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Abstract
Zeckendorf’s theorem states that every positive integer can be written uniquely as
a sum of non-consecutive Fibonacci numbers Fn, with initial terms F1 = 1, F2 = 2.
Previous work proved that as n!1 the distribution of the number of summands
in the Zeckendorf decompositions of m 2 [Fn, Fn+1), appropriately normalized,
converges to the standard normal. The proofs crucially used the fact that all integers
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in [Fn, Fn+1) share the same potential summands, and hold for more general positive
linear recurrence sequences {Gn}.

We generalize these results to subintervals of [Gn, Gn+1) as n ! 1 for certain
sequences. The analysis is significantly more involved here as di↵erent integers have
di↵erent sets of potential summands. Explicitly, fix an integer sequence ↵(n)!1.
As n ! 1, for almost all m 2 [Gn, Gn+1) the distribution of the number of sum-
mands in the generalized Zeckendorf decompositions of integers in the subintervals
[m,m + G↵(n)), appropriately normalized, converges to the standard normal. The
proof follows by showing that, with probability tending to 1, m has at least one
appropriately located large gap between indices in its decomposition. We then use
a correspondence between this interval and [0, G↵(n)) to obtain the result, since the
summands are known to have Gaussian behavior in the latter interval.

1. Introduction

1.1. Background

Let {Fn} denote the Fibonacci numbers, normalized so that F1 = 1, F2 = 2,
and Fn+1 = Fn + Fn�1. One of the more interesting, equivalent definitions of the
Fibonacci numbers is that they are the unique sequence of positive integers such that
every positive number has a unique legal decomposition as a sum of non-adjacent
terms.1 This equivalence is known as Zeckendorf’s theorem [29]. Once we know a
decomposition exists, a natural question to ask is how the number of summands
varies. The first result along these lines is due to Lekkerkerker [20], who proved
that the average number of summands needed in the Zeckendorf decomposition of
an integer m 2 [Fn, Fn+1) is n

'2+1 + O(1), where ' = 1+
p

5
2 , the golden mean, is

the largest root of the Fibonacci recurrence. More is true, and many authors have
shown that the distribution of summands of m 2 [Fn, Fn+1) converges to a Gaussian.
These results have been extended to a variety of other sequences. There are several
di↵erent methods of proof, from continued fractions to combinatorial perspectives
to Markov processes; see [4, 9, 11, 12, 13, 14, 15, 17, 21, 18, 19, 24, 25, 27, 28]
for a sampling of results and methods along these lines, [1, 6, 7, 8, 10, 11] for
generalizations to other types of representations, and [2, 5] for related questions on
the distribution of gaps between summands.

The analysis in much of the previous work was carried out for m 2 [Fn, Fn+1)
(or, for more general sequences {Gn}, for m 2 [Gn, Gn+1)). The advantage of such
a localization2 is that each m has the same candidate set of summands and is of
roughly the same size. The purpose of this work is to explore some of the above
questions on a significantly smaller scale and determine when and how often we

1The requirement of uniqueness of decomposition forces us to start the sequence this way.
2As the sequence {Fn} is exponentially growing, it is easy to pass from m in this interval to

m 2 [0, Fn).
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obtain Gaussian behavior. Note that we cannot expect such behavior to hold for
all sub-intervals of [Fn, Fn+1), even if we require the size to grow with n. To see
this, consider the interval

[F2n + Fn + Fn�2 + · · · + Fbn1/4c, F2n + Fn+1 + Fbn1/4c). (1)

The integers in the above interval that are less than F2n + Fn+1 have on the order
of n/2 summands, while those that are larger have at most on the order of n1/4

summands. Thus the behavior cannot be Gaussian.3

In [3], we proved Gaussian behavior for the number of summands in the Zeck-
endorf decomposition for almost all small subintervals of [Fn, Fn+1); in this work
we generalize to other sequences. Henceforth {Gn} will denote a positive linear
recurrence sequence.

Definition 1. A sequence {Gn}1n=1 of positive integers is a Positive Linear Recur-
rence Sequence (PLRS) if the following properties hold.

1. Recurrence relation: There are non-negative integers L, c1, . . . , cL such that

Gn+1 = c1Gn + · · · + cLGn+1�L, (2)

with L, c1 and cL positive.

