, 10)-palintiple 8712.

The recent work of Sloane [8] translates the palintiple problem into graph-
theoretical language by means of Young graphs, which are a succinct visualization
of palintiple structure, showing how the possible carries generate the possible digits
of a palintiple of arbitrary length. Young graphs are a modification of tree graphs
introduced by Young [10, 11] which are a representation of an e�cient palintiple
search method with the possible carries represented as nodes and the potential dig-
its being associated with the edges. The full definition of a Young graph can be
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found in Definition 5 of [4].
We note that Hoey [1, 2] presented a similar idea using finite state machines.

Representations of machines which recognize palintiples bear strong resemblance to
Young graphs; the Young graph representing (5, 8)-palintiples in Figure 6 of Sloane’s
paper [8] looks very much like the machine which recognizes (5, 8)-palintiples [2].

Kendrick [4] extends Sloane’s work [8] by proving several of his conjectures. Most
notably, Kendrick [4] proves two of Sloane’s main conjectures: Theorem 14 shows
that the (n, b)-Young graph, Y (n, b), is isomorphic to the “1089 graph” if and only if
n+1 divides b, and Theorem 31 characterizes complete Young graphs. (That is, the
nontrivial carry-nodes form a subgraph isomorphic to the complete directed graph
on m nodes, Km, with some additional details which can be found in Definition
3.3 of Sloane [8]. We note that complete Young graphs are also denoted by Km.)
Kendrick goes on to list several conjectures of his own regarding other Young graph
isomorphisms. At this point, we inform the reader that Theorem 14 of Kendrick [4]
concerning 1089 graphs will be used repeatedly throughout this paper.

We also note that the notation we use above to denote the Young graph is slightly
di↵erent from that of Sloane and Kendrick, who use Y (g, k), where g is the base,
and k is the multiplier (the order of the base and multiplier is reversed).

Other recent work includes [3] which establishes some general properties of pal-
intiples of any base, having an arbitrary number of digits, using only elementary
methods. As with the work of [4, 8, 10, 11], the methods therein pay particular at-
tention to the carries. Patterns found in the carries naturally partition all palintiples
into three mutually exclusive and exhaustive classes. Letting p = (dk, dk�1, . . . , d0)b

be an (n, b)-palintiple with carries ck, ck�1,. . ., c0, these classes are defined as fol-
lows: we say that p is symmetric if cj = ck�j for all 0  j  k, and p is shifted-
symmetric if cj = ck�j+1 for all 0  j  k. A palintiple which is neither symmetric
nor shifted-symmetric is called asymmetric. The (4, 10)-palintiple (8, 7, 1, 2)10 has
carries (c3, c2, c1, c0) = (0, 3, 3, 0), making it an example of a symmetric palintiple.
The reader may find more examples in Table 1 of [3].

Comparing the above mentioned classes to Young graph isomorphism classes,
Theorem 14 in [4] and Theorem 6 in [3] demonstrate that any (n, b)-palintiple gen-
erated from a Young graph, Y (n, b), which is isomorphic to Y (9, 10), otherwise
known as a 1089 graph [4, 8], is symmetric. (1089 is a base-10 reverse multiple
whose digits are reversed when multiplied by 9: 9801 = 9 · 1089. In the language of
this paper, 9801 is a (9, 10)-palintiple.) Whether or not every symmetric palintiple
can be generated from a 1089 graph remains an open question (see the last section
for a discussion of this). Also, Theorem 31 of Kendrick [4] and Theorem 9 of [3]
demonstrate that a palintiple is shifted-symmetric if and only if it is generated by a
complete Young graph. Shifted-symmetric palintiples are the most well-understood
as they are completely determined and characterized by the above works. They are
also in some sense a primordial class; all two-digit palintiples are shifted-symmetric
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and are a focus of Sutcli↵e’s [9] seminal paper on the topic.
As for palintiples whose Young graph is neither a 1089 graph (symmetric) nor

complete (shifted-symmetric), the asymmetric class is revealed to consist of an as-
tonishing plurality of Young graph isomorphism classes (i.e., palintiple types) which
admit many subclassifications and isolated cases as demonstrated by Kendrick’s iso-
morphism class data [5] for all bases less than 337. Moreover, this plurality seems
to only grow with increasing base as suggested by Conjecture 43 of Kendrick [4].
This underscores a primary aim of this paper to begin to more fully understand
palintiples beyond the symmetric and shifted-symmetric classes. We shall describe
several families of asymmetric palintiples which are constructed, or derived, from
lower-base examples. In particular, we will outline some methods for construct-
ing new asymmetric palintiples, such as the example already given above, using as
carries the digits of “old” palintiples whose Young graph is isomorphic to either a
1089 graph (symmetric palintiple) or a complete graph (shifted-symmetric palin-
tiple). It is also worth mentioning that, incidentally, three of the four asymmetric
examples given in Table 1 of [3], namely, the (14, 9), (22, 7), and (11, 7)-palintiples
given by (11, 9, 1, 4, 1)14, (16, 13, 3, 8, 2)22, and (8, 9, 10, 2, 1)11, respectively, are also
examples of palintiples derived from lower-base palintiples.

Kendrick [4] mentions that it is still quite poorly understood how the number and
graph-theoretical aspects of the palintiple problem relate to one another. Our work,
which relies mostly upon elementary results, gives rise to some concrete questions
as to how the derived palintiple families described here can be classified according
to Young graph isomorphisms, as well as suggest how Young graph isomorphism
classes might be generated from others.

Additionally, this paper further develops the topic of palinomials introduced in
[3], revealing a more intimate relationship between the digits of (n, b)-palintiples
and the roots of their palinomials when Y (n, b) is either 1089 or complete. These
results have implications for palinomials induced by palintiples derived from (n, b)-
palintiples such that Y (n, b) is a 1089 graph or a complete graph.

2. Palintiples Whose Carries are Digits of Lower-Base Palintiples

Henceforth, we shall suppose that p = (dk, dk�1, . . . , d0)b is an (n, b)-palintiple with
carries ck, ck�1, . . . , c0. It is well-established [3, 8, 10] how the digits of a palintiple
are related to the carries:

dj =
nbck�j+1 � nck�j + bcj+1 � cj

n2 � 1
. (1)

We pose the general question of when the carries of a palintiple are the digits
of a palintiple of a lower base as in the example given in the introduction. In this
paper we shall consider two possibilities for when this occurs.
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Case 1: We find conditions under which we can construct a new (k + 2)-digit
(n̂, b̂)-palintiple p̂ with carries (ĉk+1, ĉk, . . . , ĉ0) given by (dk, dk�1, . . . , d0, 0) as in
the example given in the introduction. Using Equation 1, the new digits d̂j must
satisfy

d̂j =
n̂b̂ĉk�j+2 � n̂ĉk�j+1 + b̂ĉj+1 � ĉj

n̂2 � 1
=

n̂b̂dk�j+1 � n̂dk�j + b̂dj � dj�1

n̂2 � 1
. (2)

