

r-COMPLETENESS OF SEQUENCES OF POSITIVE INTEGERS

William Linz¹ Department of Mathematics, Texas A&M University, College Station, Texas willdomath@tamu.edu

Edna Jones² Department of Mathematics, Rose-Hulman Institute of Technology, Terre Haute, Indiana jonesel@rose-hulman.edu

Received: 10/16/15, Accepted: 7/18/16, Published: 7/22/16

Abstract

A complete sequence (a_n) is a strictly increasing sequence of positive integers such that every sufficiently large positive integer is representable as the sum of one or more distinct terms from (a_n) . In this paper, we consider the more general notion of an *r*-complete sequence where every sufficiently large positive integer is now representable as the sum of *r* or more distinct terms from (a_n) . In particular, for all *r* we construct an example of a sequence which is *r*-complete but not (r + 1)complete.

1. Introduction

Let $(a_k)_{k\geq 1}$ be a strictly increasing sequence of positive integers. We say that (a_k) is *complete* if there exists an integer N, N > 0, such that if $q \geq N, q$ an integer, then there exist coefficients b_k such that $b_k \in \{0, 1\}$ for all k, and $q = \sum_{k=1}^{\infty} b_k a_k$ (that is, q is representable as a sum of distinct elements of the sequence (a_k)). We refer to the minimal such N as the *threshold of completeness*. As an example, the sequence defined by $a_k = k + 1$ (i.e., $(2, 3, 4, 5, \ldots)$) is complete (one may take N = 2), but the sequence defined by $a_k = 2k$ is not complete, as no odd integer is representable as a sum of elements of (a_k) , let alone as a sum of distinct elements of (a_k) .

A brief note on terminology: some authors (such as Honsberger [5]) choose to call such sequences as we have defined above *weakly complete*, and reserve the term complete for the case when N = 1. Brown [1] has extensively studied and characterized these sequences. Many authors also allow complete sequences to be merely

¹Funded by NSF grant no. 1262930.

²Funded by NSF grant no. 1262930.

non-decreasing: we choose to define a complete sequence to be strictly increasing so as to give a clear meaning to the word "distinct" in the above definition.

There are many specific known examples of complete sequences. Sprague [10] proved that the infinite sequence of kth powers, $(n^k)_{n\geq 1}$, for a fixed integer k is complete. Graham [4] gave conditions for completeness of sequences defined by polynomials. Porubský [9] used a result of Cassels [2] which gave a sufficient condition for a sequence to be complete to show that the sequence consisting of the kth powers of prime numbers for a fixed integer k is complete. All of these results demonstrated the completeness of certain classes of sequences, and some computationally derived a threshold of completeness (for instance, Sprague [11] showed that the threshold of completeness for the sequence of squares is 129).

Our aim in this paper is to consider a generalization of complete sequences that as far as we know Johnson and Laughlin [6] first described, which we will call *r*completeness. We define a sequence (a_k) to be *r*-complete if there exists a positive integer N_r such that if $q \ge N_r$, q an integer, then q may be represented as the sum of r or more distinct terms from the sequence (a_k) . Equivalently, q has a representation of the form $\sum_{k=1}^{\infty} b_k a_k$, where $b_k \in \{0, 1\}$ for all k, and $\sum_{k=1}^{\infty} b_k \ge r$. By analogy with the definition of completeness, we call the minimal such N_r the threshold of r-completeness.

If (a_k) is *r*-complete for all positive integers *r*, then we will say that (a_k) is *infinitely complete*. For example, it is clear that that the sequence of positive integers is infinitely complete, and Looper and Saritzky [8] showed that in fact the sequence of *k*th power of integers, $(n^k)_{n\geq 1}$, for a fixed positive integer *k* is infinitely complete. It is also immediate that if (a_n) is *r*-complete, then (a_n) is *k*-complete for all positive integers *k* such that k < r.

At the end of their paper, Johnson and Laughlin [6] posed two questions which we can rephrase in our terminology. For b > 2, is the increasing sequence $B(b) = \{ab^{m-1} | a \in \{1, \ldots, b-1\}, m = 1, 2, \ldots\}$ infinitely complete? For any given positive integer r, is there a sequence (a_k) which is r-complete but not (r+1)-complete? We will provide affirmative answers to both of these questions and also give a complete characterization of sequences which are complete but not 2-complete.