2. Initial conditions: G1 = 1, and for 1  n < L we have

Gn+1 = c1Gn + c2Gn�1 + · · · + cnG1 + 1. (3)

A decomposition
Pm

i=1 aiGm+1�i of a positive integer N (and the sequence
{ai}m

i=1) is legal if a1 > 0, the other ai � 0, and one of the following two con-
ditions holds:

• Condition 1: We have m < L and ai = ci for 1  i  m.

• Condition 2: There exists s 2 {0, . . . , L} such that

a1 = c1, a2 = c2, · · · , as�1 = cs�1 and as < cs, (4)

as+1, . . . , as+` = 0 for some ` � 0, and {bi}m�s�`
i=1 (with bi = as+`+i) is legal.

If
Pm

i=1 aiGm+1�i is a legal decomposition of N , we define the number of sum-
mands (of this decomposition of N) to be a1 + · · · + am.

3Though in this situation it would be interesting to investigate separately the behavior on both
sides.
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Informally, a legal decomposition is one where we cannot use the recurrence
relation to replace a linear combination of summands with another summand, and
the coe�cient of each summand is appropriately bounded. For example, if Gn+1 =
2Gn +3Gn�1 +Gn�2, then G5 +2G4 +3G3 +G1 is legal, while G5 +2G4 +3G3 +G2

is not (we can replace 2G4 +3G3 +G2 with G5), nor is 7G5 +2G2 (as the coe�cient
of G5 is too large). Note the Fibonacci numbers correspond to the special case of
L = 2 and c1 = c2 = 1.

Earlier work (see, for example, [24, 25]) proved that if {Gn} is a PLRS then we
again have unique legal decompositions and Gaussian behavior for the number of
summands from m 2 [Gn, Gn+1).

1.2. Main Result

Fix an increasing positive integer valued function ↵(n) with

lim
n!1

↵(n) = lim
n!1

(n� ↵(n)) = 1. (5)

Our main result, given in the following theorem, extends the Gaussian behavior of
the number of summands in Zeckendorf decompositions to smaller intervals. Note
that requiring m to be in [Gn, Gn+1) is not a significant restriction because given
any m, there is always an n such that this holds.

Theorem 1 (Gaussianity on small intervals). Let {Gn} be a positive linear
recurrence sequence with recurrence

Gn+1 = c1Gn + c2Gn�1 + · · · + cLGn+1�L, (6)

where we additionally assume c1 � c2 � · · · � cL � 1. Choose ↵(n) satisfying (5).
The distribution of the number of summands in the decompositions of integers in
the interval [m,m+G↵(n)) converges to a Gaussian distribution when appropriately
normalized for almost all m 2 [Gn, Gn+1).

In §2 we derive some useful properties of Zeckendorf decompositions, which we
use in §3 to prove Theorem 1. The reason for our extra condition on the ci’s surfaces
in Lemma 1, where this constraint forces a truncated legal decomposition to remain
legal, though we conjecture that Theorem 1 holds more generally. Recently the
fifth named author and some of his colleagues in [8] developed a new method which
bypasses similar technical di�culties in related problems, and a future project is
to see if those ideas would allow a lessening of some of the conditions for these
problems.
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2. Preliminaries

In order to prove Theorem 1, we establish a correspondence between the decompo-
sitions of integers in the interval [m,m+G↵(n)) and those in [0, G↵(n)). Throughout
this paper, by [a, b] we mean the set {N 2 N : a  N  b}. We also introduce
the following notation. Fix a non-decreasing positive function q(n), taking on even
values, such that

q(n) < n� ↵(n), q(n) = o
⇣p

↵(n)
⌘

, lim
n!1

q(n) = 1; (7)

the reason for the second condition is to allow us to appeal to known convergence
results for a related system, as q(n) will be significantly less than the standard
deviation in that setting.