Then b̂d0 ⌘ n̂dk mod (n̂2 � 1) when j = 0. Therefore, in order to find a suitable
higher base b̂, it must be that gcd(d0, n̂2 � 1) divides dk, in which case we have
that b̂ = s + ↵ n̂2�1

gcd(d0,n̂2�1) , where s is the least non-negative solution of the above
congruence and ↵ � 1. The above then becomes

d̂j =
n̂sdk�j+1 � n̂dk�j + sdj � dj�1

n̂2 � 1
+ ↵

n̂dk�j+1 + dj

gcd(d0, n̂2 � 1)
. (3)

Case 2: We now ask when we may construct a new (k + 3)-digit (n̂, b̂)-palintiple p̂
with carries (ĉk+2, ĉk+1, . . . , ĉ0) given by (0, dk, dk�1, . . . , d0, 0). For k + 3 digits we
have

d̂j =
n̂b̂ĉk�j+3 � n̂ĉk�j+2 + b̂ĉj+1 � ĉj

n̂2 � 1
=

n̂b̂dk�j+2 � n̂dk�j+1 + b̂dj � dj�1

n̂2 � 1
.

Then b̂d0 ⌘ 0 mod (n̂2 � 1) when j = 0, so that b̂ = ↵ n̂2�1
gcd(d0,n̂2�1) . It follows that

d̂j =
↵

gcd(d0, n̂2 � 1)
(n̂dk�j+2 + dj)�

n̂dk�j+1 + dj�1

n̂2 � 1
. (4)

In order to simplify the exposition, we will say that a palintiple constructed from
a lower-base palintiple is a derived palintiple. In particular, palintiples derived in
the manner described in Case 1 and Case 2 above will be called singly-derived and
doubly-derived palintiples, respectively.

Remark. We note that the above cases may not be the only cases of derived
palintiples. A computer search for cases of derived palintiples other than singly and
doubly-derived has so far yielded no examples, yet we have not been able to rule
out this possibility, and so we leave it as an open question.

3. Palintiples Derived from 1089 Palintiples

Any (n, b)-palintiple for which the Young graph, Y (n, b), is isomorphic to Y (9, 10)
(called a “1089 graph” by Sloane [8]) shall for the remainder of this article be called
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a 1089 palintiple. Moreover, the family of palintiples derived from 1089 palintiples
shall, for the purpose of less cumbersome exposition, be called Hoey 1 palintiples.

By Theorem 14 of Kendrick [4], we may suppose that n+1 divides b with quotient
q. Furthermore, by this same theorem, every node of a 1089 Young graph, Y (n, b),
must have the form of [0, 0], [n � 1, 0], [0, n � 1], or [n � 1, n � 1], so that cj ⌘ 0
mod (n�1) for all 0  j  k. Moreover, by Theorem 6 in [3], we may suppose that
ck�j = cj for all 0  j  k (that is, p is a symmetric palintiple). By the above and
Equation 1, we have dj = nqrk�j+1 + qrj+1 � rj for all 0  j  k, where rk�j = rj

equals either 0 or 1 for each 0  j  k.
If r1 = rk�1 6= 1, then d0 = dk = 0, which violates the assumption of no leading

zeros. If rj�1 = rj+1 = 1, but rj = 0, then dj = b, which is not a base-b digit.
Similarly, if rj�1 = rj+1 = 0, but rj = 1, then dj = �1. Thus, rk, rk�1, . . . , r0 is
a palindromic binary sequence such that r1 = rk�1 = 1 and there are no isolated
zeros or ones except r0 = rk = 0.

Since d0 = q and dk = nq by the above computations, we have that gcd(d0, n̂2�1)
divides dk, and that b̂ = nn̂ + ↵ n̂2�1

gcd(nq,n̂2�1) . Equation 3 then yields

d̂j =nqrj�2 +
n2n̂2q � nn̂ + n̂� q

n̂2 � 1
rj +

n2n̂q � nn̂2 � n̂q + 1
n̂2 � 1

rj�1

+ ↵
qrj+1 + (n̂nq � 1)rj + (nq � n̂)rj�1 + n̂qrj�2

gcd(q, n̂2 � 1)
.

To ensure that each term in the above is an integer, we must have that (n� 1)n̂ ⌘
(n2�1)q mod (n̂2�1). A moment’s reflection reveals that b = q(n+1) is the only
value for n̂ which makes the congruence statement true. It also ensures that b and
n̂2 � 1 are relatively prime. Therefore, we have b̂ = nb + ↵(b2 � 1) with

d̂j = n2qrj + nqrj�2 � rj�1 + ↵ (qrj+1 + (qnb� 1)rj � qrj�1 + qbrj�2) .

Since dj < b = n̂, each d̂j is less than b̂, and since there are no singleton ones or
zeros in rk, rk�1, . . . , r0 (except r0 = rk), d̂j cannot be negative. Thus, each d̂j is a
base-b̂ digit. Additionally, since every d̂j and dj satisfy Equation 2, it follows from
a routine calculation that (d̂k+1, d̂k, . . . , d̂0)b̂ = b(d̂0, d̂1, . . . , d̂k+1)b̂, where dj�1 is
the jth carry for all 0 < j  k + 1. Thus, we have the following:

Theorem 1. Suppose (dk, dk�1, . . . , d0)b is a 1089 (n, b)-palintiple. Then for every
b̂ > nb such that b̂ ⌘ nb mod (b2 � 1), there exists an asymmetric (k + 2)-digit
(b, b̂)-palintiple with carries (ĉk+1, ĉk, . . . , ĉ0) given by (dk, dk�1, . . . , d0, 0).

Example. The table below contains several examples of Hoey palintiples derived
from the (2, 3)-palintiple (2, 1, 2, 0, 1)3, including the general form obtained from

1In honor of D. J. Hoey, to whose memory we dedicate this work.
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the arguments establishing Theorem 1.

(n̂, b̂) (d̂5, d̂4, d̂3, d̂2, d̂1, d̂0)b̂ (ĉ5, ĉ4, ĉ3, ĉ2, ĉ1, ĉ0)
(3, 14) (5, 3, 12, 8, 10, 1)14 (2, 1, 2, 0, 1, 0)
(3, 22) (8, 5, 19, 13, 16, 2)22 (2, 1, 2, 0, 1, 0)
(3, 30) (11, 7, 26, 18, 22, 3)30 (2, 1, 2, 0, 1, 0)

(3, 6 + 8↵) (2 + 3↵, 1 + 2↵, 5 + 7↵, 3 + 5↵, 4 + 6↵, ↵)6+8↵ (2, 1, 2, 0, 1, 0)

Theorem 2. No doubly-derived palintiples can be derived from a 1089 palintiple.

Proof. Suppose there exists a doubly-derived (n̂, b̂)-palintiple p̂ constructed from a
1089 (n, b)-palintiple p = (dk, dk�1, . . . , d0)b with carries ck, ck�1, . . . , c0. Since p
is 1089, we may suppose that n + 1 divides b with quotient q, and that cj ⌘ 0
mod (n � 1) as again implied by Theorem 14 of Kendrick [4]. Then d0 = bc1

n2�1 =
b(n�1)
n2�1 = b

n+1 = q. Equation 4 then becomes

d̂j =
↵

gcd(q, n̂2 � 1)
(n̂dk�j+2 + dj)�

n̂dk�j+1 + dj�1

n̂2 � 1
.

