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Abstract
Let R be the ring of algebraic integers of an algebraic number field K such that
the extension Q ✓ K is normal. Let P 0 = {⌫ 2 Z | ⌫ = p1p2 · · · ps with s 2
N and p1, p2, . . . , ps 2 P}, where P is the set of prime numbers in Z that remain
prime in R. We prove that if f and g are two polynomials in K[x] having no common
root, then there exist at most finitely many ⌫ 2 P 0 such that a(f + ⌫g) = u⌫v⌫ for
some a 2 Z, u⌫ , v⌫ 2 R[x] with deg u⌫ � 1,deg v⌫ � 1 and ⌫ divides the leading
coe�cient of u⌫ or ⌫ divides the leading coe�cient of v⌫ . Moreover, we extend this
result to polynomials in more than one indeterminates.

1. Introduction

Throughout this paper, let K be an algebraic number field which is a normal ex-
tension of degree n over Q and let R denote the ring of algebraic integers of K.
Then there exist exactly n distinct automorphisms � 2 G := Gal(K/Q), the Galois
group of K over Q. For � 2 G, let �̂ : K[x] ! K[x] be defined by

�̂ (a0 + a1x + · · · + amxm) = �(a0) + �(a1)x + · · · + �(am)xm

1The author is supported by the Research and Academic A↵airs Promotion Fund, Faculty of
Science, Khon Kaen University, Fiscal year 2016 (RAAPF), Thailand.

2The author is supported by the Center for Advanced Studies in Industrial Technology and the
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for all a0, a1, . . . , am 2 K and m 2 N [ {0}. Then �̂ is a ring isomorphism and
�̂(f) 2 R[x] for all f 2 R[x].

Let P be the set of prime numbers in Z that remain prime in R. It is well-known
that P is infinite if K is a cyclic extension of Q (see [5, p.136]). If f, g 2 K[x] are
relatively prime, by Hilbert’s irreducibility theorem, the irreducible polynomials
f + yg 2 K[x, y] remain irreducible in K[x] for infinitely many y = n 2 Z (see
[4]). In 2000, M. Cavachi, [2], made this property more precise by proving that if
f, g 2 K[x] are relatively prime, then f + pg are reducible in K[x] for at most a
finite number of primes p 2 P and then extended this result to polynomials in more
than one indeterminates.

In the present work, let

P 0 = {⌫ 2 Z | ⌫ = p1p2 · · · ps with s 2 N and p1, p2, . . . , ps 2 P}.

We extend the result of M. Cavachi by proving that if f and g are two polynomials
in K[x] having no common root, then there exist at most finitely many ⌫ 2 P 0 such
that a(f +⌫g) = u⌫v⌫ for some a 2 Z, u⌫ , v⌫ 2 R[x] with deg u⌫ � 1,deg v⌫ � 1, and
either ⌫ divides the leading coe�cient of u⌫ or ⌫ divides the leading coe�cient of v⌫ .
Moreover, we extend this result to polynomials in more than one indeterminates.

2. Main Results

To prove the main results, we start with the following two lemmas.

Lemma 1. If f 2 R[x], then Y
�2G

�̂(f) 2 Z[x].

Proof. Let G = {�1,�2, . . . ,�n}, f(x) = f0 + f1x + · · ·+ fmxm 2 R[x] with fm 6= 0
and

g =
Y
�2G

�̂(f).

Since f 2 R[x], we have �̂(f) 2 R[x] for all � 2 G. Thus g 2 R[x] is a polynomial
of degree mn, say g(x) = g0 + g1x + · · · + gmnxmn. Now for each ⌧ 2 G, we have

⌧̂(g) =
Y
�2G

⌧̂ (�̂(f))

= ⌧̂ (�1(f0)+�1(f1)x+· · ·+�1(fm)xm)· · · ⌧̂ (�n(f0)+�n(f1)x+· · ·+�n(fm)xm)
= (⌧ � �1(f0) + · · · + ⌧ � �1(fm)xm) · · · (⌧ � �n(f0) + · · · + ⌧ � �n(fm)xm)

=
Y
�2G

�̂(f)

= g,
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since G is a group. Consequently, for each i = 0, 1, . . . ,mn, we have ⌧(gi) = gi for
all ⌧ 2 G, and so all the K-conjugates of gi are equal. It follows that gi 2 Q for
all i = 0, 1, . . . ,mn (see [1, p.121]). But gi 2 R, so gi 2 Z for all i = 0, 1, . . . ,mn.
Therefore, g 2 Z[x] as desired.