2. Confirming that the Set B(b) is Infinitely Complete

Before we dispense with the general set of base b representations, it will be enlightening to consider the specific case b = 2. In this case, we have $a_n = 2^{n-1}$, and it is well known that every positive integer has a unique binary representation. Therefore, since each power of two is representable as a sum of only one term from (a_n) , it is readily seen that (2^{n-1}) is complete but not 2-complete.

As previously mentioned, Johnson and Laughlin conjectured that if b > 2, then

B(b) is infinitely complete. We first recall the following well-known lemma regarding base b representations of positive integers:

Lemma 1. Let b > 1 be a positive integer. Every positive integer a has a unique representation of the form

$$a = \sum_{i=0}^{k} c_i b^i$$

subject to the following conditions:

- 1. $c_i \in \{0, 1, \dots, b-1\}$ for all $i \in \{0, 1, \dots, k\}$
- 2. $c_k \neq 0$
- 3. $b^k \le a < b^{k+1}$

Lemma 1 proves immediately that B(b) is complete. However, as the coefficients c_i may be 0 in the standard basis representation (for example, every integer of the form cb^k has a 0 everywhere in the standard basis representation except for the b^k term), this lemma is not sufficient to prove that B(b) is infinitely complete.

We now prove that B(b) is infinitely complete by making a suitable modification to the standard basis representation:

Theorem 1. If b > 2 is an integer, then the increasing sequence $B(b) = \{ab^{m-1} | a \in \{1, \ldots, b-1\}, m = 1, 2, \ldots\}$ is infinitely complete.

Proof. Let k be a positive integer. Let a be a positive integer such that $b^k \leq a < b^{k+1}$. We will show that a can be represented as a sum of k + 1 or more distinct terms from B(b). This will be sufficient to prove that for each positive integer r, B(b) is r-complete. By Lemma 1 we know that a has a representation

$$a = c_k b^k + c_{k-1} b^{k-1} + \dots + c_0 b^0$$

where $c_k \neq 0$. If each coefficient c_i is nonzero, then a has a representation as a sum of k + 1 terms of B(b). If not, then there is a coefficient c_m such that $c_m = 0$ and $c_j \neq 0$ for all j > m (note that m < k). In the standard basis representation of a, we then replace $c_{m+1}b^{m+1}$ by $(c_{m+1}-1)b^{m+1} + (b-1)b^m + b^m$. We now therefore have either two or three terms of B(b) (depending on whether or not $c_{m+1} = 1$) in place of the one original $c_{m+1}b^{m+1}$. We can now proceed inductively by finding the next zero coefficient of largest index, and performing the same operation as follows:

Suppose that the representation of a has been modified to

$$a = \sum_{j=0}^{t} c_j b^j + S$$

for some $t \in \{0, 1, \ldots, k-2\}$, in which S is (inductively) a sum of at least k-t distinct elements from the set $\{cb^{j} | c \in \{1, \ldots, b-1\}, j \in \{t+1, \ldots, k\}\}$, and that the only parts of S involving terms of the form $cb^{t+1}, c \in \{1, \ldots, b-1\}$ will either be of the form $c_{t+1}b^{t+1}$ (with $c_{t+1} \neq 0$) or $(b-1)b^{t+1} + b^{t+1}$. The algorithm now proceeds:

- 1. If $c_t > 0$ and t = 0, then a has a representation as a sum of at least k + 1 terms of B(b) and we are done. If $c_t > 0$ and t > 0, replace t by t 1 and repeat the process.
- 2. If $c_t = 0$ and there is a term of the form $c_{t+1}b^{t+1}$ in the representation of S, replace $c_{t+1}b^{t+1}$ by $(c_{t+1}-1)b^{t+1} + (b-1)b^t + b^t$ (as before). If t = 0, we are now done. Otherwise, replace t by t 1 and repeat the process.
- 3. If $c_t = 0$ and there is a term of the form $(b-1)b^{t+1} + b^{t+1}$ in S, replace $(b-1)b^{t+1} + b^{t+1}$ by $(b-1)b^{t+1} + (b-1)b^t + b^t$. If t = 0, we are now done. Otherwise, replace t by t-1 and repeat the process.

