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Abstract
Making effective use of zero-free regions for the Riemann (-function and the com-
puted zeros of {(s), we give explicit bounds for some well-known sums and products
over prime numbers.

1. Introduction and Results

Explicit estimates in prime number theory have a long history, starting for the
modern part with the two seminal papers [22] and [23]. The main development since
then has been directed towards the Chebyshev )-function: verifying the Riemann
hypothesis up to large heights ([26], [10], [19]), getting estimates for ¢ ([24], [7],
[9]) or getting better infinite zero-free regions ([24], [13]). Related quantities like
> op<z 1/por [[,<,(1 —p~1) were considered only marginally. It may be surprising,
but it is not automatic to derive quantitatively good estimates for such “derived
quantities” from the estimates for the -function, as is explained in [5]. Recently
[21] dealt efficiently with >° _ A(n)/n and this work may be seen as continuing
this line of work. In passing we correct a mistake therein.
Here is one of our typical results:

Corollary 1. We have
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Z_:1og10gx+3+0*( 5 ) (xz > 1000)
<P log” x

and for x > 24284,

1 1
Z;zloglog:v—i—B—i—(’)*( )

3
o log” x



INTEGERS: 17 (2017) 2

Here and henceforth, f(z) = O*(g(x)) means |f(z)| < g(x).

This is to be compared with [23, (3.17),(3.18)] where the authors have the error
term 1/(210g2 z). We heavily rely on Pari/GP (see [25]) computations for small values
of the variable z. It is also of interest to get better error terms, even if large values
of the variable x are required, and in this direction we prove the following:

Corollary 2. When logxz > 4635, we have

(12T
' (log x)3/4 ’

1
Z— =loglogx + B+ OF

p<z

(1)

Such results are dependent on the size of the zero-free region for the Riemann
zeta function and may change if there are improvements on zero-free regions, so we
provide a result to reflect the size of the known zero-free region. Let us assume that
¢(s) does not vanish in the region

(ISs] = to)

where R > 0. For instance, thanks to [13], we can choose R = 5.69693 and ¢, = 10.

‘We use the notation 1
Az) = Z —. (2)
p<z p

Under such a hypothesis, we have the following:

Corollary 3. Forlogz > 814R, we have

1. 1
Az) =loglogz + B + O (1763 exp (— 1/ ﬂ))
Rilog x R

This is derived from our main theorem, which is the following:

Theorem 4. For x > exp(814R), we have

B W) —x L(Tx1076 2logx
A(x)-loglogx—kB—i—W—kO (Wexp(—\/ = ). (3)

For x > 2, we have

¥(z) — 1+1
Az) =loglogz + B + (z) — = —l—(’)*( + nga*(m)>
zlogx log” x

with

4. 2.84
45 + 284 +1.751 x 10712,
X

= 2Ly
o (X)) = ——=
\/E .’E%
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Proof of Corollary 3. This comes directly from (3) and a recent result of Dusart
(see [8, Theorem 1.1]) which says that, if logz > 70R, then

8 (logx 1 log
— — . 4
7r( R ) exp ( B @

‘W)w<

Using the value R = 5.69693 mentioned earlier then gives (1).

1.1. Eulerian Products

As an application of our estimates on A(z), we give explicit estimates for the (finite
Euler) products [],, (1 + ¢/p).

Theorem 5. Let € be a complex number with |¢| < 2. Then for © > exp(22), we

have
€ 0.841
I (1+5) = (ogey {1 0 (301}
p<a P log” x
where
oo N e”
e =D Y (-t —..
P n=2 np

The cases € = £1 are most commonly studied, with Mertens himself treating the
case e = —1 in [16], without giving explicit error terms. A preliminary form for this
result is found in [15]. One may compare this with the error term 1/(210g%z) given
in [23, Theorem 7] for the case e = —1. In [4] it is proved that the difference

1\ !

I | <1——) —e’logx
p

p<z

changes sign infinitely often. Similar products are studied in [2, 3], the latter dealing
with aspects other than explicit bounds.

