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Lycée naval, Avenue de l’École navale, F-29240 Brest Armées, France

baruchel@riseup.net

Received: 12/22/15, Revised: 3/26/16, Accepted: 6/12/16, Published: 7/7/16

Abstract
Several years ago the second author, playing with di↵erent “recognizers of real
constants,” e.g., the LLL algorithm, the Plou↵e inverter, etc., found the following
formula empirically. Let pn/qn denote the nth convergent of the continued fraction
of the constant e. Then
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The purpose of the present paper is to prove this formula and to give similar formulas
for some powers of e.

1. Introduction

Playing with the convergents of e, the second author discovered several years ago
the formula
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While trying to prove the formula rigorously we began being interested in the fol-
lowing quantity. If ↵ is a positive real number, and if pn/qn is the nth convergent
of its continued fraction, the quantity |qn↵ � pn| tends rapidly to zero. Thus the

1The author was partially supported by the ANR project “FAN” (Fractals et Numération),
ANR-12-IS01-0002.
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series
P

n�0 |qn↵ � pn| converges. This series measures in some sense the “global
approximation” of ↵ by its convergents. We then learned from J. Shallit that the
quantity

P
n�0 |qn↵� pn| =

P
n�0(�1)n(qn↵� pn) was investigated in several pa-

pers [5, 8, 9, 6], where the study of the quantity
P

n�0(qn↵ � pn) (first defined in
[28] where it is called the error-sum function of ↵) can also be found. Both quanti-
ties

P
n�0 |qn↵�pn| and

P
n�0(qn↵�pn) are called “error-sum function(s)” in the

literature. A natural question is whether the sum of these series can be expressed in
terms of ↵ without explicitly using the convergents, in particular in the case where
↵ has a “nice” continued fraction expansion, e.g., when ↵ is quadratic or when
↵ = e.

2. Quadratic Numbers

The case of quadratic numbers was addressed in [5] (also see [6]).

Theorem 1 (Elsner). Let pn/qn be the nth convergent of the continued fraction of
↵. Then the series

P
n�0(qn↵� pn)xn converges absolutely at least for |x| < 1+

p
5

2

and, if ↵ is a real quadratic number,
X
n�0

(qn↵� pn)xn 2 Q[↵](x).

In particular (taking x = �1),
P

n�0 |qn↵� pn| belongs to Q[↵].

Example 1 (Elsner).

•
P

n�0 |qn

p
7� pn| = 7+5

p
7

14 ·

• For any integer n � 1 we have
P

n�0 |qn(n+
p

4+n2

2 )� pn| = 1
n+
p

4+n2
2 �1

·

• In particular,
P

n�0 |qn(1+
p

5
2 )� pn| = 1+

p
5

2 ·

3. Powers of e

Euler [10] proved that the continued fraction expansion of e is

[2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...].

This expansion is sometimes replaced by the not really regular expression

[1, 0, 1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, ...].
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After Euler, a large number of papers contained the computation of continued
fraction expansions for some expressions containing e (typically certain powers of
e possibly multiplied by some rational numbers, or numbers like e2/k�1

e2/k+1
), see in

particular [11, 19, 13, 20, 4, 24, 23, 27, 3, 26, 14, 22, 15, 17, 16, 21, 18, 12].

The fundamental theorem we will use here is due to Komatsu [17, Theorem 6,
first part]. Komatsu’s theorem contains several previous results.

Theorem 2 (Komatsu). Let ` � 2 and s � 1 be two integers. Let pn/qn be the
nth convergent of the continued fraction of

se1/(`s) = [s, `�1, 1, 2s�1, 3`�1, 1, 2s�1, 5`�1, 1, 2s�1, · · · , (2k�1)`�1, 1, 2s�1, · · · ].