At each coefficient c_j , the process either leaves c_j fixed or replaces it by an expression involving two or three terms in the case that $c_j = 0$ or $c_{j-1} = 0$. Since b-1 > 1, the terms in this representation are also distinct. Therefore, the process will leave a representation in which there are at least as many terms as in the typical base b representation of a, with each term drawn from B(b). Hence, a has a representation as a sum of k + 1 or more distinct terms of B(b). Since this holds for any $a \in \{b^k, \ldots, b^{k+1} - 1\}$, B(b) is (r+1)-complete for all r. Therefore, B(b) is infinitely complete.

3. Sequences which are r-complete but not (r + 1)-complete

We have seen an example of a sequence $(a_n = 2^{n-1})$ which is complete but not 2-complete. In a later section we will characterize all sequences which are complete but not 2-complete. But first we would like to show that our definition of an *r*-complete sequence is interesting and worthwhile to study. To that end, we now state the theorem which is the subject of this section.

Theorem 2. For any positive integer r, there is a sequence which is r-complete but not (r + 1)-complete.

We need a lemma before proceeding to the proof of this theorem.

Lemma 2. If p is a positive integer, and c is a positive integer such that $\frac{p(p+1)}{2} \leq c < \frac{(p+1)(p+2)}{2}$ then c can be represented as a sum of p distinct positive integers, but not of q distinct positive integers for any q > p.

INTEGERS: 16 (2016)

Proof. By hypothesis there is a positive integer a such that $c + a = \frac{(p+1)(p+2)}{2} = 1 + 2 + \dots + (p+1)$. Since $c \ge \frac{p(p+1)}{2} = 1 + 2 + \dots + p$, it follows that $a \le p+1$. Hence

$$c = \sum_{n=1}^{p+1} n - a$$

is a representation of c as a sum of p distinct positive integers. Since $1+2+\cdots+q = \frac{q(q+1)}{2}$ is the minimal sum that can be created using q distinct positive integers, it is clear that c has no representation as a sum of q distinct positive integers whenever q > p.

We now give an explicit construction of a sequence which is r-complete but not (r+1)-complete, which will prove Theorem 2.

Proof of Theorem 2. We claim that the increasing sequence $(b_n) = (1, 2, \ldots, r, r + 1, 2(r+1), 2^2(r+1), 2^3(r+1), \ldots)$ is r-complete but not (r+1)-complete. As it has already been verified that when r = 1, the sequence is complete but not 2-complete, we may assume that $r \ge 2$. By Lemma 2 and its proof, every integer from $\frac{r(r-1)}{2}$ to $\frac{(r+1)(r+2)}{2}$ is representable as the sum of at least r-1 distinct positive integers from (b_n) and one need only draw from the first r+1 terms of (b_n) . In particular, 2(r+1) does not appear in any integer's representation. Therefore, if a is a positive integer such that $2(r+1) + \frac{r(r-1)}{2} \le a \le 2(r+1) + \frac{(r+1)(r+2)}{2}$, then a has a representation with at least r distinct terms from (b_n) .

We now proceed by strong induction and assume that for some positive integer k, every integer from $\frac{r(r-1)}{2}$ to $2^k(r+1) + \dots + 2(r+1) + \frac{(r+1)(r+2)}{2} = 2^{k+1}(r+1) + \frac{r(r-1)}{2} - 1$ is representable as a sum of at least r-1 distinct terms from (b_n) . As part of the inductive hypothesis, we assume that each such representation can be chosen to contain only terms drawn from the subset $\{1, 2, \dots, r, r+1, 2(r+1), \dots, 2^k(r+1)\}$. If b is a positive integer such that $2^{k+1}(r+1) + \frac{r(r-1)}{2} \le b \le 2^{k+2}(r+1) + \frac{r(r-1)}{2} - 1$, then $b = 2^{k+1}(r+1) + c$, where c is a positive integer which by the inductive hypothesis is representable as a sum of r-1 or more distinct terms drawn from the subset $\{1, 2, \dots, r, r+1, 2(r+1), \dots, 2^k(r+1)\}$. We conclude that every integer from $2(r+1) + \frac{r(r+1)}{2}$ on is representable as the sum of r or more distinct terms from (b_n) , so this sequence is r-complete.