1.2. Mertens Sums

We next study two closely related sums:

(@)= 3B g = 3 A

p<z p

We will content ourselves with giving explicit approximations for very large values
of x.
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Theorem 6. The following holds for logx > 814R:
Iz) — 21
T(x):logx—l—E—&-%-FO*(G.BXlOGeXp(— c;{g:c))
where B = —y — 307, 37 losp/pm = —1.332582275733221..."
Also, for all x > 2, we have
I(z) — 2.0494 4.5 1.838
ﬁr(a:):loga;JrEJrM O*( . —2+—+1.75><1012>
X xr2 xr3
Corollary 7. For x > exp(814R), we have
. log x T log
T(z)=logz+E+O" (1.6 —=) exp(— 7 ) )
O

Proof. One uses (4) in Theorem 6.

The value R = 5.69693 then gives the following corollary:

Corollary 8. For x > exp(2319), we have

Y(z) =logz+ E + OF (1.036(log:1:)1/4 exp (—1/0.175 logx)).

In [23, Theorem 6], we find an error term of 1/(210gz) for this sum. Landau [14,
x

§ 55] gives error terms of exp (— (log :E)lel) for both Y(z) and A(z).
Finally, we rectify the estimate for ¢(z) given in [21, Theorem 1.1]:

Theorem 9. When logx > 407R, the following holds:
0.05 21
) + O (6.4 x 10 % exp (— ,/%)).

o (Y

P(x) =loga — v+
Here ~y is the usual Euler-Mascheroni constant. Also, for all x > 2, we have

0047 | 1884 | o o
i

@(x)zloga:—“H—W%-(’)*( 7z

We find this sum for example in [1, Theorem 4.9] or [11, Theorem 424] in the

more rudimentary form ¢ () = log z + O(1).

Corollary 10. Forlogxz > 407R, we have
log x i exp (— logx)
R P R )

(z) =logz — v + O (1.6 (

1See [23, (2.11)] for the numerical value.




INTEGERS: 17 (2017) )

Proof. We use the estimate
0 < (z) — I(z) < 1.0012y/Z + 323 (2 > 0) (5)
(see [24, Theorem 6]) together with (4) and round off appropriately. O

One may also give an analogue of Corollary 8 for this function.

Notation. We have already introduced the symbols X, ¢) and Y. Following [21], by
f(z) = O*(g(x)) we mean |f(z)| < g(x). We define the following functions:
xP~1

J(x) = Zp:m, (6)
Pl

p
for x > 0 and m > 1. In both cases, the sum runs through all the nontrivial zeros
p of the the Riemann zeta function. It has been verified (see [10]) that at least the
first 10'3 zeros of ((s) lie on the critical line s = 1. Hence we may consider the
Riemann Hypothesis verified up to height Ty = 2.44 x 10'2. As mentioned earlier,
we also suppose that there is no nontrivial zero p = § + iy of {(s) satisfying
1 1
Rlog|y|

where R is a positive constant. For explicit computations, we will however assume

B>1—p(y) = ([7] > o), (8)

throughout that R > 1. We use ~v as the imaginary part of a nontrivial zero of (s)
and as the Euler-Mascheroni constant. This is unlikely to cause any confusion. The
symbols 1 and 9 always denote the Chebyshev functions, whereas we have defined
© in (8), abrogating its traditional use as the Euler totient. We follow other usual
number-theoretic conventions, such as writing s for a complex variable, etc. Further
notations will be introduced as necessary.

Organization of the paper. The results stated in Section 1 are not restated.
Section 2 is independent of other sections, and so may be read separately. The
theorems stated in Section 1 are proved in Section 3; only the proof of Theorem 5
there depends on Section 4 which comes after it. This last section consists mainly
of numerical computations (using Pari/GP) to bridge the gap between extremely
big values of x and bounded intervals. It uses the results stated in Section 1.