Then for n � 0,

p3n � se1/(`s)q3n = � 1
(`s)n+1

Z 1

0

xn(x� 1)n

n!
sex/(`s)dx

p3n+1 � se1/(`s)q3n+1 =
1

s(`s)n+1

Z 1

0

(x + s� 1)xn(x� 1)n

n!
sex/(`s)dx

p3n+2 � se1/(`s)q3n+2 =
1

s(`s)n+1

Z 1

0

xn(x� 1)n+1

n!
sex/(`s)dx.

Let s � 1 be an integer. Let p⇤n/q⇤n be the nth convergent of the continued fraction
of

se1/s = [s + 1, 2s� 1, 2, 1, 2s� 1, 4, 1, · · · , 2s� 1, 2k, 1, · · · ].
Then p⇤n/q⇤n = pn+2/qn+2 with pn/qn is as above. More precisely, for n � 0 we have

p⇤3n � se1/sq⇤3n =
1

sn+2

Z 1

0

xn(x� 1)n+1

n!
sex/sdx

p⇤3n+1 � se1/sq⇤3n+1 = � 1
sn+2

Z 1

0

xn+1(x� 1)n+1

(n + 1)!
sex/sdx

p⇤3n+2 � se1/sq⇤3n+2 =
1

sn+3

Z 1

0

(x + s� 1)xn+1(x� 1)n+1

(n + 1)!
sex/sdx.

Using Komatsu’s result we can prove the following theorem. First recall that the

“error function,” erf, is defined by erf(x) :=
2p
⇡

Z x

0
e�t2dt.

Note. The name “error-sum function” (or “error sum function”) that goes back
to [28] should not be confused with the name “error function.” To (try to) avoid
any ambiguity, we will always write for the latter “error function erf.”



INTEGERS: 16 (2016) 4

Theorem 3. The following summations of series hold.

1. Let ` � 2 and s � 1 be two integers. Let pn/qn be the nth convergent of the
continued fraction of

se1/(`s) = [s, `�1, 1, 2s�1, 3`�1, 1, 2s�1, 5`�1, 1, 2s�1, · · · , (2k�1)`�1, 1, 2s�1, · · · ].

Then X
n�0

|pn � se1/(`s)qn| = e1/`s

r
⇡s

`
erf(1/

p
`s).

2. Let s � 1 be an integer. Let p⇤n/q⇤n be the nth convergent of the continued fraction
of

se1/s = [s + 1, 2s� 1, 2, 1, 2s� 1, 4, 1, · · · , 2s� 1, 2k, 1, · · · ].
Then X

n�0

|p⇤n � se1/sq⇤n| = e1/sp⇡s erf(1/
p

s) + s(1� e1/s)� 1.

Proof. First we writeX
n�0

|pn � se1/`sqn| =
X

0j2

X
n�0

|p3n+j � se1/`sq3n+j |

and X
n�0

|p⇤n � se1/sq⇤n| = |p⇤0 � se1/sq⇤0 | +
X

1j3

X
n�0

|p⇤3n+j � se1/sq⇤3n+j |.

Then for each of the sums
P

n�0 |p3n+j � se1/`sq3n+j |, (j = 0, 1, 2), respectivelyP
n�0 |p⇤3n+j � se1/sq⇤3n+j | (j = 1, 2, 3), we use the integral expressions given in the

two parts of Komatsu’s theorem (Theorem 2 above). Then we intervert the signsP
and

R
and recognize the series expansion of some exponential.

We deduce the following corollary.

Corollary 1. The two equalities below hold.

Let pn/qn be the nth convergent of the continued fraction of e1/` (with ` � 2). Then
X
n�0

|pn � e1/`qn| = e1/`

r
⇡

`
erf(1/

p
`).

Let p⇤n/q⇤n be the nth convergent of the continued fraction of e (recall that the
continued fraction of e is given by e = [2, 1, 2, 1, 1, 4, 1, · · · , 1, 2n, 1, · · · ]). Then

X
n�0

|p⇤n � eq⇤n| = 2e
Z 1

0
e�t2dt� e = e

p
⇡ erf(1)� e.
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Remark 1. The second result in Corollary 1 above was already obtained by Elsner
in [5, p. 2].

