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CRESCENT CONFIGURATIONS
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Abstract
In 1989, Erdős conjectured that for a su�ciently large n it is impossible to place n
points in general position in a plane such that for every 1  i  n � 1 there is a
distance that occurs exactly i times. For small n this is possible and in his paper he
provided constructions for n  8. The one for n = 5 was due to Pomerance while
Palásti came up with the constructions for n = 7, 8. Constructions for n = 9 and
above remain undiscovered, and little headway has been made toward a proof that
for su�ciently large n no configuration exists. In this paper we consider a natural
generalization to higher dimensions and provide a construction which shows that
for any given n there exists a su�ciently large dimension d such that there is a
configuration in d-dimensional space meeting Erdős’ criteria.

1This work was partially supported by NSF Grants DMS1265673, DMS1347804, and Williams
College.
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1. Introduction

In 1946, Erdős [4] initiated the first of many problems about distinct distances: what
is the minimum number of distinct distances determined by n points in the plane?
If we were to randomly place n points in the plane, we would expect all distances
between pairs of points to be di↵erent. However, as more structure is introduced
in the placement of points, some distances may repeat. Erdős conjectured that the
minimum number of distances is ⌦(n/

p
log n), which is attained by the

p
n ⇥ pn

integer lattice. The lower bound has been incrementally improved from Erdős’s
original ⌦(n1/2) to Larry Guth and Nets Katz’s ⌦(n/ log n) announced in 2010,
which solves the distinct distances problem up to a

p
log n factor [6].

Since the introduction of the distinct distances problem, many variants have been
tackled. A survey of distance-related problems may be found in [2, 9]. The variant
we study in this paper is that of trying to specify the multiplicity with which each
distance occurs. In particular we want each distance to appear a di↵erent number
of times, with each multiplicity 1 through n� 1 represented. This condition a↵ects
all possible distances among the n points since there are

�n
2

�
pairs of points and our

condition a↵ects 1+2+ . . .+(n�1) = n(n�1)/2 distances. On a line this problem
is trivial, since such a configuration can be achieved by simply placing all n points
in an arithmetic progression. In the plane this problem already becomes interesting,
provided we prevent too many points from sitting on a single line. Analogously in
higher dimensions we want to exclude lower dimensional constructions which we
achieve by insisting that the points lie in general position.

Definition 1 (General Position). We say that n points are in general position
in Rd if no d + 1 points lie on the same hyperplane and no d + 2 lie on the same
hypersphere.

The multiplicities of the distances are in an increasing order so we introduce the
name crescent configuration to describe the point configurations we seek.

Definition 2 (Crescent Configuration). We say n points are in crescent con-
figuration (in Rd) if they lie in general position in Rd and determine n� 1 distinct
distances, such that for every 1  i  n� 1 there is a distance that occurs exactly
i times.

A one-dimensional variant of this problem of finding crescent configurations,
known as the “beltway” problem, in which all of the points lie on a wrapped interval,
has music theoretic connections. In particular, “deep scales” including commonly
used diatonic scales include each interval class a unique number of times [3, 10].

In 1989 Erdős [5] conjectured that for n su�ciently large, it is not possible to
place n points in a crescent configuration in the plane. Little progress has been
made since on this conjecture. Palásti [7, 8] provided constructions for n = 7
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Figure 1: Palasti came up with a crescent configuration for n = 8 [8]. Points have
cartesian coordinates (0, 1), (

p
3, 0), (2

p
3, 0), (5

p
3

2 , 5
2 ), (3

p
3

2 , 9
2 ), (

p
3

2 , 7
2 ), (3

p
3

2 , 7
2 ),

(
p

3, 2).

and n = 8, both lying in a small portion of the triangular lattice (see Figure 1),
but constructions for n = 9 and higher remain undiscovered, with no compelling
heuristics to suggest a su�ciently large n such that no configuration exists.