2. Lemmas on the Zeros of ¢{(s)

As is customary, N(T') denotes the number of zeros p = 5+ i~ of the Riemann zeta
function ((s) with 0 < v < T and 0 < 8 < 1. We have the following explicit form
of the von Mangoldt formula (see [20, Lemma 1]):
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Lemma 11. For T > 1000, we have

T

N(T)= N*(T)+ O*(0.67 log %) 9)
where T T T .
NAT) = g les o =50+ 5

We also quote [20, Lemma 2]:

Lemma 12. For m > 1 and T > 1000, we have

zp: Ivi“ = mwle (log £ + %) + (’)*(;ji (2log £ +1)).  (10)
[y[>T
We quote [21] for an estimate of J(x):
Lemma 13. We have
|J(z)| < % +1.75x 10712 (2 >2). (11)

Further, when logx > 40TR, we have the inequality

04 21
|J(z)] < %+6.4x10*6exp(—\/%). (12)

To give an estimate for S, (z), we follow the method of derivation of (12) in [21].
We need this:

Lemma 14. Letn > 1 andT > 1. Whenlogz > %anog2 T, we have the inequality

% g 4+ 2nlogT 2nlog
L(T.2)= [ 2 logtdt< 21081 —y/ . a3
( l‘) /T tn+1 0g — nQTf exp ( R ) ( )

When logz < %nR log? T, we have

1
)xiRlogT .

> e 44 2nlogT
L

Proof. We transform the integral by writing u = logt to

o log x
I,(T, x :/ exp (— — — nu)udu.
( ) log T ( Ru )

Now, this may be rewritten as
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The function

logz 1
- — - 14
exp ( T 3 nu) (14)
has a maximum at u = 22’% (which is greater than or equal to logT by assump-

tion) so we have

2n 1 o nu
I,(T,x) §exp(—1/ i Ogm)/ ue” 2 du
R logT
4+2n10gTe ( /2nlogaz)
= ——— — €X — —_— ).
n?Tz2 P R

The second assertion is obvious since then the function (14) is decreasing in the
interval of integration. O

Of course, the factor % in (14) may be replaced by any positive ¢ < 1; in that
case, (13) will become

1+ (1—e¢e)nlogT
In(tz—‘7 .’E) S (1 — 6)271,2T(176)n

enlogx
),

exp(—2 0

valid for logz > enRlog? T'. This is interesting if we want to gain in powers of T in
the denominator to the detriment of the factor of log x inside the exponential, and
vice versa. For example, by choosing € = %, we get that

16+ 12nlogT nlogx
——————exp(— )

1,(T.x) <
T.) 92T in R

when logz > %nR log®T.

Lemma 15. For x > 1, we have

S (1) 067, To log2m, z—#T0) 1
Spu(2) < 200 g 20 _ = I(To, 15
(z) < NG +(T0 %5 " omx ) Ty ' om (To,z)  (15)
log x
F0.67(m+1+—22 V[ \(Ty, ).
( Rlog2T0) +1(To, @)

Moreover, if m < 3.6 x 1010 < (To IOg(QT"))/(l‘347rlog(§—g ), then we can ignore the
second term in (15), that is,

Sm (1)
NG

log x
R 1Og2 To

1
Sm(r) < + %Im(To,x) +0.67(m+1+ Vg1 (To, ).
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Proof. Since 1 — p is a nontrivial zero whenever p is, we have

e
Sm(@) = >~

2 1 x84 P71
Nz Z AmAT + Z AmAL
0<y<To v>To
Using (8), we easily see that 7 4+ 71 < 272 4+ 272 50 that

R | 1
Z%SEZW+Z

v>To v>To v>To

xftp(v)
,ym—i-l )

we can apply (10) to the first sum, and we evaluate the second sum as follows. Set
2 P®)

@m(t) = JmFI - We write

() e
Z ST _/TO N(t)gh, (t) dt — N(Tp)m(To)

v>To
o0

- /T (V" () = NIyt = | N (Ol (0) dt = N (T (To).