Now we prove Formula (1). We begin with a lemma.

Lemma 1. Let A(s) be defined for a positive real number s by

A(s) :=
X
n�0

(�1)n

(n + 1)!(2n2 + 7n + 3)sn
·

Then

A(s) =
1
5
s3 � 1

2
s +

1
5
s(2� s� s2)e�1/s +

4
5

Z 1

0
e�t2/sdt.

Proof. Since
1

2n2 + 7n + 3
=

2
5(2n + 1)

� 1
5(n + 3)

,

it is useful to introduce the series

f(x) :=
X
n�0

(�1)n+1x2n+1

(n + 1)!(2n + 1)sn+1
and g(x) :=

X
n�0

(�1)n+1xn+3

(n + 1)!(n + 3)sn+1
·

For f(x) we obtain f 0(x) =
1
x2

(e�x2/s � 1), so that (note that f(x) = 0)

f(x) =
1
x
� 1

x
e�x2/s �

r
⇡

s
· erf(x/

p
s) =

1
x
� 1

x
e�x2/s � 2

s

Z x

0
e�t2/sdt.

For g(x) we have g0(x) = xe�x/s � x, so that

g(x) =
✓

s2 � x2

2

◆
� s(x + s)e�x/s.

Now A(s) = �s

✓
2
5
f(1)� 1

5
g(1)

◆
which completes the proof of the lemma.

Corollary 2. Formula (1) given in the introduction holds:

X
n�0

|qne� pn| =
e

4

0
@�1 + 10

X
n�0

(�1)n

(n + 1)!(2n2 + 7n + 3)

1
A .

Proof. From Lemma 1 we have in particular

A(1) = � 3
10

+
4
5

Z 1

0
e�t2dt.
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Hence X
n�0

|qne� pn| = 2e
Z 1

0
e�t2dt� e =

e

4
(�1 + 10A(1)).

Remark 2. Analogously we can define A(`, s) :=
P

n�0
(�1)n

(n+1)!(2n2+7n+3)(`s)n for
positive reals ` and s to obtain similar formulas for se`s. We also note that we
first thought that the quantity (2n2 + 7n + 3) was somehow crucial in Formula (1):
there might even be (though it would be quite surprising) a link with the number of
independent parameters of the orthosymplectic group OSP(3, 2n) which is precisely
(2n2 + 7n + 3) (see, e.g., [2, p. 223]). But this quantity is not crucial; compare
with Formula (2) given below which can be proved by using a step of the proof of
Corollary 2 above with s = 1 and x = 1:

X
n�0

(�1)n+1

(n + 1)!(2n + 1)
= 1� e�1 � 2

Z 1

0
e�t2dt.

This implies X
n�0

|p⇤n � eq⇤n| = e
X
n�0

(�1)n

(n + 1)!(2n + 1)
� 1. (2)

Remark 3. The value of
P

n�0 |pn � ↵qn| for ↵ equal to one of the above real
numbers can also be expressed as another kind of series. Namely a classical series
for the error function erf (see, e.g., [1, 7.1.6, p. 297]) reads (recall the notation
(2n + 1)!! = 1⇥ 3⇥ 5 · · ·⇥ (2n + 1))

erf(z) =
2p
⇡

e�z2 X
n�0

2n

(2n + 1)!!
z2n+1.

Using Corollary 1 and the notation therein, this gives in particular the following
formulas:

X
n�0

|pn � e1/`qn| =
X
n�0

2n+1

`n+1 (2n + 1)!!
=

X
n�0

22n+1 n!
`n+1 (2n + 1)!

· (3)

for any integer ` � 2, and

X
n�0

|p⇤n � eq⇤n| =
X
n�0

2n+1

(2n + 1)!!
� e =

X
n�0

22n+1 n!
(2n + 1)!