We explore a higher dimensional analogue of this problem. Our main result is
the following.

Theorem 1. For all n � 3, there exists a set of n points in a crescent configuration
in Rn�2.

In particular, this shows that given an n there exists a d su�ciently large such
that it is possible to place n points in a crescent configuration in Rd.

We give a construction proving Theorem 1 in §2, and then conclude with some
problems for future work in §3.

2. Construction of a Crescent Configuration

We first show by induction that n � 1 points can be arranged in a valid crescent
configuration in Rn�2. The base case is clear as an isosceles triangle which is not
an equilateral triangle has three points in valid crescent configuration in R2.

For the inductive step, assume we have a set P of n�2 points forming a crescent
configuration in Rn�3. Any n � 2 points lie on an (n � 4)-dimensional sphere; we
choose a sphere S that contains P . We embed P and S naturally in a hyperplane H
in Rn�2. There exists a line in Rn�2 containing the center of S and perpendicular to
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H. We can then place the (n�1)st point p at any distance on this line not previously
determined. This new point is equidistant from every point in P , so it determines
a new distance n� 2 times. Since P is a valid (n� 2)-point crescent configuration
by the inductive hypothesis, P [ {p} is an (n � 1)-point crescent configuration in
Rn�2, which concludes the inductive argument.

We complete the proof by adding an additional point. This point is added by
including the center of the (n � 3)-dimensional sphere T defined by P [ {p}. To
prevent the addition of the center of T (call it t) from repeating a distance already
determined by P [ {p}, we control the placement of the point p. As p is placed
further and further away from H on the prescribed line, the radius of T increases
unboundedly. Place p so far away from H that the radius of T is larger than
any distance determined by P . Then add t as the nth point. The new point
t is equidistant from all the others without repeating any previously determined
distance, adding a distance of multiplicity n�1. The resulting configuration satisfies
general position: there is no (n�3)-dimensional sphere which contains n points since
t is the center of an (n�3)-dimensional sphere which contains the other n�1 points.
Since p is placed su�ciently far from H, both p and t are not contained in H. Thus
no hyperplane contains n� 1 points. This is a valid n-point crescent configuration
in Rn�2 and completes the proof. 2

3. Future Work

It seems likely that the actual dimension needed to place points in a valid con-
figuration is significantly lower. There are a number of other related problems of
interest. Define D(n) to be the minimum dimension, greater than 1, such that n
points can be placed in RD(n) in a crescent configuration. Our construction shows
that D(n)  n� 2 for all n > 3.

• Albujer [1] asked: is D(n) bounded as n goes to infinity?

• Is D(n) sublinear?

• Is D(n) monotonically increasing?

• If D(n) = k is it possible to place n points in a valid configuration in Rd

for all d > k? Note that in general we cannot just embed the solution into
higher dimensions and maintain general position. For example, if you take
the 8 point construction from R2 by Palásti and embed it in the most natural
way into R3 then immediately you have more than 4 points in a plane which
violates the condition of general position.

• Do any planar constructions for n � 9 exist? This has been asked before, see
for example [1, 2].
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• Can planar constructions for n � 9 be found on the triangular lattice? It is
known that constructions for n < 9 exist on the triangular lattice.

Remark 1. With the help of a parallel computing cluster, we have exhaustively
searched a 91 point hexagonal region of the triangular lattice for a construction
for n = 9, but none exist. As the naive implementation took over 900 hours of
computation for this size, better (and achievable) techniques are required to search
a substantively larger region.
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problem. Finally we thank an anonymous referee for suggestions that significantly
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231-235.

[9] A. She↵er, Distinct Distances: Open Problems and Current Bounds, arXiv:1406.1949 (2015).

[10] G. Toussaint, The geometry of musical rhythm, Proceedings of the Japan Conference on
Discrete and Computational Geometry, (JCDCG 2004), LNCS 3742, Springer-Verlag, Berlin-
Heidelberg (2005), 198-212.


