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Abstract
A complete sequence (an) is a strictly increasing sequence of positive integers such
that every su�ciently large positive integer is representable as the sum of one or
more distinct terms from (an). In this paper, we consider the more general notion
of an r-complete sequence where every su�ciently large positive integer is now
representable as the sum of r or more distinct terms from (an). In particular, for
all r we construct an example of a sequence which is r-complete but not (r + 1)-
complete.

1. Introduction

Let (ak)k�1 be a strictly increasing sequence of positive integers. We say that (ak) is
complete if there exists an integer N , N > 0, such that if q � N , q an integer, then
there exist coe�cients bk such that bk 2 {0, 1} for all k, and q =

P1
k=1 bkak (that

is, q is representable as a sum of distinct elements of the sequence (ak)). We refer to
the minimal such N as the threshold of completeness. As an example, the sequence
defined by ak = k + 1 (i.e., (2, 3, 4, 5, . . .)) is complete (one may take N = 2), but
the sequence defined by ak = 2k is not complete, as no odd integer is representable
as a sum of elements of (ak), let alone as a sum of distinct elements of (ak).

A brief note on terminology: some authors (such as Honsberger [5]) choose to
call such sequences as we have defined above weakly complete, and reserve the term
complete for the case when N = 1. Brown [1] has extensively studied and charac-
terized these sequences. Many authors also allow complete sequences to be merely
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non-decreasing: we choose to define a complete sequence to be strictly increasing
so as to give a clear meaning to the word “distinct” in the above definition.

There are many specific known examples of complete sequences. Sprague [10]
proved that the infinite sequence of kth powers, (nk)n�1, for a fixed integer k
is complete. Graham [4] gave conditions for completeness of sequences defined
by polynomials. Porubský [9] used a result of Cassels [2] which gave a su�cient
condition for a sequence to be complete to show that the sequence consisting of
the kth powers of prime numbers for a fixed integer k is complete. All of these
results demonstrated the completeness of certain classes of sequences, and some
computationally derived a threshold of completeness (for instance, Sprague [11]
showed that the threshold of completeness for the sequence of squares is 129).

Our aim in this paper is to consider a generalization of complete sequences that
as far as we know Johnson and Laughlin [6] first described, which we will call r-
completeness. We define a sequence (ak) to be r-complete if there exists a positive
integer Nr such that if q � Nr, q an integer, then q may be represented as the
sum of r or more distinct terms from the sequence (ak). Equivalently, q has a
representation of the form

P1
k=1 bkak, where bk 2 {0, 1} for all k, and

P1
k=1 bk � r.

By analogy with the definition of completeness, we call the minimal such Nr the
threshold of r-completeness.

If (ak) is r-complete for all positive integers r, then we will say that (ak) is
infinitely complete. For example, it is clear that that the sequence of positive integers
is infinitely complete, and Looper and Saritzky [8] showed that in fact the sequence
of kth power of integers, (nk)n�1, for a fixed positive integer k is infinitely complete.
It is also immediate that if (an) is r-complete, then (an) is k-complete for all positive
integers k such that k < r.

At the end of their paper, Johnson and Laughlin [6] posed two questions which
we can rephrase in our terminology. For b > 2, is the increasing sequence B(b) =
{abm�1|a 2 {1, . . . , b� 1},m = 1, 2, . . .} infinitely complete? For any given positive
integer r, is there a sequence (ak) which is r-complete but not (r+1)-complete? We
will provide a�rmative answers to both of these questions and also give a complete
characterization of sequences which are complete but not 2-complete.

2. Confirming that the Set B(b) is Infinitely Complete

Before we dispense with the general set of base b representations, it will be en-
lightening to consider the specific case b = 2. In this case, we have an = 2n�1,
and it is well known that every positive integer has a unique binary representation.
Therefore, since each power of two is representable as a sum of only one term from
(an), it is readily seen that (2n�1) is complete but not 2-complete.