Lemma 2. Let p 2 P and f, g 2 R[x]. If p | fg, then p | f or p | g.

Proof. Assume that p | fg but p - f and p - g. Let

f(x) = u0 + u1x + · · · + ukxk and g(x) = v0 + v1x + · · · + vrx
r

with u0, u1, . . . , uk, v0, v1, . . . , vr 2 R. Then all the coe�cients of fg are divisible
by p while there exist coe�cients of f and g which are not divisible by p. Let uj

be the first coe�cient of f which p does not divide. Similarly, let vi be the first
coe�cient of g which p does not divide. In fg, the coe�cient of xj+i is

cj+i = ujvi + (uj+1vi�1 + · · · + uj+iv0) + (uj�1vi+1 + · · · + u0vj+i).

Now, by our choice of uj , we have p | uj�1, p | uj�2, . . . , p | u0, so that p | (uj�1vi+1+
· · · + u0vj+i). Similarly, by our choice of vi, we have p | vi�1, p | vi�2, . . . , p | v0, so
that p | (uj+1vi�1 + · · · + uj+iv0). Since p | cj+i, we have that p | ujvi. As p is a
prime in R, either p | uj or p | vi, which is a contradiction.

It is well-known that every algebraic number is of the form r/s, where r is an
algebraic integer and s is a nonzero ordinary integer. Thus, for f, g 2 K[x] and
⌫ 2 Z, if

f + ⌫g = u0v0

in K[x] with deg u0 � 1 and deg v0 � 1, then we may take u = ↵u0 and v = �v0 for
some ↵,� 2 Z and u, v 2 R[x] with deg u � 1 and deg v � 1. Thus

↵�(f + ⌫g) = uv.

This implies that f + ⌫g is reducible in K[x] if and only if a(f + ⌫g) is reducible in
R[x] for some integer a.

The following theorem is our main result.

Theorem 1. If f and g are polynomials in K[x] having no common root and
deg g > deg f, then there exist at most finitely many ⌫ 2 P 0 such that a(f + ⌫g) =
u⌫v⌫ for some a 2 Z, u⌫ , v⌫ 2 R[x] with deg u⌫ � 1,deg v⌫ � 1, and either ⌫ divides
the leading coe�cient of u⌫ or ⌫ divides the leading coe�cient of v⌫ .

Proof. Let ⌦ be the set of integers ⌫ 2 P 0 such that a(f + ⌫g) = u⌫v⌫ for some
a 2 Z, u⌫ , v⌫ 2 R[x] with deg u⌫ � 1,deg v⌫ � 1, and either ⌫ divides the leading
coe�cient of u⌫ or ⌫ divides the leading coe�cient of v⌫ . Suppose that ⌦ is infinite
and we may assume that f, g 2 R[x].
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Let ⌫ 2 ⌦. Then we can choose a 2 Z as the smallest positive integer such that

a (f + ⌫g) = u⌫v⌫ (1)

for some u⌫ , v⌫ 2 R[x] satisfying the above conditions. We first prove that
g.c.d(a, ⌫) = 1. Let p 2 Z be any prime divisor of ⌫. Then p is a prime in R.
If p | a, then p | u⌫v⌫ . By Lemma 2, either p | u⌫ or p | v⌫ . We may assume that
p | u⌫ , so u⌫ = pu0⌫ with u0⌫ 2 R[x]. Then (a/p) (f + ⌫g) = u0⌫v⌫ , which contradicts
the minimality of a.

As n is the degree of the extension Q ✓ K, there exist exactly n distinct auto-
morphisms � 2 G and

an
Y
�2G

�̂(f + ⌫g) =
Y
�2G

�̂ (u⌫)
Y
�2G

�̂ (v⌫) . (2)

Let m (respectively k, r) be the degree of g (respectively u⌫ , v⌫) and gm (respectively
bk, cr) the leading coe�cient of g (respectively u⌫ , v⌫). Using (1), we get a⌫gm =
bkcr. By the properties of ⌫ in ⌦, we may assume bk = ⌫dk for some dk 2 R. Using
Lemma 1, the norm N of K over Q and the relation (2), we have

an(⌫nN(gm)xnm + · · · ) = (⌫nN(dk)xnk + · · · )(N(cr)xnr + · · · ) (3)

in Z[x]. Using g.c.d(a, ⌫) = 1 and the fact that the content of an(⌫nN(gm)xnm+· · · )
is the product of the contents of ⌫nN(dk)xnk + · · · and N(cr)xnr + · · · , we obtain