Multiplying both sides by q(n̂2 � 1), we have

q(n̂2 � 1)d̂j = (n̂2 � 1)
q↵

gcd(q, n̂2 � 1)
(n̂dk�j+2 + dj)� q(n̂dk�j+1 + dj�1).

Reducing modulo n̂ � 1, we have q(dk�j+1 + dj�1) ⌘ 0 mod (n̂ � 1). The cases
j = 1 and j = 2 imply that q(dk + d0) ⌘ 0 mod (n̂ � 1) and q(dk�1 + d1) ⌘ 0
mod (n̂�1). Thus, q(nq+q) ⌘ 0 mod (n̂�1) and q(nq�1+q�1) ⌘ 0 mod (n̂�1),
which yields 2q ⌘ 0 mod (n̂ � 1) by subtracting the second congruence from the
first. Thus, since it is well-known that the carries of any palintiple must be less than
the multiplier [3, 8, 9, 10], we have q = d0 = ĉ1  n̂ � 1. Hence, either q = n̂�1

2 ,
or q = n̂ � 1. In any case, gcd(q, n̂2 � 1) divides n̂ � 1, so that n̂ + 1 divides b̂
by arguments in Case 2. But this would imply by Theorem 6 in [3] that p̂ is itself
symmetric, so that qn = dk = d0 = q, which is impossible.

4. Palintiples Derived From Shifted-Symmetric Palintiples

We now consider singly-derived palintiples constructed from shifted-symmetric pal-
intiples. For brevity, such palintiples will be called Sutcli↵e palintiples. We then
suppose by Theorem 9 in [3] that (b � n)cj ⌘ (nb � 1)cj ⌘ 0 mod (n2 � 1) and
dj = (b�n)cj+1+(nb�1)cj

n2�1 . Then, by the reasoning of Case 1, we have b̂ (b�n)c1
n2�1 ⌘

n̂ (nb�1)ck

n2�1 mod (n̂2 � 1). We shall suppose that s = n̂(nb�1)
b�n is an integer. Then,

since cj = ck�j+1 for all 0  j  k by definition, s is a particular solution for b̂ to
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the congruence above, so that in general b̂ = n̂(nb�1)
b�n +↵ n̂2�1

gcd(d0,n̂2�1) . Therefore, by
Equation 3,

d̂j =
s(nb� 1)� (b� n)

(n̂� 1)(n2 � 1)
cj +

nb� 1
n2 � 1

cj�1

+
↵

gcd(d0, n̂2 � 1)

✓
b� n

n2 � 1
cj+1 + (n̂ + 1)

nb� 1
n2 � 1

cj + n̂
b� n

n2 � 1
cj�1

◆
.

Supposing that n̂ > dj guarantees, by Equation 2, that 0  d̂j < b̂. Hence, we have
the following:

Theorem 3. Suppose (dk, dk�1, . . . , d0)b is a shifted-symmetric (n, b)-palintiple
with carries ck, ck�1, . . . , c0. If there exists a natural number n̂ such that s = n̂(nb�1)

b�n

is an integer, and n̂ > dj and s (nb�1)cj

n2�1 ⌘ (b�n)cj

n2�1 mod (n̂ � 1) for all 0  j  k,
then for every ↵ � 1 such that gcd(d0, n̂2�1) divides ↵ (b�n)(cj+1+n̂cj�1)+(n̂+1)(nb�1)cj

n2�1

for all 0  j  k, an asymmetric (k + 2)-digit (n̂, b̂)-palintiple exists with carries
(ĉk+1, ĉk, . . . , ĉ0) given by (dk, dk�1, . . . , d0, 0), where b̂ = s + ↵ n̂2�1

gcd(d0,n̂2�1) .

Theorem 3 will now be applied to a two-digit (n, b)-palintiple p = (d1, d0)b with
one non-zero carry c. We note that p is trivially shifted-symmetric. Provided that
there is an n̂ which satisfies the conditions of Theorem 3, then (d̂2, d̂1, d̂0)b̂, given
by

0
BBBB@

d̂2

d̂1

d̂0

1
CCCCA =

0
BBBBBB@

⇣
nb�1
n2�1 + n̂↵(b�n)

gcd(d0,n̂2�1)(n2�1)

⌘
c

⇣
s(nb�1)�(b�n)
(n̂�1)(n2�1) + ↵(n̂+1)(nb�1)

gcd(d0,n̂2�1)(n2�1)

⌘
c

↵(b�n)
gcd(d0,n̂2�1)(n2�1)c

1
CCCCCCA

=

0
BBBBB@

d1 + ↵ n̂d0
gcd(d0,n̂2�1)

sd1�d0
n̂�1 + ↵ (n̂+1)d1

gcd(d0,n̂2�1)

↵ d0
gcd(d0,n̂2�1)

1
CCCCCA

,

is a 3-digit (n̂, b̂)-palintiple with carries (ĉ2, ĉ1, ĉ0) = (d1, d0, 0) for every ↵ � 1,
where b̂ = n̂(nb�1)

b�n + ↵ n̂2�1
gcd(d0,n̂2�1) . Thus, we have the following corollary which

provides conditions for the existence of asymmetric palintiples.

Corollary 1. If (d1, d0)b is an (n, b)-palintiple, and there is an n̂ > d1 such that
s = n̂(nb�1)

b�n is an integer, and sd1 ⌘ d0 mod (n̂ � 1), then asymmetric (n̂, b̂)-
palintiples exist, where b̂ = s + ↵ n̂2�1

gcd(d0,n̂2�1) for any ↵ � 1.

Example. Consider the (2, 5)-palintiple (3, 1)5 with carries (c, 0) = (1, 0). We see
that n̂ = 5 and n̂ = 9 satisfy the conditions of Corollary 1, from which we get the
(5, 39)-palintiple (8, 29, 1)39, the (9, 107)-palintiple (12, 40, 1)107, and in general, the
(5, 5 + 24↵)-palintiple (3 + 5↵, 11 + 18↵,↵)15+24↵, and the (9, 27 + 80↵)-palintiple
(3 + 9↵, 10 + 30↵,↵)27+80↵, for ↵ � 1, all with carries (ĉ2, ĉ1, ĉ0) = (3, 1, 0).
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We now consider doubly-derived palintiples constructed from shifted-symmetric
(n, b)-palintiples. This family of palintiples will be called Pudwell palintiples. Let-
ting D = gcd(d0, n̂2 � 1), we have by Equation 4 that D(n̂dk�j+1 + dj�1) ⌘ 0
mod (n̂2�1). Again, by Theorem 9 of [3], we replace each digit dj by (b�n)cj+1+(nb�1)cj

n2�1 ,
so that

D

✓
[n̂(nb� 1) + (b� n)]cj + [n̂(b� n) + (nb� 1)]cj�1

n2 � 1

◆
⌘ 0 mod (n̂2 � 1).