On the other hand, we claim that the integers of the form $2^k(r+1) + \frac{r(r-1)}{2}$ are only representable as a sum of at most r distinct terms from the given sequence. Since

$$2^{k-1}(r+1) + \dots + 2(r+1) + \frac{(r+1)(r+2)}{2} = 2^k(r+1) + \frac{r(r-1)}{2} - 1,$$

it is clear that any representation of $2^k(r+1) + \frac{r(r-1)}{2}$ must contain a term of the form $2^d(r+1)$, where $d \ge k$. We may assume that $2^k(r+1) + \frac{r(r-1)}{2} = 2^d(r+1) + e$,

where e is a positive integer. Then,

$$\frac{r(r-1)}{2} - e = 2^k (r+1)(2^{d-k} - 1) \ge 0$$

which implies that $e \leq \frac{(r-1)(r)}{2}$. Hence, e can be represented as the sum of at most r-1 distinct terms from (b_n) . Therefore, $2^k(r+1) + \frac{r(r-1)}{2}$ can be represented as the sum of at most r distinct terms drawn from $(1, 2, \ldots, r, r+1, 2(r+1), 2^2(r+1), 2^3(r+1), \ldots)$, so (b_n) is not (r+1)-complete.

We remark that if one sets r = 1 in the above sequence, then the sequence $a_n = 2^{n-1}$ is the sequence the theorem gives as an example of a sequence which is complete but not 2-complete. (Note that it is easy to modify the proof above to include the case r = 1.)

The sequence (b_n) we defined above also has a nice recursive form that may be of some interest:

$$b_n = \begin{cases} n, & \text{if } n \le r;\\ 1 + \sum_{i=r}^{n-1} b_i, & \text{if } n > r. \end{cases}$$

4. A Characterization of Sequences which are Complete but not 2-complete

The sequence (2^{n-1}) is not the only example of a sequence which is complete but not 2-complete. Knapp et al. [7, 3] have studied complete sequences that are in some sense minimal and constructible via a greedy algorithm. Namely, one arbitrarily selects two positive integers a_1 and a_2 to serve as seeds for a complete sequence, and then for j > 2, a_j is defined to be the smallest integer greater than a_{j-1} which is not representable as a sum of distinct terms from the set $G_j = \{a_1, \ldots, a_{j-1}\}$. For our purposes, we will label the smallest such integer ψ_j . The choice $a_1 = 1$, $a_2 = 2$ gives the sequence $a_n = 2^{n-1}$.

We observe that a sequence (a_n) defined by this method is not merely complete but it is also in fact not 2-complete, since no term of (a_n) is representable as a sum of lesser, distinct terms of the sequence. We readily derive the following more general construction for a complete but not 2-complete sequence:

Proposition 1. Let (a_n) be an increasing, complete sequence. Then (a_n) is not 2-complete if and only if there is an infinite subsequence $a_{i_1} < a_{i_2} < \cdots$ such that a_{i_k} is not representable as a sum of lesser, distinct terms of (a_n) for all $k \ge 1$.

Proof. Any positive integer larger than the threshold of completeness of (a_n) which is not a term of (a_n) must be representable as a sum of two or more terms from (a_n) . Hence, if (a_n) is not 2-complete, then there must be an infinite number of

terms of (a_n) which are not representable as a sum of distinct, lesser terms of (a_n) , and these terms can be arranged as an infinite subsequence of (a_n) . Conversely, if such an infinite subsequence exists, then there are an infinite number of positive integers which cannot be represented as a sum of two or more terms of (a_n) , so (a_n) is not 2-complete.

We can also describe sequences (a_n) which are complete but not 2-complete based on the parameter ψ_j .

Proposition 2. Let (a_n) , G_j and ψ_j be defined as above. Then we can characterize (a_n) as follows:

- 1. If $a_j > \psi_j$ for an infinite number of positive integers j, then (a_n) is not complete.
- 2. If $a_j \leq \psi_j$ for all but a finite number of positive integers j and $a_j = \psi_j$ for an infinite number of positive integers j, then (a_n) is complete but not 2-complete.
- 3. If $a_j < \psi_j$ for all but a finite number of positive integers j, then (a_n) is 2-complete.