For m 2 [Gn, Gn+1) with decomposition

m =
nX

j=1

ajGj , (8)

define

C1(m) := (a1, a2, . . . , a↵(n)),
C2(m) := (a↵(n)+1, . . . , a↵(n)+q(n)),
C3(m) := (a↵(n)+q(n)+1, . . . , an). (9)

Let s(m) be the number of summands in the decomposition of m. That is, let

s(m) :=
nX

j=1

aj . (10)

Similarly, let s1(m), s2(m), and s3(m) be the number of summands contributed by
C1(m), C2(m), and C3(m), respectively.

Lemma 1. Let x 2 [m,m + G↵(n)). If there are at least 3L consecutive 0’s in
C2(m), then C3(x) is constant, and hence s3(x) is constant as well.

Proof. Assume there are at least 3L consecutive 0’s in C2(m). Then for some
k 2 [↵(n) + 3L,↵(n) + q(n)), we have ak�3L+1 = ak�3L+2 = · · · = ak = 0. Let m0

denote the integer obtained by truncating the decomposition of m at ak�3LGk�3L.
Then m0 < Gk�3L+1. Since G↵(n)  Gk�3L, it follows that for any h < G↵(n) we
have

m0 + h < Gk�3L+1 + Gk�3L

 c1Gk�3L+1 + c2Gk�3L + · · · + cLGk�2L+2 = Gk�3L+2, (11)
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and thus the decomposition of m0+h has largest summand no greater than Gk�3L+2.
Then since 3L� 2 � L, the Zeckendorf decomposition of m + h is obtained simply
by concatenating the decompositions for m�m0 and m0 + h. Hence C3(m + h) =
C3(m�m0) = C3(m).

With this lemma, we see that the distribution of the number of summands in-
volved in the decomposition of x 2 [m,m + G↵(n)) depends (up to a shift) only on
what happens in C1(x) and C2(x), provided that there is a gap between summands
of length at least 3L somewhere in C2(m). In light of this stipulation, we will show
the following items in order to prove our main theorem.

• With high probability, m is of the desired form (i.e., there is a gap between
summands of length at least 3L in C2(m)).

• When m is of the desired form, the distribution of the number of summands
involved in C1(x) for x 2 [m,m + G↵(n)) converges to Gaussian when appro-
priately normalized.

• The summands involved in C2(x) produce a negligible error term (i.e., there
are significantly fewer summands from C2(x) than there are from C1(m)).

We address the first point with the following lemma.

Lemma 2. As n ! 1, with probability 1 + o(1) there are at least 3L consecutive
0’s in C2(m) if m is chosen uniformly at random from the integers in [Gn, Gn+1).

In [5], Bower, Insoft, Li, Miller and Tosteson analyze the largest gap between
summands in legal decompositions, assuming only that the ci’s are non-negative (a
less restrictive condition than we have). They prove that for m 2 [Gn, Gn+1) as
n!1 with probability 1 + o(1) there is a gap of length C log n for some constant
C > 0. This almost proves what we need; the only di�culty is we need the gap
to be in C2(m). Instead of modifying their technical approach, in Appendix 4 we
derive a di↵erence equation which proves that as n!1 with probability 1 we have
a gap of any fixed finite size; while we prove that such a gap exists somewhere,
the argument there is trivially modified to apply to just C2(m) (as if we have no
summands in that region then the result is trivially true!), and completes the proof
of the above lemma.

Until this point we have not used the condition that c1 � c2 � · · · � cL. The
following lemma illustrates the necessity of this condition.

Lemma 3. If c1 � c2 � · · · � cL, then

nX
j=1

ajGn+1�j is legal implies that
nX

j=2

ajGn+1�j is legal. (12)
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Proof. If the first sum is legal, then for some s we have a1 = c1, a2 = c2, · · · , as <
cs. Then we necessarily have a2  c1, a3  c2, · · · a0s < cs0�1 for some s0  s. We
can repeat this process, noting that a block ends at as. Therefore, the decomposition
is legal.

Corollary 1. If c1 � c2 � · · · � cL, then legal decompositions are chosen by the
greedy algorithm.

Proof. Suppose not, so that
Pn

j=1 ajGn+1�j is a legal decomposition with

nX
j=k+1

ajGn+1�j � Gn+1�k. (13)

By an iterated application of the previous lemma, the above sum is a legal decom-
position, and it is known that legal decompositions of integers in [Gn, Gn+1) all
have largest term Gn, which gives a contradiction.