Since c0 = 0 by definition, we have by induction over j that

D
[n̂(nb� 1) + (b� n)]cj

n2 � 1
⌘ 0 mod (n̂2 � 1)

for all 0  j  k. Thus, both n̂ � 1 and n̂ + 1 divide D [n̂(nb�1)+(b�n)]cj

n2�1 . Conse-
quently,

D
[n̂(nb� 1) + (b� n)]cj

n2 � 1
⌘ D

[(nb� 1) + (b� n)]cj

n2 � 1

⌘ D
[(b� 1)(n + 1)]cj

n2 � 1
⌘ D

(b� 1)cj

n� 1
⌘ 0 mod (n̂� 1)

and

D
[n̂(nb� 1) + (b� n)]cj

n2 � 1
⌘ D

[(�1)(nb� 1) + (b� n)]cj

n2 � 1

⌘ D
[�((b + 1)(n� 1))]cj

n2 � 1
⌘ D

�(b + 1)cj

n + 1
⌘ 0 mod (n̂ + 1).

That is, n̂� 1 and n̂ + 1 must divide D (b�1)cj

n�1 and D (b+1)cj

n+1 , respectively.
Using the above conclusion and a computer, we have found no examples for which

n̂ 6= b. However, we have not been able to rule out this possibility. Checking all
possibilities for all b  500 yielded no Pudwell palintiples for which n̂ and b are
not equal. Therefore, we shall narrow our scope and consider the case n̂ = b while
leaving the n̂ 6= b case as an open problem.

By the above arguments, we may say for each cj that

D
[n̂(nb� 1) + (b� n)]cj

n2 � 1
= Qj(n̂2 � 1)

for some integer Qj . Replacing n̂ with b, we have

D

✓
[b(nb� 1) + (b� n)]cj

n2 � 1

◆
= Qj(b2 � 1).

But D
⇣

[b(nb�1)+(b�n)]cj

n2�1

⌘
= (b2�1)nDcj

n2�1 , so that

nDcj

n2 � 1
= Qj .
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Since n and n2 � 1 are relatively prime, we have that n2 � 1 divides each Dcj with
some quotient qj for all 0  j  k.

Once again, replacing each digit dj in Equation 4 with (b�n)cj+1+(nb�1)cj

n2�1 , and
applying the above result that Dcj = (n2 � 1)qj for all 0  j  k, we obtain

d̂j =
↵(bdk�j+2 + dj)� (nqj + qj�1)

D
.

As argued previously, 0  d̂j < b̂ since each dj < b = n̂. We therefore have the
following:

Theorem 4. Suppose (dk, dk�1, . . . , d0)b is a shifted-symmetric (n, b)-palintiple
with carries ck, ck�1, . . . , c0 and let D = gcd(d0, b2 � 1). If n2 � 1 divides Dcj with
quotient qj for all 0  j  k, then for every ↵ � 1 such that D divides ↵(bdk�j+2 +
dj)�(nqj +qj�1) for all 0  j  k, a (k+3)-digit asymmetric (b, b̂)-palintiple exists
with carries (ĉk+2, ĉk+1, . . . , ĉ0) given by (0, dk, dk�1, . . . , d0, 0), where b̂ = ↵ b2�1

D .

The case k = 1 gives us another condition which guarantees the existence of
asymmetric palintiples.

Corollary 2. Suppose (d1, d0)b is an (n, b)-palintiple with one non-zero carry c and
D = gcd(d0, b2� 1). If n2� 1 divides Dc with quotient q, and gcd(d1,D) divides q,
then there exists an asymmetric (b, b̂)-palintiple, where b̂ = ↵ b2�1

D .

Proof. The arguments leading up to Theorem 4 give us that a new 4-digit palintiple
(d̂3, d̂2, d̂1, d̂0)b̂ with carries (0, d1, d0, 0) must equal (↵bd0

D , ↵bd1�q
D , ↵d1�nq

D , ↵d0
D )

↵ b2�1
D

for some ↵, where k = 1. Since gcd(d1,D) divides q, there is an ↵ � 1 such that
↵bd1 ⌘ q mod D, and since (nb� 1)q = d1D, we have ↵d1 ⌘ nq mod D.

Example. A family of Pudwell palintiples may be constructed from the (6, 55)-
palintiple (47, 7)55 with carries (c, 0) = (5, 0). The conditions of Corollary 2 are
satisfied, and we have that (d̂3, d̂2, d̂1, d̂0)b̂ given by

�
55↵, 2585↵�1

7 , 47↵�6
7 ,↵

�
432↵

is a (55, 432↵)-palintiple with carries (ĉ3, ĉ2, ĉ1, ĉ0) = (0, 47, 7, 0), where ↵ is any
natural number congruent to 4 modulo 7.

5. Palintiples Derived from Palintiple Reversals

Digit reversals of palintiples also appear in the carries of higher-base palintiples.
Therefore, we now construct asymmetric palintiples from digit-reversals of palin-
tiples. We will not present the amount of detail as in the previous sections, as the
arguments are essentially the same for each case. However, we will highlight points
which deserve additional explanation. We shall consider both (k + 2)-digit (n̂, b̂)-
palintiples with carries (ĉk+1, ĉk, . . . , ĉ0) of the form (d0, d1, . . . , dk, 0), and (k + 3)-
digit (n̂, b̂)-palintiples with carries (ĉk+2, ĉk+1, . . . , ĉ0) of the form (0, d0, d1, . . . , dk, 0).
Such palintiples will be called singly-⇢-derived and doubly-⇢-derived, respectively.
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5.1. Palintiples Derived from Reversals of 1089 Palintiples

We shall now consider families of singly-⇢-derived palintiples constructed from 1089
palintiples. These shall be called ⇢-Hoey palintiples. In a manner similar to the
arguments leading to Equation 3, it must be that b̂dk ⌘ n̂d0 mod (n̂2 � 1), or
b̂nq ⌘ n̂q mod (n̂2 � 1). Thus, in order for a solution b̂ to exist, we require both
that gcd(nq, n̂2�1) divide n̂q (and consequently, q, since n̂ and n̂2�1 are relatively
prime), and that n and n̂2 � 1 are relatively prime. Under these assumptions, we
then have that b̂ = mn̂ + ↵ n̂2�1

gcd(nq,n̂2�1) , where m is the multiplicative inverse of n

modulo n̂2 � 1. Reparameterizing, we let ` be the least non-negative residue of mn̂
modulo n̂2�1

gcd(nq,n̂2�1) , so that b̂ = ` + ↵ n̂2�1
gcd(nq,n̂2�1) for ↵ � 1. Then

d̂j =
(`n� n̂)qrj+1 + (n̂� `� nq + `n̂q)rj + (1� n̂`� n̂nq + `q)rj�1 + (`nn̂� 1)qrj�2

n̂2 � 1

+ ↵
nqrj+1 + (n̂q � 1)rj + (q � n̂)rj�1 + n̂nqrj�2

gcd(nq, n̂2 � 1)
.