� e. (4)

Note that the second author obtained Formula (3) empirically. Also note that the
digits of the decimal expansion of the right side of Equation (3) above for ` = 2 and
` = 4 are given in [25] as A060196 and A214869 respectively, and that the expansion
of the right side of Equation (4) (up to the �e term) is given in [25] as A125961.
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4. More Results for the Error-sum Function

Formulas similar to the formulas in the previous section can be stated by using
results on the convergents for continued fractions with “regular” patterns, in par-
ticular at least for (some of) the so-called Hurwitz continued fractions, sometimes
also called (regular) continued fractions of Hurwitzian type; see, e.g., [22]. We
simply list below results that can be used to yield nice formulas for the error-sum
function we considered. They give, in terms of integrals for some reals ↵ and their
convergents pn/qn, the quantity pan+b � ↵qan+b (for any b in a complete system of
residues modulo a), and they are due to Komatsu.

• For ↵ = e1/`s

s , with s and ` any two integers � 2, and ↵ = e1/s

s , with s � 2,
integral expressions for p3n+j � ↵q3n+j with j 2 {0, 1, 2} are given in [17,
Theorem 3, second part];

• for ↵ = e2/s, with s � 3 and odd, integral expressions for p5n+j�↵q5n+j with
j 2 {0, 1, 2, 3, 4} are given in [14];

• for ↵ = e1/(3s+1)

3 (resp. ↵ = e1/(3s+2)

3 ), integral expressions for p9n+j � ↵q9n+j

with j 2 {�6,�5,�4,�3,�2,�1, 0, 1, 2} are given in [17];

• for ↵ =
p

v
u tanh 1p

uv
, integral expressions for p2n�1�↵q2n�1 and p2n�↵q2n

are given in [16];

• for ↵ =
p

v
u tan 1p

uv
, integral expressions for p4n�j�↵q4n�j with j = 0, 1, 2, 3

are given in [16].

The last result we would like to cite here is a nice particular case of a theorem
of Hetyei [12, Theorem 2.9] (also see [12, p. 21]) which could be used to compute
the error-sum function for ↵ = 4(11 sin(1/2)�6 cos(1/2))

53 cos(1/2)�97 sin(1/2) ·

Theorem 4 (Hetyei). We have the following continued fraction expansion

4(11 sin(1/2)� 6 cos(1/2))
53 cos(1/2)� 97 sin(1/2)

= [ 4, n ]1n=3 = [4, 3, 4, 4, 4, 5, 4, 6, 4, 7, 4, ...].

5. Conclusion

The error-sum function of some other continued fractions with “regular” patterns
could probably be studied. Another appealing possibility is the definition and study
of error-sum functions for similar continued fractions in the function field case (see
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in particular [29, 30, 31]). Finally we give a last relation that the second author
discovered empirically:

Z 1

0
e�t2dt = 3/8 +

5/4

3 +
9

21 +
288

63 +
.. .

. . . +
n(n + 2)2(2n� 1)2

(2n + 5)(n2 + n + 1) +
.. .

(we did not locate this formula in the literature and did not prove it yet).

Acknowledgements. We want to warmly thank J. Shallit who indicated to us the
papers [5, 8, 9, 6]. We also want to thank the referee for meaningful remarks.

Addendum. After we posted the first version of this paper on ArXiv, C. Elsner
kindly sent us the preprint [7], which was written a few months ago, and where
the reader can find very nice results about error-sum functions (limit formulas,
di↵erential equations, algebraic independence results, relations to Hall’s theorem,
summation formulas involving the Riemann zeta function), but also a proof of the
first result in Corollary 1:

for all ` � 2,
X
n�0

|pn � e1/`qn| = e1/`

r
⇡

`
erf(1/

p
`).
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[13] A. Hurwitz, Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden, Zürich.
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