As previously mentioned, Johnson and Laughlin conjectured that if b > 2, then
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B(b) is infinitely complete. We first recall the following well-known lemma regarding
base b representations of positive integers:

Lemma 1. Let b > 1 be a positive integer. Every positive integer a has a unique
representation of the form

a =
kX

i=0

cib
i

subject to the following conditions:

1. ci 2 {0, 1, . . . , b� 1} for all i 2 {0, 1, . . . , k}

2. ck 6= 0

3. bk  a < bk+1

Lemma 1 proves immediately that B(b) is complete. However, as the coe�cients
ci may be 0 in the standard basis representation (for example, every integer of the
form cbk has a 0 everywhere in the standard basis representation except for the bk

term), this lemma is not su�cient to prove that B(b) is infinitely complete.
We now prove that B(b) is infinitely complete by making a suitable modification

to the standard basis representation:

Theorem 1. If b > 2 is an integer, then the increasing sequence B(b) = {abm�1|a 2
{1, . . . , b� 1},m = 1, 2, . . .} is infinitely complete.

Proof. Let k be a positive integer. Let a be a positive integer such that bk  a <
bk+1. We will show that a can be represented as a sum of k + 1 or more distinct
terms from B(b). This will be su�cient to prove that for each positive integer r,
B(b) is r-complete. By Lemma 1 we know that a has a representation

a = ckbk + ck�1b
k�1 + · · · + c0b

0

where ck 6= 0. If each coe�cient ci is nonzero, then a has a representation as a sum
of k + 1 terms of B(b). If not, then there is a coe�cient cm such that cm = 0 and
cj 6= 0 for all j > m (note that m < k). In the standard basis representation of a,
we then replace cm+1bm+1 by (cm+1 � 1)bm+1 + (b� 1)bm + bm. We now therefore
have either two or three terms of B(b) (depending on whether or not cm+1 = 1) in
place of the one original cm+1bm+1. We can now proceed inductively by finding the
next zero coe�cient of largest index, and performing the same operation as follows:

Suppose that the representation of a has been modified to

a =
tX

j=0

cjb
j + S
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for some t 2 {0, 1, . . . , k � 2}, in which S is (inductively) a sum of at least k � t
distinct elements from the set {cbj | c 2 {1, . . . , b� 1}, j 2 {t + 1, . . . , k}}, and that
the only parts of S involving terms of the form cbt+1, c 2 {1, . . . , b� 1} will either
be of the form ct+1bt+1 (with ct+1 6= 0) or (b � 1)bt+1 + bt+1. The algorithm now
proceeds:

1. If ct > 0 and t = 0, then a has a representation as a sum of at least k + 1
terms of B(b) and we are done. If ct > 0 and t > 0, replace t by t � 1 and
repeat the process.

2. If ct = 0 and there is a term of the form ct+1bt+1 in the representation of S,
replace ct+1bt+1 by (ct+1� 1)bt+1 + (b� 1)bt + bt (as before). If t = 0, we are
now done. Otherwise, replace t by t� 1 and repeat the process.

3. If ct = 0 and there is a term of the form (b � 1)bt+1 + bt+1 in S, replace
(b� 1)bt+1 + bt+1 by (b� 1)bt+1 + (b� 1)bt + bt. If t = 0, we are now done.
Otherwise, replace t by t� 1 and repeat the process.

At each coe�cient cj , the process either leaves cj fixed or replaces it by an
expression involving two or three terms in the case that cj = 0 or cj�1 = 0. Since
b� 1 > 1, the terms in this representation are also distinct. Therefore, the process
will leave a representation in which there are at least as many terms as in the
typical base b representation of a, with each term drawn from B(b). Hence, a has
a representation as a sum of k + 1 or more distinct terms of B(b). Since this holds
for any a 2 {bk, . . . , bk+1 � 1}, B(b) is (r + 1)-complete for all r. Therefore, B(b) is
infinitely complete.

3. Sequences which are r-complete but not (r + 1)-complete

We have seen an example of a sequence (an = 2n�1) which is complete but not
2-complete. In a later section we will characterize all sequences which are complete
but not 2-complete. But first we would like to show that our definition of an r-
complete sequence is interesting and worthwhile to study. To that end, we now
state the theorem which is the subject of this section.

Theorem 2. For any positive integer r, there is a sequence which is r-complete but
not (r + 1)-complete.

We need a lemma before proceeding to the proof of this theorem.

Lemma 2. If p is a positive integer, and c is a positive integer such that p(p+1)
2 

c < (p+1)(p+2)
2 then c can be represented as a sum of p distinct positive integers, but

not of q distinct positive integers for any q > p.