Since `nq ⌘ b̂nq ⌘ n̂q mod (n̂2 � 1), we have both (`n � n̂)q ⌘ 0 mod (n̂2 � 1)
and (`nn̂ � 1)q ⌘ 0 mod (n̂2 � 1). Thus, in order to ensure that the above is an
integer, we shall require n̂ � ` � nq + `n̂q ⌘ 0 mod (n̂2 � 1) and 1 � n̂` � n̂nq +
`q ⌘ 0 mod (n̂2 � 1), both of which are equivalent as seen by multiplying the first
congruence by n̂. Since gcd(nq, n̂2�1) divides q, as mentioned above, we have that
mn̂q ⌘ b̂q ⌘ `q mod (n̂2 � 1). Multiplying the second congruence above by q and
then substituting `q with mn̂q, we obtain q�mq� n̂nq2 + mn̂q ⌘ 0 mod (n̂2� 1).
Multiplying by n, the multiplicative inverse of m, we then have (n�1)n̂q ⌘ (n2�1)q2

mod (n̂2 � 1). Therefore, as before, we have that n̂ = b = q(n + 1), so that
gcd(nq, n̂2 � 1) = gcd(nq, b2 � 1) = 1. Thus,

d̂j =
(`n� b)qrj+1 + (b� `� nq + `bq)rj + (1� b`� bnq + `q)rj�1 + (`nb� 1)qrj�2

b2 � 1

+ ↵(nqrj+1 + (bq � 1)rj + (q � b)rj�1 + bnqrj�2).

The above arguments give us the ⇢-derived compliment to Theorem 1.

Theorem 5. Suppose (dk, dk�1, . . . , d0)b is a 1089 (n, b)-palintiple such that b2� 1
and n are relatively prime, and m is the multiplicative inverse of n modulo b2 � 1.
Furthermore, let ` be the least non-negative residue of mb modulo b2 � 1. Then for
every b̂ > ` such that b̂ ⌘ ` mod (b2 � 1), there exists an asymmetric (k + 2)-digit
(b, b̂)-palintiple with carries (ĉk+1, ĉk, . . . , ĉ0) given by (d0, d1, . . . , dk, 0).

Example. Applying the arguments for Theorem 5 to the well-known (4, 10)-palin-
tiple (8, 7, 1, 2)10 with carries (c3, c2, c1, c0) = (0, 3, 3, 0), we have ` = 52, which
gives rise to the family of (10, 52 + 99↵)-palintiples with digits (d̂4, d̂3, d̂2, d̂1, d̂0)b̂
given by (42 + 80↵, 37 + 72↵, 5 + 11↵, 14 + 27↵, 4 + 8↵)52+99↵, all with carries
(ĉ4, ĉ3, ĉ2, ĉ1, ĉ0) = (2, 1, 7, 8, 0) for all ↵ � 1.

Remark. Although it is not always the case, the example above also yields a
palintiple for ↵ = 0.
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It can be shown by an argument nearly identical to that of Theorem 2 that no
doubly-⇢-derived palintiples can be constructed from reversals of 1089 palintiples.

5.2. Palintiples Derived from Reversals of Shifted-Symmetric Palintiples

Singly-⇢-derived palintiples constructed from shifted-symmetric palintiples (called
⇢-Sutcli↵e palintiples) yield an argument and theorem statement nearly identical to
that of Theorem 3, with the exception that the roles of b� n and nb� 1, as well as
d0 and dk, are interchanged.

Theorem 6. Suppose (dk, dk�1, . . . , d0)b is a shifted-symmetric (n, b)-palintiple
with carries ck, ck�1, . . . , c0. If there exists a natural number n̂ such that s = n̂(b�n)

nb�1

is an integer, and n̂ > dj and s (b�n)cj

n2�1 ⌘ (nb�1)cj

n2�1 mod (n̂ � 1) for all 0  j  k,
then for every ↵ � 1 such that gcd(dk, n̂2�1) divides ↵ (nb�1)(cj+1+n̂cj�1)+(n̂+1)(b�n)cj

n2�1

for all 0  j  k, an asymmetric (k + 2)-digit (n̂, b̂)-palintiple exists with carries
(ĉk+1, ĉk, . . . , ĉ0) given by (d0, d1, . . . , dk, 0), where b̂ = s + ↵ n̂2�1

gcd(dk,n̂2�1) .

Corollary 3. If (d1, d0)b is an (n, b)-palintiple, and there exists an n̂ > d1 such
that s = n̂(b�n)

nb�1 is an integer, and sd0 ⌘ d1 mod (n̂ � 1), then asymmetric (n̂, b̂)-
palintiples exist, where b̂ = s + ↵ n̂2�1

gcd(d1,n̂2�1) for any ↵ � 1.

Example. Corollary 3 applies to the (2, 5)-palintiple (3, 1)5 with one nontrivial
carry c = 1. The value n̂ = 9 satisfies its hypotheses, giving us the family of
(9, 3 + 80↵)-palintiples (1 + 27↵, 10↵, 3↵)3+80↵, where ↵ is any natural number,
each with carries (ĉ2, ĉ1, ĉ0) = (1, 3, 0).

Considering doubly-⇢-derived palintiples constructed from shifted-symmetric pal-
intiples (⇢-Pudwell), we obtain a ⇢-derived compliment to Theorem 4 whose argu-
ment (like that of Theorem 6) transposes b� n and nb� 1, as well as d0 and dk.

Theorem 7. Suppose (dk, dk�1, . . . , d0)b is a shifted-symmetric (n, b)-palintiple
with carries ck, ck�1, . . . , c0, and let D = gcd(dk, b2 � 1). If n2 � 1 divides Dcj

with quotient qj for all 0  j  k, then for every ↵ � 1 such that D divides
↵(bdj�2 + dk�j)� (qj + nqj�1) for all 0  j  k, a (k + 3)-digit asymmetric (b, b̂)-
palintiple exists with carries (ĉk+2, ĉk+1, . . . , ĉ0) given by (0, d0, d1, . . . , dk, 0), where
b̂ = ↵ b2�1

D .

Corollary 4. Suppose (d1, d0)b is an (n, b)-palintiple with one non-zero carry c,
and D = gcd(d1, b2 � 1). If n2 � 1 divides Dc with quotient q, and gcd(d0,D)
divides q, then there exists an asymmetric (b, b̂)-palintiple, where b̂ = ↵ b2�1

D .

Example. We again look at the (2, 5)-palintiple (3, 1)5 with carry c = 1. The condi-
tions of Corollary 4 are satisfied, so we get the (5, 8↵)-palintiple (5↵, 5↵�2

3 , ↵�1
3 ,↵)8↵

with carries (ĉ3, ĉ2, ĉ1, ĉ0) = (0, 1, 3, 0), where ↵ ⌘ 1 mod 3.
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6. Palinomials and Derived Palintiples

We recall a definition from [3]: the (n, b)-palinomial induced by an (n, b)-palintiple
(dk, . . . , d0)b is the polynomial

Pal(x) =
kX

j=0

(dj � ndk�j)xj .