Assuming m is of the desired form (meaning there is a gap of length at least 3L in
its decomposition), we now consider the distribution of s(x) for x 2 [m,m+G↵(n)).

Lemma 4. If m has at least 3L consecutive 0’s in C2(m), then for all x 2 [m,m+
G↵(n)), we have

0  s(x)� s3(m)� s(t(x)) < Kq(n), (14)

where K := maxj cj, and t(x) denotes the bijection

t : [m,m + G↵(n))! [0, G↵(n)) (15)

given by

t(m + h) :=

(
m0 + h, if m0 + h < G↵(n)

m0 + h�G↵(n) if m0 + h � G↵(n),
(16)

with m0 the sum of the terms in the decomposition of m truncated at a↵(n)�1G↵(n)�1.

Proof. First, note that the number of summands in the decomposition of x with
indices i 2 [↵(n), ↵(n) + q(n)) must be less than Kq(n). Next, we verify that t
from above in fact is a bijection, for which it su�ces to show that it is an injection.
Note that if t(m + h1) = t(m + h2), then since |h1 � h2| < G↵(n), we must have
m0 +h1 = m0 +h2, so we may conclude that t is injective, hence bijective since the
domain and codomain are finite. For any x 2 [m,m + G↵(n)), the decompositions
of t(x) and x agree for the terms with index less than ↵(n) by virtue of Corollary
1. Furthermore, the decompositions of x and m agree for terms with index greater
than ↵(n) + q(n). Therefore, the number of summands in the decomposition of x
with indices i 2 [↵(n),↵(n) + q(n)) is equal to s(x)� s3(m)� s(t(x)). Combining
this with our initial observation, the lemma now follows.
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As a result of this lemma, the distribution of s(x) over the integers in [m,m+G↵)
is a shift of its distribution over [0, G↵(n)), up to an error bounded by q(n). With
this fact, we are now ready to prove the main theorem.

3. Proof of Theorem 1

We now prove our main result. We assume below that {Gn} is a PLRS with
c1 � c2 � · · · � cL � 1, that ↵(n) obeys (5), and that q(n) obeys (7).

Proof of Theorem 1. For a fixed m 2 [Gn, Gn+1) with at least 3L consecutive 0’s
somewhere in C2(m) (which is true for almost all m as n!1), we define random
variables Xn and Yn by

Xn := s(H1), Yn := s(H2), (17)

where H1 is chosen uniformly at random from [m,m + G↵(n)) and H2 = H1 �m
(and thus is chosen uniformly at random from [0, G↵(n))). Let

X 0
n :=

1
�x(n)

(Xn � E[Xn]), (18)

and

Y 0
n :=

1
�y(n)

(Yn � E[Yn]), (19)

where �x(n) and �y(n) are the standard deviations of Xn and Yn, respectively, so
that Xn and Yn are normalized with mean 0 and variance 1. It is known that Y 0

n

converges to a Gaussian distribution with mean and variance of order ↵(n) (see, for
example, [24]), and we claim that X 0

n converges to a Gaussian distribution as well.
Note that Xn = Yn + C + e(n), where C is a constant and e(n) is an error

term with |e(n)| < Kq(n). From the assumption that q(n) = o
⇣p

↵(n)
⌘

we have
q(n)/�y(n)! 0. Therefore, we have

Var[Xn] = Var[Yn] + Var[e(n)] + 2Cov[Yn, e(n)]
 Var[Yn] + 4K2q(n)2 + 2E[(Yn � E[Yn])(e(n)� E[e(n)])]
 Var[Yn] + 4K2q(n)2 + 2E[|Yn � E[Yn]| · |e(n)� E[e(n)]|]
 Var[Yn] + 4K2q(n)2 + 4Kq(n)E[|Yn � E[Yn]|]
 Var[Yn] + 4K2q(n)2 + 4Kq(n)E[(Yn � E[Yn])2]1/2

= Var[Yn] + 4K2q(n)2 + 4Kq(n) + 4Kq(n)�y(n)
= Var[Yn](1 + o(1)). (20)
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Hence �x(n) = �y(n)(1 + o(1)). Note that |Xn � Yn � C| < Kq(n), so |X 0
n�x(n)�

Y 0
n�y(n)| = O(q(n)), and thus

|X 0
n � Y 0

n| =
����X 0

n
�x(n)
�y(n)

� Y 0
n

���� (1 + o(1)) = O

✓
q(n)
�y(n)

◆
= o(1). (21)

Let An and Bn be the cumulative distribution functions for X 0
n and Y 0

n, respec-
tively. By Lemma 4 combined with the above bound on |X 0

n � Y 0
n|, we have

Bn(x� o(1))  An(x)  Bn(1 + o(1)). (22)

Since {Bn}n converges pointwise to the cumulative distribution function for a
Gaussian distribution, say B(x), and it is easy to show that if �n ! 0, then Bn(x+
�n) ! B(x) since B is continuous and Bn is monotone non-decreasing, it follows
that {An}n also converges pointwise to B(x). This completes the proof.

4. Conclusion and Future Work

By finding a correspondence between generalized Zeckendorf decompositions in the
interval [m,m + G↵(n)) and in the interval [0, G↵(n)), we are able to prove conver-
gence to Gaussian behavior on many sub-intervals. The key step is to show that
almost surely an integer m chosen uniformly at random from [Gn, Gn+1) permits the
construction of a bijection onto the interval [0, G↵(n)). Our results then follow from
previous work on the Gaussian behavior of the number of generalized Zeckendorf
summands in this interval.

In the future, we plan to extend our results to more general sequences. The
first natural candidate is to remove the assumption on the ci’s among the positive
linear recurrence sequences we study. Other interesting topics include the signed
decompositions (or far di↵erence representations) where both positive and negative
summands are allowed (see [1, 11]), the f -decompositions of [10], and some other
recurrences where the leading coe�cient is zero (which in some cases leads to a loss
of unique decompositions), such as [6, 7, 8].
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Appendix: Elementary Proof of Moderate Gaps

A crucial ingredient in our proof is that almost surely the Zeckendorf decomposition
of an m 2 [Gn, Gn+1) has a gap of length Z or more for some fixed Z > 3L. This
follows immediately from the work of Beckwith, Bower, Gaudet, Insoft, Li, Miller
and Tosteson [2] (see also [4]), who showed that almost surely the longest gap is
of the order log n. It is possible to elementarily prove this result by deriving a
recurrence relation for these probabilities and analyzing its growth rate directly,
which we do below both in the hopes that it might be of use in related problems,
and also to keep the argument elementary.

Theorem 2. Let {Gn} be a PLRS with recurrence relation with positive integer
coe�cients:

Gn+1 = c1Gn + · · · + cLGn�L+1, ci, L � 1. (23)

Fix an integer Z > L and let Hn+1 be the number of integers m 2 [0, Gn+1) such
that m’s legal decomposition does not have a gap between summands of length Z or
greater.4 Then Hn/Gn converges to zero exponentially fast.

Proof. We first find a recurrence relation for {Hn}. Consider n much larger than
L + Z, and let m 2 [0, Gn+1) be arbitrary. We count how many m have a legal
decomposition with no gap between summands of length Z or more by looking at
the possible beginning strings of m’s decomposition. Specifically, we look at how
often Gn, Gn�1, . . . , Gn�L+1 occur. As the analysis is trivial when L = 1 we assume
L � 2 below.

4Note that we only care about a gap of length at least Z between adjacent summands; thus
our decomposition may miss many elements before the first chosen summand. It is also easier to
first count in [0, Gn+1) and later shift to [Gn, Gn+1) by subtraction.
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• Case n: At most c1� 1 summands of Gn: We may have 0, 1, . . . , c1� 1 or c1

occurrences of Gn. If we have zero Gn’s, then the number of possible comple-
tions of the decomposition such that all gaps are less than Z is, by definition,
Hn. If we have 1, . . . , c1�1 summands of Gn then the number of completions
is Hn�Hn�Z (we must subtract Hn�Z as we have a summand, and we cannot
have Z or more non-chosen summands now). Thus the contribution from this
case to Hn+1 is

Hn + (c1 � 1)(Hn �Hn�Z) = c1(Hn �Hn�Z) + Hn�Z . (24)