INTEGERS: 16 (2016) 5

Proof. By hypothesis there is a positive integer a such that c + a = (p+1)(p+2)
2 =

1 + 2 + · · · + (p + 1). Since c � p(p+1)
2 = 1 + 2 + · · · + p, it follows that a  p + 1.

Hence

c =
p+1X
n=1

n� a

is a representation of c as a sum of p distinct positive integers. Since 1+2+ · · ·+q =
q(q+1)

2 is the minimal sum that can be created using q distinct positive integers, it is
clear that c has no representation as a sum of q distinct positive integers whenever
q > p.

We now give an explicit construction of a sequence which is r-complete but not
(r + 1)-complete, which will prove Theorem 2.

Proof of Theorem 2. We claim that the increasing sequence (bn) = (1, 2, . . . , r, r +
1, 2(r +1), 22(r +1), 23(r +1), . . .) is r-complete but not (r +1)-complete. As it has
already been verified that when r = 1, the sequence is complete but not 2-complete,
we may assume that r � 2. By Lemma 2 and its proof, every integer from r(r�1)

2 to
(r+1)(r+2)

2 is representable as the sum of at least r�1 distinct positive integers from
(bn) and one need only draw from the first r+1 terms of (bn). In particular, 2(r+1)
does not appear in any integer’s representation. Therefore, if a is a positive integer
such that 2(r + 1) + r(r�1)

2  a  2(r + 1) + (r+1)(r+2)
2 , then a has a representation

with at least r distinct terms from (bn).
We now proceed by strong induction and assume that for some positive integer

k, every integer from r(r�1)
2 to 2k(r+1)+ · · ·+2(r+1)+ (r+1)(r+2)

2 = 2k+1(r+1)+
r(r�1)

2 �1 is representable as a sum of at least r�1 distinct terms from (bn). As part
of the inductive hypothesis, we assume that each such representation can be chosen
to contain only terms drawn from the subset {1, 2, . . . , r, r+1, 2(r+1), . . . , 2k(r+1)}.
If b is a positive integer such that 2k+1(r+1)+ r(r�1)

2  b  2k+2(r+1)+ r(r�1)
2 �1,

then b = 2k+1(r + 1) + c, where c is a positive integer which by the inductive
hypothesis is representable as a sum of r�1 or more distinct terms drawn from the
subset {1, 2, . . . , r, r + 1, 2(r + 1), . . . , 2k(r + 1)}. We conclude that every integer
from 2(r + 1) + r(r+1)

2 on is representable as the sum of r or more distinct terms
from (bn), so this sequence is r-complete.

On the other hand, we claim that the integers of the form 2k(r + 1) + r(r�1)
2 are

only representable as a sum of at most r distinct terms from the given sequence.
Since

2k�1(r + 1) + · · · + 2(r + 1) +
(r + 1)(r + 2)

2
= 2k(r + 1) +

r(r � 1)
2

� 1,

it is clear that any representation of 2k(r + 1) + r(r�1)
2 must contain a term of the

form 2d(r+1), where d � k. We may assume that 2k(r+1)+ r(r�1)
2 = 2d(r+1)+e,
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where e is a positive integer. Then,

r(r � 1)
2

� e = 2k(r + 1)(2d�k � 1) � 0

which implies that e  (r�1)(r)
2 . Hence, e can be represented as the sum of at most

r � 1 distinct terms from (bn). Therefore, 2k(r + 1) + r(r�1)
2 can be represented as

the sum of at most r distinct terms drawn from (1, 2, . . . , r, r + 1, 2(r + 1), 22(r +
1), 23(r + 1), . . .), so (bn) is not (r + 1)-complete.

We remark that if one sets r = 1 in the above sequence, then the sequence
an = 2n�1 is the sequence the theorem gives as an example of a sequence which is
complete but not 2-complete. (Note that it is easy to modify the proof above to
include the case r = 1.)

The sequence (bn) we defined above also has a nice recursive form that may be
of some interest:

bn =

(
n, if n  r;
1 +

Pn�1
i=r bi, if n > r.