Integration by parts (of the middle term) and an appeal to the asymptotic (9) yields

x_‘P(A/) % e .
> L = (T~ N (To) + [ (N (0) = Nl (0) e
v>To v To
1 [ g=e® t
— ——— log — dt
27 g, tmHL & on
N a:_‘P(TO) log o2 0 aj_@(t)
- (v ) - ME o - /| e
log 1
+O0"(0.67m+ 14+ —=—)Ln11(To,z)) + O (—1I1n(Tp, x)).
(067 41+ 2 s (T, ) + O (5l (T )
The first assertion follows readily; the second is obvious in view of the first. O

Corollary 16. Forlogz > Rlog? Ty, we have

0.001460 1
Salw) £ = +2x 107 P exp (-2 )
For logz < Rlog® Ty, the following inequality holds:
.0014
Sy(x) < % +2x 10725~ ™R
1
+3.5x 10718(3 4 57 )z~ mw

S813R
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Proof. The number 0.001460 comes from a Pari/GP computation making use of
the file of the first 100000 zeros of {(s) provided by [17] (see also [18]); we only
need to use the first few thousand zeros to get a 5-digit precision (in fact, we
have used the first 20000 zeros and get 0.00145909... Since the 200015 zero has
v = 18047.13453033... and 1/4* is then about 1.7 x 10713, we do not run the risk of
committing a significant error, given the 28-digit precision in Pari/GP). U

Note that the equation (10) and our evaluation of Sy, (z) prove that for small z,
one may profitably use the bound given in the following:

Lemma 17. For x > 1, we have the inequality

S, (1) 1 T, 1 0.67 To
S 2 )4 ———(2log == +1).
(@) = =05 gy 198 35 ) + et (Glog g 1)
This gives, in particular, that
0.001460
So(x) < — +37x107% (z>2). (16)

Finally, we will extensively use the following formula ([20, Lemma 4]) which re-
lates important functions of prime numbers with the nontrivial zeros of the Riemann
zeta function:

Lemma 18. Let g € Cta,b] with 2 < a < b < +oo. Then we have
b byp b
[ wo-naa==3 [ Syt [ og2m—h1oe -1 2)gl0)at,
a p a a

where the sum runs through all the nontrivial zeros of the Riemann zeta function.

3. Proof of the Theorems
Proof of Theorem 4. We easily see, using (Stieltjes) integration by parts, that
T odo(t Y *1+4logt
Az) = / UG +/ T8yt at
59— tlogt  zlogz 2 t2logt

Hax) — > 1+logt
_— = ——(9(t) —t)dt 1
zlogx /g; t210g2t( =1 (17)

=loglogx + B +

where

1 > 1+logt
Bz——lolo?—i—/ ——(0(t) —t)dt
gz o8lo ; tQIOth( (t)—1)

1. 1
:’erXp:{log(lf;?)JrE}

=0.261497212847643 . ..
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is called the Meissel-Mertens constant; see [23, (2.10)] for the numerical value and
[12, p. 23] for the second line. Here + is the Euler-Mascheroni constant. The integral
n (17) is

/Oo Lrloet huy

t2log? t
* 1+ logt /°°1+1ogt
= ———(¥(t) — ¥(t))dt ———(¢(t) — t) dt. 18
[ HUCRTOL T e SEORE (18)

Since we know that (see [24, Theorem 6])
0 <1p(t) —O(t) < 1.0012vE+ 35 (t > 0),

we have

> 1+ logt 2.0024 9 (1+logz
“ T p(t) — 9(1)) dt < + )= 19
/m t2log? t (b(t) = vty de < ( Ve 2x§) log® z (19)

which gives an explicit estimate for the first integral in (18). In order to estimate

the second integral, we use Lemma 18 with g(t) = tl;qlogt to get
Y 2
1+ logt 77" 1+ logt
[ ewo-ne=-x [ a
z t?log“t P log t

1+logt

dt. 20
t21log t (20

+/ (log 2 — Llog(1 — t2))

We easily see that

Y
/ 1+logtdt< 1+logz
xT

2log’t  ~ xzlog’z
and
Y Y —2
1+ logt 1+1 log(1—1¢
A e e et
" t2log” t log“z J. t

1—|—10g:r1 Y—i—l_’_1 x—1+11 Y?2-1
=—F(log=——+1o —log ——
o2z \ SY—1 ®ry1 'y % v?
1 a2-1 2 2)

——lo +-—-=

z BT 2 z Y
We would like to send Y to infinity; for this, it suffices to prove the absolute con-
vergence of all the sums and integrals in (20). First of all, integration by parts
gives