Theorem 8. Palinomials induced by 1089 palintiples have at least one root on the
unit circle.

Proof. By Theorem 11 in [3], Pal(x) = (x�b)
Pk

j=1 cjxj�1, and since this palinomial
is induced by a 1089 palintiple, we have by Theorem 14 in [4] that n + 1 divides b.
Hence, by Theorem 6 in [3] and Theorem 14 in [4], cj = ck�j is either 0 or n � 1.
Our palinomial then has the form Pal(x) = (n � 1)(x � b)

Pk
j=1 rjxj�1, where

rk, rk�1, . . . , r0 is a palindromic binary sequence such that r1 = rk�1 = 1, and there
are no isolated zeros or ones except r0 = rk = 0 as already argued. Corollary 1 of
[6] proves that any palindrome polynomial with coe�cients which are either 0 or 1
always has a unimodular root, and this result establishes our claim.

The next theorem reveals an even closer connection between the digits of 1089
and shifted-symmetric palintiples and the roots of their palinomials.

Theorem 9. Let ⇠ 6= b be a non-zero root of the palinomial induced by a 1089 or
shifted-symmetric palintiple (dk, dk�1, . . . , d0)b. Then ⇠ is a root of both the digit
and reverse-digit polynomials. That is,

nX
j=0

dj⇠
j =

nX
j=0

dk�j⇠
j = 0.

Proof. By the theorem hypothesis,
Pk

j=1 cjxj�1 is a palindromic polynomial. There-
fore, Pal(⇠) = Pal(1

⇠ ) = 0. It follows that both
Pk

j=0 dj⇠j = n
Pk

j=0 dk�j⇠j andPk
j=0 dj⇠�j = n

Pk
j=0 dk�j⇠�j . Multiplying the second equation by n⇠k and rein-

dexing the sum, we have n
Pk

j=0 dk�j⇠j = n2
Pk

j=0 dj⇠j . Hence,
Pk

j=0 dj⇠j =
n2

Pk
j=0 dj⇠j , or (n2 � 1)

Pk
j=0 dj⇠j = 0, so that ⇠ is a zero of the forward-

digit polynomial. The reverse-digit case then follows from the above relation:
n

Pk
j=0 dk�j⇠j =

Pk
j=0 dj⇠j = 0.

Corollary 5. Digit and reverse-digit polynomials of 1089 palintiples have at least
one root on the unit circle.
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6.1. Additional Roots of Digit Polynomials of 1089 and
Shifted-Symmetric Palintiples

By Theorem 9, every negative or purely complex root of the (k�1)st-degree palino-
mial induced by a (k +1)-digit 1089 palintiple is also a root of the digit polynomial
(the degree is k�1 since ck = c0 = 0 by palintiple symmetry). Thus, both the digit
and reverse-digit polynomial of a 1089 palintiple have two additional roots more
than their corresponding palinomial.

Theorem 10. Let Pal(x) be the palinomial induced by a 1089 (n, b)-palintiple
(dk, dk�1, . . . , d0)b, and let D and D denote the digit and reverse-digit polynomi-
als, respectively. Then

D(x) = (dkx2 � x + d0)
Pal(x)

(n� 1)(x� b)
and D(x) = (d0x

2 � x + dk)
Pal(x)

(n� 1)(x� b)
.

Proof. Suppose Pal(x) = (n� 1)(x� b)
Qk�2

j=1 (x� ⇠j) is a palinomial induced by a
1089 (symmetric) (n, b)-palintiple. By Theorem 9, we may express these as D(x) =
dk(x�!1)(x�!2)

Qk�2
j=1 (x�⇠j) and D(x) = d0(x� 1

!1
)(x� 1

!2
)
Qk�2

j=1 (x�⇠j), where
!1 and !2 are the two extra roots. By Corollary 12 in [3], the only positive real root
of a palinomial is b. Thus, x = 1 cannot be a root of any palinomial and is clearly
not a root of D or D. Thus, since D(1) = D(1), and since d0 = q and dk = nq
for any 1089 palintiple, we have that n(1� !1)(1� !2) = (1� 1

!1
)(1� 1

!2
). Then

n(1 � !1)(1 � !2) = !1�1
!1

!2�1
!2

, so that after cancelling common factors we have
!1!2 = 1

n . Now, D(b) = nD(b) implies dk(b�!1)(b�!2) = nd0(b� 1
!1

)(b� 1
!2

), so
that by the same reasoning as above, (b�!1)(b�!2) = (b� 1

!1
)(b� 1

!2
). Expanding

both sides, we then have !1!2�b!1�b!2 = 1
!1!2

� b
!1
� b

!2
, which after rearranging

becomes !1!2�b(!1+!2) = 1
!1!2

�b!1+!2
!1!2

. Thus, since !1!2 = 1
n , as demonstrated

above, the previous statement becomes 1
n � b(!1 + !2) = n� nb(!1 + !2). Solving

for !1 + !2, we obtain !1 + !2 = n� 1
n

nb�b , which, since b = q(n + 1), simplifies to
!1 +!2 = 1

nq . We again cite the fact that the only positive real root of a palinomial
is b, and since !1 and !2 add to a positive number, we conclude that these must be
complex. Furthermore, since all other conjugate pairs of Pal(x) were cancelled in
the above calculations, the only conclusion is that !1 and !2 are conjugate. Suppose
then that !1 = x+iy and !2 = x�iy. Then 2x = !1+!2 = 1

n , so that the real part
of both roots is 1

2nq . Now, since !1!2 = 1
n , we have ( 1

2qn + iy)( 1
2qn � iy) = 1

n , which

implies y = ±
q

1
n �

1
4n2q2 . It is then a straightforward calculation to determine

that !1 and !2 are the conjugate pair 1
2nq (1± i

p
4q2n� 1). The digit and reverse-

digit polynomials may then be expressed as D(x) = (dkx2 � x + d0)
Qk�2

j=1 (x � ⇠j)
and D(x) = (d0x2 � x + dk)

Qk�2
j=1 (x� ⇠j).

Another application of Theorem 9 shows that every negative or purely complex
root of the kth-degree palinomial induced by a (k + 1)-digit shifted-symmetric pal-
intiple is also a root of the digit polynomial (the degree is k since ck = c1 6= 0 by
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shifted-symmetry). Thus, both the digit and reverse-digit polynomial of a shifted-
symmetric palintiple have one more root than their corresponding palinomial.

Theorem 11. Let Pal(x) be the palinomial induced by a shifted-symmetric (n, b)-
palintiple (dk, dk�1, . . . , d0)b with carries ck, ck�1, . . . , c1, c0, and let D and D denote
the digit and reverse-digit polynomials, respectively. Then

D(x) = (dkx + d0)
Pal(x)

ck(x� b)
and D(x) = (d0x + dk)

Pal(x)
ck(x� b)

.

Proof. Suppose Pal(x) = ck(x � b)
Qk�1

j=1 (x � ⇠j). Since the digit and reverse-
digit polynomials have one more root ! than Pal(x), we have that D(x) = dk(x�
!)