Proof. First, if $a_j > \psi_j$ for an infinite number of positive integers j, then since ψ_j is not representable as a sum of the terms of G_j , there are an infinite number of positive integers not representable as a sum of distinct terms of (a_n) , so (a_n) is not complete.

Assume that $a_j \leq \psi_j$ for all but a finite number of positive integers j. There exists a positive integer N such that if i > N, then $a_i \leq \psi_i$. We will show that every positive integer b such that $b > a_N$ has a representation as a sum of distinct terms of (a_n) . Note that $G_m \subseteq G_n$ if and only if $m \leq n$, which implies that (ψ_n) is a non-decreasing sequence. Hence, if i > N, we have that $a_{i-1} < a_i \leq \psi_i \leq \psi_{i+1}$. In particular, we have that

$$\{x \in \mathbb{Z} \mid a_{i-1} \le x < \psi_i\} \cup \{x \in \mathbb{Z} \mid a_i \le x < \psi_{i+1}\} = \{x \in \mathbb{Z} \mid a_{i-1} \le x < \psi_{i+1}\}.$$

On the other hand, since (a_n) and (ψ_n) are both unbounded sequences, it follows that the set of sets of integers $\{\{x \in \mathbb{Z} | a_{i-1} \leq x < \psi_i\} | i \geq N+1\}$ completely covers the set $\{b \in \mathbb{Z} | b \geq a_N\}$. Hence, if $b \geq a_N$, then b is an element of some set of integers $\{x \in \mathbb{Z} | a_{m-1} \leq x < \psi_m\}$, and therefore b has a representation as a sum of distinct elements of (a_n) , by the definition of ψ_m .

If $a_j = \psi_j$ for an infinite number of values of j, then we can extract an infinite subsequence from (a_n) whose terms are not representable as the sum of lesser, distinct terms of (a_n) . Proposition 1 then implies that (a_n) is complete but not 2-complete.

Finally, if $a_j < \psi_j$ for all but a finite number of values of j, then there exists a positive integer N such that if i > N, then a_i is representable as a sum of lesser,

distinct terms of (a_n) . Because the sequence (a_n) is complete, every sufficiently large integer not in the sequence (a_n) is also representable as a sum of distinct terms of (a_n) , so it follows that (a_n) is 2-complete.

The idea behind Proposition 2 can be used to construct a complete but not 2-complete sequence from any given finite increasing sequence of positive integers $(b_i)_{i=1}^n$. After choosing such a sequence, to define b_j for j > n, compute ψ_j and pick $b_j = \psi_j$ an infinite number of times (and after some finite point, require that $b_j \leq \psi_j$).

We have only so far been able to give a characterization of sequences which are complete but not 2-complete. We would be interested in future work to see if similar characterizations could be given for sequences which are r-complete but not (r + 1)-complete.

Acknowledgments We are grateful to Peter Johnson of Auburn University for suggesting these problems to us and for making many suggestions which improved the overall quality of the text.

References

- J. Brown, Note on complete sequences of integers, Amer. Math. Monthly, 68 (1961), 557 560.
- [2] J. W. S. Cassels, On the representation of integers as the sum of distinct summands taken from a fixed set, Acta Sci. Math. (Szeged), 21 (1960), 111 – 124.
- [3] A. Fox and M. Knapp, A note on weakly complete sequences, J. Integer Seq., 16 (2013).
- [4] R. L. Graham, Complete sequences of polynomial values, Duke Math. J., 31 (1964), 275 285.
- [5] R. Honsberger, Mathematical Gems III, Mathematical Association of America, 1985.
- [6] P. Johnson and M. Laughlin, An anti-Waring conjecture and problem, Int. J. Math. Comput. Sci., 6 (2011), 21 – 26.
- [7] M. Knapp and M. Paul, On weakly complete sequences formed by the greedy algorithm, Integers, 12 (2012), #A4.
- [8] N. Looper and N. Saritzky, An anti-Waring theorem and proof, to appear in J. Combin. Math. Combin. Comput.
- [9] Š. Porubský, Sums of prime powers, Monatsh. Math., 86 (1979), 301 303.
- [10] R. Sprague, Über zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen, Math. Z., 51 (1948), 466 – 468.
- [11] R. Sprague, Über zerlegungen in ungleiche Quadratzahlen, Math. Z., 51 (1948), 289 290.