Ytp_21—|—logt _ 1+logY yr-1 1+logx zP!
/l p log?t T log?y plp—1) logZz p(p—1)
Yoor=2 24 logt
/m plp—1) log*t
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This last integral is clearly absolutely convergent and since we know that the sum
> o m converges absolutely, we can let Y tend to infinity on the right of (20)
and on the left as well. We thus obtain

*1+logt 1+logx P~ / tP=2 2+ logt
———(((t) —t)dt = dt
/x t2log?t W) =1 log? z Z -1) Z —1) logt

1+1
fo log(2me)).
zlog” x

©  tr=2 24 logt oo tp2 > 34+1
/ o8 dt:—z/ (/ T8 qu) at
« Plp—1) log’t = pPlp=1"Jy wulog'u
*©3+1 voopp2
:—2/ * Ofu(/ dt) du
» ulogtu *J, p(p—1)

oo 1 p—1 _ ,.p—1
+ wulogtu  plp—1)

+ O*(

Now,

The absolute value of the left member is therefore

43:5 1 / 3+logu 22771 24 logx
)2| wloghu \p(p —1)?] log®x
< 4 +2 logx xP-t
g’z |y|*
Using this and (18) in (17) we get
Iz —
Az) =loglogx + B + Vo) =@
zlogx
141 4+ 21
IR )+ 0 (T 50))
log™ x log” x
. ,2.0024 9 log(2me)\ 1 4+ log x
ror(( g+ BT LT 0ET),
Vi 213 T log” x

This is valid for any x > 2.
Lemma 13 and the estimate (16) give

Ha) —x 1+logz
log1 B+ — | 21
M) =loglogz + B + rlogz +0 ( o = a(x)) (21)
L[4+ 2logz 0.001460
+o( W

+37x10°% )
log3 z )

for all z > 2, where
2.0494 4.5 2.84

—+175 10712
NG + - . = +

a(z) =
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Retaining only the biggest terms and rounding off appropriately gives the first
statement of the theorem. For bigger values of x, we use Lemmas 13-15 and the
fact that

2.0494 9 n log(27re)) 1+logx < 3 1+logx _ 1.09

( NG 273 x logz ~ Vzlogz’ log’x ~ logz
4+ 2logx 2.36
3 S
log” x log” x
as soon as = > 74000. The proof is complete. O
Proof of Theorem 5. Let us put 9 (x Z log(1 + ) for 0 < |e| < 2. We have
p<z

n=2 Tlpn
so that
dielw) = @) = () + DD (1) (22)
p>x n=2 P
with

ZZ ) [ "

p n=2

The sum in (22) is easily seen to be less than u log - 1‘ - Thus

le] x—1

[ele) — eA) ~7(0)] < Sh1og T2

€]

Taking exponentials and using our estimates on A(x) in Corollary 20 (below), we
obtain the result. If necessary, one may employ elementary inequalities, such as

I+t <l+et (0<te<l),

and so on, in order to obtain the form we have given of the error term. The theorem
is stated with an error term of O(1/10g? z) for convenience, although one may state
it for error terms based on other functions, such as the one in Corollary 3. Also,
for smaller values of  one may apply the results in Corollary 20. O

Proof of Theorem 6. We use the same procedure as in the proof of Theorem 4; here
the functions involved are even simpler. In effect,

T(x)z/xdﬁ—(t) M—&-/xﬁ(t)dt

t x

:logx+E+ (z) /7’[} dt / 1/)
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and this last integral is the same as the one occurring in [21, Proof of Lemma 2.2];
the result follows immediately. See also the proof of Theorem 9 which we have given
below. 0

Proof of Theorem 9. We proceed again by integration by parts:

oy = [ ), [0,

- t T 2 t2

:log:c—wr@— X ap(t) —t

P(z) =

where

7:10g2—1—/ w(tt)z_tdt
2

is Euler’s constant (see [14, § 55]). Proceeding as in [21, Proof of Lemma 2.2], we

get ( ) )
Uty e, BE
/w 2 dt = J(x) .
with
B(z) = ;10g (iti) +log (1 —~ %) — log(2n) — 1. (23)
Thus

() =10gw—v+W—J(x)+@.