Qk�1
j=1 (x� ⇠j) and D(x) = d0(x� 1

! )
Qk�1

j=1 (x� ⇠j). Thus, since x = 1 cannot be
the root of any palinomial as argued in the proof of the previous theorem, it follows
from the fact that D(1) = D(1) that dk(1�!) = d0(1� 1

! ) after cancelling common
factors. Then, multiplying by !, we have dk!(1 � !) = d0(! � 1), which implies
! = � d0

dk
. By Theorem 9 of [3], we have that dk = (nb�1)c1

n2�1 and d0 = (b�n)c1
n2�1 ,

so that ! = � b�n
nb�1 . Hence, D(x) = (dkx + d0)

Qk�1
j=1 (x � ⇠j) and D(x) = (d0x +

dk)
Qk�1

j=1 (x� ⇠j).

Corollary 6. Let dPal(x) be the palinomial induced by a singly-derived or doubly-
derived (n̂, b̂)-palintiple p̂ constructed from an (n, b)-palintiple p = (dk, dk�1, . . . , d0)b,
and let Pal(x) be the palinomial induced by p. Then

dPal(x) = (x� b̂)(dkx2 � x + d0)
Pal(x)

(n� 1)(x� b)

if p is a 1089 palintiple, and

dPal(x) = (x� b̂)(dkx + d0)
Pal(x)

ck(x� b)

if p is shifted-symmetric, where ck is the kth carry of p.

Proof. If p̂ is singly-derived, its carries are dk, dk�1, . . . , d0, 0, so that by Theorem 11
in [3], we have cPal(x) = (x�b̂)

Pk+1
j=1 ĉjxj�1 = (x�b̂)

Pk+1
j=1 dj�1xj�1 = (x�b̂)D(x).

The doubly-derived case follows in a similar fashion.

Corollary 7. Let dPal(x) be the palinomial induced by a singly-⇢-derived or doubly-⇢-
derived (n̂, b̂)-palintiple p̂ constructed from an (n, b)-palintiple p = (dk, dk�1, . . . , d0)b,
and let Pal(x) be the palinomial induced by p. Then

dPal(x) = (x� b̂)(d0x
2 � x + dk)

Pal(x)
(n� 1)(x� b)

if p is a 1089 palintiple, and

dPal(x) = (x� b̂)(d0x + dk)
Pal(x)

ck(x� b)
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if p is shifted-symmetric, where ck is the kth carry of p.

Corollary 8. Palinomials induced by Hoey and ⇢-Hoey palintiples have at least one
root on the unit circle.

Corollary 9. Palinomials induced by any two Hoey palintiples derived from a com-
mon palintiple di↵er only by a linear factor.

The statement of Corollary 9 also holds for ⇢-Hoey, Sutcli↵e, ⇢-Sutcli↵e, Pudwell,
and ⇢-Pudwell palintiples.

Example. The 7-digit 1089 (4, 10)-palintiple p = (8, 7, 9, 9, 9, 1, 2)10 induces the
palinomial Pal(x) = 3(x � 10)(x4 + x3 + x2 + x + 1). The reader may also ver-
ify that D(x) = (8x2 � x + 2)(x4 + x3 + x2 + x + 1) and D(x) = (2x2 � x +
8)(x4 + x3 + x2 + x + 1). Moreover, constructing a new 8-digit palintiple from
p using Theorem 1 and its supporting arguments, we take the (10, 139)-palintiple
p̂ = (28, 25, 136, 138, 138, 110, 113, 2)139 as an example. The reader may verify that
the palinomial induced by p̂ can be expressed as

cPal(x) = (x� 139)(8x2 � x + 2)(x4 + x3 + x2 + x + 1).

7. Open Questions and Future Work

It is still unknown if Theorems 1 and 5 and their arguments give us all Hoey and
⇢-Hoey palintiples, respectively. So far this seems to be the case, but remains
unproven. On the other hand, however, Sutcli↵e and ⇢-Sutcli↵e palintiples exist
under conditions for which Theorems 3, 6, and their corollaries do not apply. We
give as an example the (14, 129)-palintiple (37, 89, 2)129 with carries (9, 4, 0), which
is derived from the (2, 14)-palintiple (9, 4)14; for this particular case, s = n̂(nb�1)

b�n is
not an integer. Furthermore, we have already stated that it is unknown if there are
Pudwell palintiples such that n̂ 6= b. However, we must point out that ⇢-Pudwell
palintiples do exist for values of n̂ other than b. As an example, we present the
(34, 55)-palintiple (34, 1, 0, 1)55 with carries (0, 1, 21, 0), which is derived from the
(11, 23)-palintiple (21, 1)23. Moreover, for whatever reason, ⇢-Pudwell palintiples,
at least for lower bases, seem to occur much more frequently than their forward
counterparts. Both Pudwell and ⇢-Pudwell palintiples so far have proven to be the
least well-understood. In summary, finding maximal conditions for the existence of
palintiples belonging to the families presented in this paper is an open topic.

Given the variety of Young graph isomorphism classes [4, 5], it is not surpris-
ing that not all asymmetric palintiples are derived palintiples. If we consider the
example of the (4, 23)-palintiple (6, 15, 1)23 with carries (c2, c1, c0) = (2, 1, 0), it is
not di�cult to show that no 2-digit palintiple has these carries as digits. We might
then ask if there is a more general principle at work here; perhaps the carries are
not the digits of a palintiple, but rather, the digits of a permutiple. Indeed, one
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sees that for the above case that (2, 1, 0)4 = 2 · (1, 0, 2)4. While such examples are
promising, one can verify that for the (11, 17)-palintiple (14, 12, 5, 1)17, there is no
permutation, base, or multiplier for which the carries (c3, c2, c1, c0) = (3, 8, 9, 0) are
a non-trivial permutiple. However, we do point out that there do seem to be strong
connections, and naturally so, between palintiples and the more general permuti-
ple problem. Thus, a more developed understanding of permutiples may very well
provide a better understanding of palintiples.

With the above in mind, we also mention that it is unknown if singly-derived
or doubly-derived palintiples can be constructed from other asymmetric palintiples
(neither 1089 nor shifted-symmetric). So far none have been found. Moreover, as
mentioned at the end of Section 2, it is still unknown if cases of “triply,” “quadru-
ply,” or similarly derived palintiples exist. A single case has yet to be found.

Another important unanswered question mentioned by [3] involves symmetric
palintiples. It is conjectured in [3] that a palintiple is symmetric if and only if n+1
divides b. Kendrick [4] showed that Y (n, b) is isomorphic to Y (9, 10) if and only if
n + 1 divides b. Thus, we ask if the following are equivalent for an (n, b)-palintiple
p = (dk, dk�1, . . . , d0)b with carries ck, ck�1, . . . , c1, c0:

1. p is symmetric,

2. p is 1089,

3. cj ⌘ 0 mod (n� 1) for all 0  j  k,

4. n + 1 divides b.