4. A Characterization of Sequences which are Complete but not
2-complete

The sequence (2n�1) is not the only example of a sequence which is complete but
not 2-complete. Knapp et al. [7, 3] have studied complete sequences that are in some
sense minimal and constructible via a greedy algorithm. Namely, one arbitrarily
selects two positive integers a1 and a2 to serve as seeds for a complete sequence,
and then for j > 2, aj is defined to be the smallest integer greater than aj�1 which
is not representable as a sum of distinct terms from the set Gj = {a1, . . . , aj�1}.
For our purposes, we will label the smallest such integer  j . The choice a1 = 1,
a2 = 2 gives the sequence an = 2n�1.

We observe that a sequence (an) defined by this method is not merely complete
but it is also in fact not 2-complete, since no term of (an) is representable as a
sum of lesser, distinct terms of the sequence. We readily derive the following more
general construction for a complete but not 2-complete sequence:

Proposition 1. Let (an) be an increasing, complete sequence. Then (an) is not
2-complete if and only if there is an infinite subsequence ai1 < ai2 < · · · such that
aik is not representable as a sum of lesser, distinct terms of (an) for all k � 1.

Proof. Any positive integer larger than the threshold of completeness of (an) which
is not a term of (an) must be representable as a sum of two or more terms from
(an). Hence, if (an) is not 2-complete, then there must be an infinite number of
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terms of (an) which are not representable as a sum of distinct, lesser terms of (an),
and these terms can be arranged as an infinite subsequence of (an). Conversely, if
such an infinite subsequence exists, then there are an infinite number of positive
integers which cannot be represented as a sum of two or more terms of (an), so (an)
is not 2-complete.

We can also describe sequences (an) which are complete but not 2-complete based
on the parameter  j .

Proposition 2. Let (an), Gj and  j be defined as above. Then we can characterize
(an) as follows:

1. If aj >  j for an infinite number of positive integers j, then (an) is not
complete.

2. If aj   j for all but a finite number of positive integers j and aj =  j for an
infinite number of positive integers j, then (an) is complete but not 2-complete.

3. If aj <  j for all but a finite number of positive integers j, then (an) is
2-complete.

Proof. First, if aj >  j for an infinite number of positive integers j, then since  j

is not representable as a sum of the terms of Gj , there are an infinite number of
positive integers not representable as a sum of distinct terms of (an), so (an) is not
complete.

Assume that aj   j for all but a finite number of positive integers j. There
exists a positive integer N such that if i > N , then ai   i. We will show that
every positive integer b such that b > aN has a representation as a sum of distinct
terms of (an). Note that Gm ✓ Gn if and only if m  n, which implies that ( n) is
a non-decreasing sequence. Hence, if i > N , we have that ai�1 < ai   i   i+1.
In particular, we have that

{x 2 Z| ai�1  x <  i} [ {x 2 Z| ai  x <  i+1} = {x 2 Z| ai�1  x <  i+1}.

On the other hand, since (an) and ( n) are both unbounded sequences, it follows
that the set of sets of integers {{x 2 Z| ai�1  x <  i}| i � N + 1} completely
covers the set {b 2 Z| b � aN}. Hence, if b � aN , then b is an element of some set
of integers {x 2 Z| am�1  x <  m}, and therefore b has a representation as a sum
of distinct elements of (an), by the definition of  m.

If aj =  j for an infinite number of values of j, then we can extract an infinite
subsequence from (an) whose terms are not representable as the sum of lesser,
distinct terms of (an). Proposition 1 then implies that (an) is complete but not
2-complete.

Finally, if aj <  j for all but a finite number of values of j, then there exists a
positive integer N such that if i > N , then ai is representable as a sum of lesser,
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distinct terms of (an). Because the sequence (an) is complete, every su�ciently
large integer not in the sequence (an) is also representable as a sum of distinct
terms of (an), so it follows that (an) is 2-complete.

The idea behind Proposition 2 can be used to construct a complete but not
2-complete sequence from any given finite increasing sequence of positive integers
(bi)n

i=1. After choosing such a sequence, to define bj for j > n, compute  j and
pick bj =  j an infinite number of times (and after some finite point, require that
bj   j).

We have only so far been able to give a characterization of sequences which
are complete but not 2-complete. We would be interested in future work to see if
similar characterizations could be given for sequences which are r-complete but not
(r + 1)-complete.
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