Using our estimates (11) and (12) for J(z) and the fact that

|B(x)| < log(27) 4+ 14 log2 — 1.51log 3 = 1.88310581... (x> 2)
< 1.884,

we obtain the result. O

Remark. There is a minor error in [21] in the evaluation of the integral I in the
proof of Theorem 1.1. The estimates for J(z) given in [21, Proof of Theorem 1.1]
should be replaced by our Lemma 13. The expression for B(z) in [21, Lemma 2.2]
should also be replaced by our expression (23).

4. Results for Bounded Intervals

Corollary 3 gives good results for very large values of x. For example, when =z =
exp(20000), Corollary 3 says that the error in approximating Zp<$ 1/p by loglog z+
B is less than 1.33 x 1072?, which is very interesting to know, since we cannot easily
compute all primes < exp(20000). In this section, we give bounds for moderately
big values of x. We first state a corollary of Theorem 4 for big z:
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Corollary 19. For x > exp(4635), we have

0.21
)\(gc):loglogm—&—B—i—O*(I —).
og” x

Proof. This comes immediately from (3) and the estimate on |¥(x) — x| given in [6,

Théoréme 1.4].

Ln] b €n I
1] 18.42 | 1.186414000 x 10~3 | 0.522463178
2 19 | 9.416472060 x 10~* | 0.438928475
3 20 | 6.302000000 x 10~% | 0.314349592
4 21 | 4.197685060 x 10~* | 0.230174445
5 22 | 2.786520000 x 10~* | 0.165125235
6 23 | 1.843645000 x 10~* | 0.117791272
7 24 | 1.216119620 x 10~* | 0.083581394
8 25 | 7.998895869 x 10~° | 0.072862959
9 30 | 9.778040657 x 10~° | 0.024445214
10 50 | 9.049928595 x 108 | 0.000905011
11 100 | 8.842626429 x 10~% | 0.003537121
12 200 | 8.561316979 x 10~8 | 0.013698388
13 400 | 8.000089705 x 10~% | 0.028800954
14 600 | 7.442047763 x 10~ [ 0.074422230
15 1000 | 6.337118668 x 10~% | 0.107100266
16 1300 | 5.518819789 x 108 | 0.124177386
17 1500 | 4.980115883 x 108 | 0.161361428
18 1800 | 4.191337100 x 108 | 0.167660488
19 2000 | 3.674711889 x 10~ | 0.194401521
20 2300 | 2.917036000 x 10~3 | 0.182325692
21 2500 | 2.439460000 x 10~8 | 0.184497402
22 2750 | 1.876943507 x 10~ | 0.168940671
23 3000 | 1.376020000 x 10~8 | 0.168583894
24 [ 3500 | 6.165300000 x 102 | 0.098672807
25 4000 | 2.405714403 x 109 | 0.053180897
26 | 4700 | 1.734200000 x 102 | 0.000087114
27 | 10000 | 6.228800000 x 10~ 8 | 0.000338143

28 | 20000 | 2.229400000 x 10~2° —

n by €n Mn

Table 1: |A(z) —loglogz — B| <

for x > ebn.

We now determine the constants required for smaller values of x in order to get
an error term of O (Y/10g®). For this, we use the second assertion of Theorem 4

log3 x

g;" for e < 2 < ePr+t and |Y(z) — 2| < €ux
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together with [6, Table 1.1] and [8, Table 2]. Using the inequality (5) and (21), we
obtain

1 ,1.0012 3 1+ logx

Mz) —logl —-Bl < —(———~ + — —_—

|A(z) — loglog |_log33( N er% +e)+ long
4421 .0014

+ ogas(() 00 604_3.7>< 10_25)7

NG

, where the € are as in the aforementioned tables. A Pari/GP
computation then gives the inequalities

A(@) ~logloga — B| < 5 (exp(by) < = < exp(bus))
og” x

a(z)  (24)

log® x

valid for x > eb

where b,, €, and the corresponding 7, are tabulated in Table 1. Note that b, and
€, are correlated by the inequality

[p(x) — 2| < ez (x> exp(by)).