If p is 1089, the work of Kendrick [4] shows that any node of the Young graph
has the form [0, 0], [0, n�1], [n�1, 0], or [n�1, n�1], which establishes (2) =) (3).
(3) =) (4) is easily established by Equation 1 since d0 = bc1

n2�1 = b(n�1)
n2�1 = b

n+1 .
Theorem 6 in [3] proves (4) =) (1). We leave whether or not (1) =) (2) holds as
an open question. We note that proving this equivalence would both determine all
symmetric palintiples and further characterize all 1089 Young graphs.

7.1. Young Graph Isomorphism Classes of Derived Palintiples

As we have seen, the carries of a palintiple can themselves be the digits of a lower-
base palintiple. If we elevate our perspective to entire palintiple families (such as
Hoey palintiples), an abundance of questions present themselves:

Is it possible to “derive” new Young graphs from old using the old edges as nodes?

Can we construct entire Young graph isomorphism classes from old?

How are derived palintiple families related to Young graph isomorphism classes?
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Although we will not provide any complete answers to these questions, we will
explore some suggestive examples which, as we shall see, give rise to other questions.

Considering (3, 14)-palintiples, their nontrivial carries are (2, 3)-palintiple digits,
and every (2, 3)-palintiple is the nontrivial carry sequence of some (3, 14)-palintiple.
In other words, the Young graph describing (3, 14)-palintiple structure can be “de-
rived” from the Young graph describing (2, 3)-palintiple structure. The figure below
compares the Young graphs Y (2, 3) and Y (3, 14), where the “digit-edges” of the
former become the “carry-nodes” of the latter. (We note that our Young graph
representation reverses the order of the digit-pairs associated with the edges since
the formulation of palintiples used in this article involves finding the number that
is obtained after multiplying by n.)

We point out that the kind of correspondence between (2, 3) and (3, 14)-palintiples
does not always exist. In particular, an (n̂, b̂)-palintiple constructed from an (n, b)-
palintiple does not always guarantee that the carries of any (n̂, b̂)-palintiple will also
be an (n, b)-palintiple. For instance, the (9, 107)-palintiple (12, 40, 1)107 has carries
(3, 1, 0) whose nontrivial elements are the digits of the (2, 5)-palintiple (3, 1)5 as
seen in an earlier example. However, the (9, 107)-palintiple (24, 80, 2)107 has carries
(6, 2, 0) which are not the digits of a (2, 5)-palintiple.

On the other hand, the family of (5, 39)-palintiples can be constructed from (2, 5)-
palintiples. Consider the (5, 39)-palintiple (8, 29, 1)39 with carries (3, 1, 0) whose
nontrivial elements are again the digits of the (2, 5)-palintiple (3, 1)5. The nontrivial
carries of any (5, 39)-palintiple are the digits of a (2, 5)-palintiple and every (2, 5)-
palintiple is a nontrivial carry sequence of a (5, 39)-palintiple.

This is all to say that, in general, the correspondence between derived palintiples
and their palintiple carries can break down when n̂ 6= b. We therefore pose the
question:

Suppose an (n̂, b̂)-palintiple can be derived from an (n, b)-palintiple. Under what
conditions is it guaranteed that the carries of any (n̂, b̂)-palintiple will also be an
(n, b)-palintiple? Is n̂ = b such a condition?
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Considering Hoey palintiples, it appears that not only Y (3, 14), but also Y (3, 22),
and in general Y (3, 6 + 8↵) for all ↵ � 1 (see the example in Section 3), can be
constructed from Y (2, 3). Moreover, it appears, using Kendrick’s data [5], that every
Y (3, 6 + 8↵) is isomorphic to Y (3, 14). In fact, not surprisingly, for every collection
of 1089 (n, b)-palintiples we have checked, the Young graph of its corresponding
Hoey (b, b̂)-palintiples is isomorphic to Y (3, 14). In this way, the isomorphism class
determined by the 1089 graph, [Y (9, 10)], in a sense “generates” the isomorphism
class [Y (3, 14)].

We note that not every element of [Y (3, 14)] is the Young graph of Hoey palin-
tiples as Young graphs of ⇢-Hoey palintiples also seem to be isomorphic to Y (3, 14).
Furthermore, [Y (3, 14)] contains elements which are neither Young graphs of Hoey
nor ⇢-Hoey palintiples. The (9, 14)-palintiple (11, 9, 1, 4, 1)9 with carries (2, 1, 6, 7, 0)
demonstrates this. 2 These observations lead us to ask:

Are Young graphs of Hoey and ⇢-Hoey palintiples always isomorphic to Y (3, 14)?

Are there any special properties of elements of [Y (3, 14)] which generate palintiples
whose carries are not palintiple digits?

Young graphs of Sutcli↵e and ⇢-Sutcli↵e palintiples derived from shifted-
symmetric palintiples whose Young graph is isomorphic to K2, K3, and K4, all
appear to be isomorphic to Y (7, 11). Of course, considering larger values of m and
checking more cases may very well reveal other isomorphism classes. We therefore
ask the following:

Are Young graphs of Sutcli↵e and ⇢-Sutcli↵e palintiples always isomorphic to
Y (7, 11)?

Additionally, for all cases we have checked, Young graphs of Pudwell and ⇢-
Pudwell palintiples derived from shifted-symmetric palintiples whose Young graph
is isomorphic to K2, K3, and K4, all seem to be isomorphic to Y (5, 8). Thus:

Are Young graphs of Pudwell and ⇢-Pudwell palintiples always isomorphic to
Y (5, 8)?

It is not entirely unexpected that Young graphs of Hoey, Sutcli↵e, and Pudwell
palintiples should be isomorphic to Young graphs of their respective ⇢-derived coun-
terparts. On the other hand, it is not entirely obvious that this should always hold.
In all cases considered so far, it seems to be true.

Are Young graphs of derived palintiples always isomorphic to their ⇢-derived coun-
terparts?

2Although (2, 1, 6, 7)b is neither a palintiple nor the reversal of a palintiple in any base b, the
digits do give us two base-9 permutiples: (6, 7, 2, 1)9 = 4·(1, 6, 2, 7)9 and (7, 2, 1, 6)9 = 4·(1, 7, 2, 6)9.
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Finally, Young graphs of (n̂, b̂)-palintiples derived from (n, b)-palintiples for which
n̂ 6= b leave cases which have hardly yet been explored. We leave the reader to
ponder the example of (9, 107)-palintiples considered earlier whose Young graph is
isomorphic to Y (25, 59). These palintiples are in some sense “partially” derived from
(2, 5)-palintiples. We suspect that these nodes might make up a subgraph, G, which
is isomorphic to Y (7, 11). The reader is likely to have noticed that other carries
of (9, 107)-palintiples are sometimes doubles of (2, 5)-palintiples. Thus, Y (9, 107)
might contain another subgraph, G0, which is also isomorphic to Y (7, 11), but with
nodes double those of G. Additional structure which may exist between these
possible subgraphs is a matter of further inquiry and we leave these and other such
questions to the inquisitive reader.
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