Q⌫ :=
Y
�2G

�̂(f + ⌫g) = R⌫T⌫ , (4)

where R⌫ , T⌫ 2 Z[x] possessing the properties that the leading coe�cient t⌫ of T⌫

divides N(gm) and deg T⌫ < mn.

Since deg g > deg f , we get limz!1
�̂(f(z))
�̂(g(z))

= 0 for all � 2 G. It follows that

for each � 2 G, there exists M > 0 such that���� �̂(f(z))
�̂(g(z))

���� < 1

provided that |z| > M . If z0 is a root of T⌫ , then it is also a root of Q⌫ . Conse-
quently,

�̂(f(z0)) + ⌫�̂(g(z0)) = �̂(f(z0) + ⌫g(z0)) = 0

for some � 2 G. Thus,
���� �̂(f(z0))
�̂(g(z0))

���� = ⌫ � 1 and so |z0|  M . This proves that the set

of all roots of T⌫ is bounded by M . Now, we have that T⌫ 2 Z[x], deg T⌫ < mn and
t⌫ can only take only a finite number of values. By Vieta’s relations for T⌫ , we deduce
that all the coe�cients of T⌫ are bounded by the same constant, not depending upon
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⌫. It follows that the set {T⌫ | ⌫ 2 ⌦} is finite because T⌫ 2 Z[x]. As ⌦ is infinite,
there exist distinct ⌫1, ⌫2, . . . , ⌫n+1 2 ⌦ such that T⌫1 = T⌫2 = . . . = T⌫n+1 . Let
z1 be a root of T⌫1 . Then z1 is also a root of Q⌫1 , Q⌫2 , . . . , Q⌫n+1 , which implies
that there exist � 2 G and i 6= j such that z1 is a root of both polynomials
�̂(f + ⌫ig) = �̂(f)+ ⌫i�̂(g) and �̂(f + ⌫jg) = �̂(f)+ ⌫j �̂(g). Let K0 be the splitting
field of Q⌫i over K. Since Q⌫i 2 Z[x], we get that �̂ (Q⌫i) = Q⌫i . Thus K0 is also
a splitting field of �̂ (Q⌫i) over K. It follows that there exists an automorphism
�̄ : K0 ! K0 which extends � : K ! K. By applying �̄�1, we get that

f(�̄�1(z1)) + ⌫ig(�̄�1(z1)) = 0, f(�̄�1(z1)) + ⌫jg(�̄�1(z1)) = 0

and so (⌫i � ⌫j)g(�̄�1(z1)) = 0. Since ⌫i 6= ⌫j , we obtain g(�̄�1(z1)) = 0 and so
f(�̄�1(z1)) = 0. This shows that �̄�1(z1) is a common root of f and g, which
contradicts the hypothesis and the theorem is proved.

Remark. The above proof works for any normal extension K of Q, but it is non-
void only if P is infinite. This happens if K is cyclic.

The following examples give all of the integers ⌫ in Theorem 1 for given polyno-
mials f and g in Z[x]. In this case, we may consider only a = 1.

Example 1. Let f(x) = 2311x2 + 184x + 2, g(x) = x3 be polynomials in Z[x] and
⌫ 2 N. Then

f(x) + ⌫g(x) = ⌫x3 + 2311x2 + 184x + 2.

Case 1 f(x) + ⌫g(x) = (⌫x + a)(x2 + bx + c) for some a, b, c 2 Z. Then we have

⌫b + a = 2311, ⌫c + ab = 184 and ac = 2.

If a, c < 0, then ⌫b = 2311 � a > 0 and so b > 0. Since ⌫c = 184 � ab > 0, we
have c > 0, a contradiction. Thus a, c > 0. If a = 2, c = 1, then ⌫b = 2309 and
⌫ +2b = 184. It follows that 2b2�184b+2309 = 0 and so b = 46± (1/2)

p
3846 62 Z,

which is impossible. Thus a = 1, c = 2 and we get ⌫b = 2310 and 2⌫ + b = 184. It
follows that b2 � 184b + 4620 = 0 and so b = 30 or 154. If b = 30, then ⌫ = 77, and
if b = 154, then ⌫ = 15. In both cases, we have that

f(x) + 77g(x) = (77x + 1)(x2 + 30x + 2)

and
f(x) + 15g(x) = (15x + 1)(x2 + 154x + 2).