Also, we observe that 7, need not decrease with increasing b, as is clear from (24).
We also give the following short-interval result as a curiosity and to complement
Table 1 (this table starts from z = 108):

Corollary 20. We have the following bounds in the indicated intervals:

1.
Az) =loglogz + B +O*< 835) (2 <z <10),
log” x
3.690
Az) =loglogx + B + (’)*( 3 ) (x > 10),
log” x
0.820
Az) =loglogz + B + O*( 3 ) (z > 50000),
log” x
. (0.210 . .
Az) =loglogz+ B+ O o? (x >2x10°% x ¢ [10°, exp(22))]).
og” x

Proof. Write f(z) = (A\(z) — loglogz — B)log®z for z > 2. We make a Pari/GP
computation of all f(k) for integers k in the range 2 < k < 10%. Table 2 gives the
minima m,, and maxima M,, attained by f(k) for & in the interval z,, < k < z,41.
The columns y,, Y, are the unique integers x,, < yn,Y, < z,41 for which the
quantities m,, = f(y,) and M,, = f(Y,) are the smallest and biggest, respectively.
The quantities m,, and M,, given are truncated after the sixth decimal digit without
rounding off. The value given for the last row corresponds to the number f(10%).
Also, our calculations show that f does not change sign in [2,10'8].

We remark that to find the maxima of f(z) for 4 < z < 10%, it is enough to
evaluate f(z) at integral and prime x, since f(z) decreases between two consecutive
primes, attaining its local maxima at primes (because the derivative f’(z) of f(x)
is negative as soon as x > 4). O
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L n ] 2o | Bn | Yo | | Yo| M|
1 2| 1.835 2 | 0.201485 7 | 1.834441
2 10 | 3.055 58 | 1.186615 73 | 3.054472
3 100 | 3.690 556 | 0.715234 113 | 3.689944
4 1000 | 2.247 1422 | 0.312136 1327 | 2.246529
) 5000 | 1.425 7450 | 0.356194 5881 | 1.424019
6 10000 | 1.270 19372 | 0.159575 10343 | 1.269310
7 20000 | 1.107 32050 | 0.187937 24137 | 1.106448
8 50000 | 0.820 69990 | 0.165231 59797 | 0.819324
9 100000 | 0.596 302830 | 0.067158 102679 | 0.595960
10 500000 | 0.343 643846 | 0.103429 617819 | 0.342335
11 700000 | 0.288 993820 | 0.085181 910229 | 0.287257
12 1000000 | 0.275 | 1090696 | 0.053584 | 1195247 | 0.274719
13 2000000 | 0.209 | 4409886 | 0.036799 | 2275771 | 0.208742
14 5000000 | 0.151 | 9993078 | 0.036926 | 5001779 | 0.150128
15 | 10000000 | 0.120 | 10219590 | 0.026636 | 12871811 | 0.119603
16 | 30000000 | 0.089 | 36917098 | 0.009107 | 30909673 | 0.088092
17 | 50000000 | 0.057 | 65404318 | 0.016282 | 51841303 | 0.056192
18 | 70000000 | 0.055 | 89823540 | 0.015339 | 76020569 | 0.054421
19 | 90000000 | 0.041 | 93798766 | 0.015401 | 97931143 | 0.040071
20 | 100000000 - -1 0.025190 - -

Table 2: |\(x) —loglogz — B| < IOZng for z, <z < xpiq.
We also read from the table that

0.009
log® «

|A(z) — loglogx — B| >

for 2 < x < 108, although such a lower bound cannot hold for all z, in view of
Corollary 3.

Finally, in view of our computations and theoretical results, the following result
is clear:

Theorem 21. For x > 24284, we have

1 1
Z—:loglogx—i—B—i-O*( 3 ) (25)
> log” x
pPsST
Indeed, our computation shows that (25) does not hold for & = 24283 but holds
for 24284 < 2 < 108, hence for all > 24284 in view of our theoretical results.
Corollary 1 can be read off immediately from our tables and other results of this

section.
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