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Abstract
A generalization of the Cauchy-Davenport Theorem to arbitrary finite groups was
suggested by Károlyi and proved independently by Károlyi and Wheeler. Here we
give a short proof of the following small extension of this result (which also applies to
infinite groups): If A,B are finite nonempty subsets of a (multiplicatively written)
group G then |AB| � min{p(G), |A| + |B| � 1} where p(G) denotes the smallest
order of a nontrivial finite subgroup of G, or 1 if no such subgroups exist.

1. The Result

The following famous theorem discovered independently by Cauchy [1] and Daven-
port [2] is one of the founding theorems in additive combinatorics and the starting
point for this work.

Theorem 1 (Cauchy-Davenport). Let p be prime and let A,B ✓ Z/pZ be
nonempty. Then the set A + B = {a + b | a 2 A and b 2 B} satisfies the following
bound:

|A + B| � min{p, |A| + |B|� 1}

We will be interested in more general groups G which we write multiplicatively.
If A,B ✓ G then we define AB = {ab | a 2 A and b 2 B}, and for g 2 G we
abbreviate {g}A by gA and A{g} by Ag. Following Károlyi we will generalize the
above theorem to arbitrary groups G by giving a similar lower bound on |AB| except
with “p” replaced by the parameter p(G), which we define to be the order of the
smallest nontrivial finite subgroup of G, or 1 if no such subgroups exist. Namely,
we prove the following.

Theorem 2. If A,B are finite nonempty subsets of G then

|AB| � min{p(G), |A| + |B|� 1}.

The restriction of this theorem to finite groups gives the result of Károlyi [3] and
Wheeler [5]. Interestingly, these authors used very di↵erent methods to achieve their
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results: Károlyi used group extensions (and also generalized Vosper’s Theorem)
while Wheeler utilized the Feit-Thompson Odd Order Theorem and the structure
of solvable groups. Our approach is based on a transform which seems to have first
appeared in a paper of Kemperman [4] and is by comparison quite elementary.

Proof of Theorem 2. Suppose (for a contradiction) that the theorem is false and
choose a counterexample (A,B) so that:

1. |AB| is minimum,

2. |A| + |B| is maximum subject to 1,

3. |A| is minimum subject to 1 and 2.

Note that our assumptions imply |A|  |B| as otherwise the pair (B�1, A�1)
contradicts the choice of (A,B) (since |B�1A�1| = |(AB)�1| = |AB|). If |A| = 1
then |AB| = |B| = |A| + |B|� 1 giving us a contradiction. So |A| � 2 and we may
choose g 2 G \ {1} so that Ag \ A 6= ;. If Ag = A then A is a union of left hgi
cosets and we have the contradiction |AB| � |A| � p(G). It follows that Ag \A is
a proper nonempty subset of A. Next consider the two pairs of sets:

(A \Ag,B [ g�1B) (A [Ag,B \ g�1B)

It follows from basic principles that the product set associated to each of these pairs
is a subset of AB (ex. if x 2 A[Ag and y 2 B\g�1B then either x 2 A so xy 2 AB
or x 2 Ag so xy 2 Ag ·g�1B = AB). If B\g�1B = ; then we have the contradiction
|AB| � |(A\Ag)(B[g�1B)| � |B[g�1B| = 2|B| � |A|+ |B|. Therefore all four of
the sets appearing in our two pairs are nonempty. If |A[Ag|+|B\g�1B| > |A|+|B|
then the pair (A [Ag,B \ g�1B) contradicts the choice of (A,B) (this pair is also
a counterexample since |(A[Ag)(B \ g�1B)|  |AB| < min{p(G), |A|+ |B|� 1} 
min{p(G), |A [ Ag| + |B \ g�1B| � 1}). It follows from this and |A \ Ag| + |A [
Ag|+ |B[g�1B|+ |B\g�1B| = 2|A|+2|B| that |A\Ag|+ |B[g�1B| � |A|+ |B|.
However, now the pair (A\Ag,B[g�1B) contradicts the choice of (A,B) by similar
reasoning, and this completes the proof.
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