Case 2 f(x) + ⌫g(x) = (x + a)(⌫x2 + bx + c) for some a, b, c 2 Z. Then we have

⌫a + b = 2311, c + ab = 184 and ac = 2.
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By the same proof as in Case 1, we deduce that a, c > 0. If a = 2, c = 1, then
b = 183/2 62 Z, which is impossible. Thus a = 1, c = 2 and so b = 182. It follows
that ⌫ = 2129, which is a prime number. In this case, we get that

f(x) + 2129g(x) = (x + 1)(2129x2 + 182x + 2).

From both cases, we deduce that ⌦ = {15, 77, 2129}.

Example 2. Let f(x) = 2312x2 +184x+2, g(x) = 2x3 be polynomials in Z[x] and
⌫ 2 N. Then f(x) + ⌫g(x) = 2⌫x3 + 2312x2 + 184x + 2.

Case 1 f(x) + ⌫g(x) = (⌫rx + a)(sx2 + bx + c) for some a, b, c, r, s 2 Z. Then we
have

⌫rb + as = 2312, ⌫rc + ab = 184, ac = 2 and rs = 2.

If a = �1, c = �2, r = �1, s = �2, then �⌫b = 2310 and 2⌫ � b = 184. It follows
that

b2 + 184b + 2 · 2310 = 0

and so b = �30 or �154. If b = �30, then ⌫ = 77. If b = �154, then ⌫ = 15. Thus,

f(x) + 77g(x) = (77x + 1)(2x2 + 30x + 2),

and
f(x) + 15g(x) = (15x + 1)(2x2 + 154x + 2).

If a = �2, c = �1, r = �2, s = �1, then �2⌫b = 2310 and 2⌫ � 2b = 184. It follows
that

2b2 + 184b + 2310 = 0

and so b = �15 or �77. If b = �77, then ⌫ = 15 and if b = �15, then ⌫ = 77.
Thus,

f(x) + 15g(x) = (30x + 2)(x2 + 77x + 1)

and
f(x) + 77g(x) = (154x + 2)(x2 + 15x + 1).

If a = �1, c = �2, r = �2, s = �1, then �2⌫b = 2311 and 4⌫ � b = 184. It follows
that

b2 + 184b + 2 · 2311 = 0

and so b = �92 ±
p

3842 62 Z, which is impossible. The remaining cases follow
similarly.

Case 2 f(x) + ⌫g(x) = (rx + a)(⌫sx2 + bx + c) for some a, b, c, r, s 2 Z. Then we
have

⌫sa + rb = 2312, rc + ab = 184, ac = 2 and rs = 2.
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If a = �1, c = �2, r = �1, s = �2, then b = �182 and so 2⌫ = 2130. Thus,

f(x) + 1065g(x) = (x + 1)(2130x2 + 182x + 2).

If a = �1, c = �2, r = �2, s = �1, then b = �180 and so ⌫ = 1952. Thus,

f(x) + 1952g(x) = (2x + 1)(1952x2 + 180x + 2).

If a = �2, c = �1, r = �2, s = �1, then �2b = 182 and so ⌫ = 1065. Thus,

f(x) + 1065g(x) = (2x + 2)(1065x2 + 91x + 1).

If a = �1, c = �2, r = 1, s = 2, then b = �186 and so �2⌫ = 2498, which is
impossible. The remaining cases follow similarly. From all cases, we deduce that
⌦ = {15, 77, 1065, 1952}.

Corollary 1. Let f and g be two polynomials in K[x] having no common root. If
deg g  deg f and f(0) = 0, then there exist at most finitely many ⌫ 2 P 0 such that
a(f + ⌫g) = u⌫v⌫ for some a 2 Z, u⌫ , v⌫ 2 R[x] with deg u⌫ � 1,deg v⌫ � 1 and
either ⌫ | u⌫(0) or ⌫ | v⌫(0).