• Case n � 1: At most c2 � 1 summands of Gn�1: To be in this case, we first
have c1 summands of Gn. If we have no Gn�1 terms in our decomposition,
then we have Hn�1 � Hn�1�(Z�1) = Hn�1 � Hn�Z ways to complete the
decomposition (as we have zero summands, we must be careful and avoid not
taking any of the next Z � 1 summands). If we have 1, . . . , c2 � 1 copies of
Gn�1 then there are Hn�1 �Hn�1�Z ways to complete the decomposition as
desired. Thus this case contributes to Hn+1

(Hn�1 �Hn�Z) + (c2 � 1)(Hn�1 �Hn�1�Z)
= c2(Hn�1 �Hn�1�Z) + (Hn�1�Z �Hn�Z). (25)

• Case n � `: At most c` � 1 summands of Gn�`+1: Similar to the earlier
cases, if we have zero copies of Gn�`+1 then there are Hn�` �Hn�`�(Z�1) =
Hn�` �Hn�`+1�Z ways to complete the decomposition, while if there are 1,
. . . , c` � 1 copies of Gn�`+1 there are Hn�` �Hn�`�Z possibilities. Thus the
total contribution to Hn+1 is

(Hn�` �Hn�`+1�Z) + (c` � 1)(Hn�` �Hn�`�Z)
= c`(Hn�` �Hn�`�Z) + (Hn�`�Z �Hn�`+1�Z). (26)

If ` < L we continue to the next case with now c` copies of Gn�`+1, while
if ` = L then the process terminates, as the recurrence relation and our
definition of legality means we would replace this beginning string with c1Gn+
· · · + cLGn�L+1 with Gn+1, contradicting both the fact that we have a legal
decomposition and that our number is less than Gn+1.

Combining the above, we obtain the recurrence for {Hn} (notice that we have a
telescoping sum)

Hn+1 = c1(Hn �Hn�Z) + · · · + cL(Hn�L+1 �Hn�L+1�Z) + Hn�L+1�Z . (27)

Setting eHn+1 = Hn+1�Hn, we see eHn+1 counts the number of integers in [Gn, Gn+1)
with no gaps of length Z or more, and using (27) with n and n�1 gives us (27) with
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each Hk replaced with eHk. As { eHn} is a strictly increasing sequence, the largest
eigenvalue of its recurrence must be greater than 1. From the Generalized Binet
Formula expansion for Hn (see, for example, Theorem A.1 of [2]), there is some
constant ↵ 2 (0, 1) such that Hn�`�Z � ↵Hn�`. Letting

ec` =

(
c`(1� ↵) if 1  ` < L

cL if ` = L,
(28)

we find

eHn+1 < ec1
eH1 + · · · + ecL

eHn�L+1. (29)

Notice this is almost the same recurrence as that of Gn, the only di↵erence
being that at least one of the coe�cients ec` is smaller than c`. To prove { eHn}
grows exponentially slower than {Gn}, we instead study the sequence { bHn} which
satisfies the recurrence

bHn+1 = ec1
bHn + · · · + fcL

bHn�L+1, (30)

as eHn  bHn.
We use many standard properties of the Generalized Binet Formula expansions

below; see Theorem A.1 of [2] for statements and proofs. The solution to a linear
recurrence of fixed, finite length is of the form

�1,r1n
r1�n

1 + · · · + �1,0�
n
1 + · · · + �k,rknrk�n

k + · · · + �k,0�
n
k . (31)

As the ci’s are positive, there is a unique positive root � > 1 for {Gn}, and all
other roots are less than 1 in absolute value. Thus Gn = ��n +O(|nr�2|n) for some
0 < |�2| < � (if � = 0 then Gn is exponentially decaying). As all the coe�cients of
the recurrence for { bHn} are positive, there is also a unique root of largest absolute
value.

We claim ! < �. Clearly !  � as this sequence grows slower; if they were equal
then ! would be a root of both characteristic polynomials, and we would find

!L = ec1!
L�1 + · · · + ecL < c1!

L�1 + · · · + cL = !L, (32)

a contradiction. Thus bHn grows exponentially slower than Gn, which completes the
proof.