Proof. Let

f(x) = f1x + f2x
2 + · · · + fkxk and g(x) = g0 + g1x + g2x

2 + · · · + gmxm,

with m  k and fk, gm, g0 6= 0. Taking x = 1/y and multiplying by yk, we obtain

F (y) : = ykf

✓
1
y

◆
= f1y

k�1 + f2y
k�2 + · · · + fk 2 K[y],

G(y) : = ykg

✓
1
y

◆
= g0y

k + g1y
k�1 + g2y

k�2 + · · · + gmyk�m 2 K[y].

Then deg G(y) = k > k�1 � deg F (y). As f and g have no common root, so F and
G have no common root. Thus, by Theorem 1, there exist at most finitely many
⌫ 2 P 0 such that

a(F (y) + ⌫G(y)) = U⌫(y)V⌫(y) (5)

for some a 2 Z, U⌫(y), V⌫(y) 2 R[y] with r := deg U⌫ � 1, s := deg V⌫ � 1, k =
r + s and either ⌫ divides the leading coe�cient of U⌫(y) or ⌫ divides the leading
coe�cient of V⌫(y). Taking y = 1/x in (5) and multiplying by xk, we obtain

a

✓
xkF

✓
1
x

◆
+ ⌫xkG

✓
1
x

◆◆
= xrU⌫

✓
1
x

◆
xsV⌫

✓
1
x

◆
.

Thus, for such integers ⌫, we get

a (f + ⌫g) = u⌫v⌫

for some u⌫ , v⌫ 2 R[x] with deg u⌫ � 1,deg v⌫ � 1 and either ⌫ | u⌫(0) or ⌫ | v⌫(0)
as desired.



INTEGERS: 17 (2017) 8

The following are examples of Corollary 1.

Example 3. Let f(x) = �66x4 � (2 + 2i)x2 and g(x) = 3x4 + 3(�1 + i)x2 � 4 be
polynomials in Q(i)[x]. Then f and g have no common root and

f(x) + 21g(x) = �3x4 + (�65 + 61i)x2 � 84
= �

�
x2 + 21(1� i)

� �
3x2 + 2(1 + i)

�
,

with a = 1, ⌫ = 3 · 7 and 3, 7 are primes in Z[i].

Example 4. Let f(x) = 47
3 x6 + 2

p
�3x5 +

�
8
3 + 4

p
�3

�
x4 +

�
�26 + 5

3

p
�3

�
x3 +

10
3 x2 and g(x) = �1

3x6 +
⇣

1�
p
�3

3

⌘
x3� 4

3x2�4x� 5
3 be polynomials in Q(

p
�3)[x].

Then f and g have no common root and

3
�
f(x) + 2 · 52g(x)

�
= �3x6 + 6

p
�3x5 +

�
8 + 12

p
�3

�
x4 +

�
24� 45

p
�3

�
x3

� 190x2 � 600x� 250

= (
p
�3x3 + 2x2 � 2 · 52)(

p
�3x3 + 4x2 + 12x + 5),

with a = 3, ⌫ = 2 ·52 and 2, 5 are primes in Z+Z
⇣
�1+

p
�3

2

⌘
, the Eisenstein domain.

We now extend the main result to more than one indeterminates.

Theorem 2. Let f, g 2 K[x1, x2, . . . , xm],m > 1, be two relatively prime polyno-
mials. If degx1

g > degx1
f , then there exist at most finitely many ⌫ 2 P 0 such

that a(f + ⌫g) = u⌫v⌫ for some a 2 Z, u⌫ , v⌫ 2 R[x1, x2, . . . , xm],degx1
u⌫ �

1,degx1
v⌫ � 1 and either ⌫ divides the leading coe�cient of u⌫ 2 R[x2, . . . , xm][x1]

or ⌫ divides the leading coe�cient of v⌫ 2 R[x2, . . . , xm][x1].

Proof. Let f, g 2 K[x1, x2, . . . , xm],m > 1, be two relatively prime polynomials.
Then

f = frx
r
1 + · · · + f1x1 + f0 and g = gsx

s
1 + · · · + g1x1 + g0,

where fi := fi(x2, . . . , xm), gj := gj(x2, . . . , xm) 2 K[x2, . . . , xm] for all i = 0, 1 . . . , r,
j = 0, 1 . . . , s and fr, gs 6= 0. Thus f, g 2 K[x2, . . . , xm][x1] have no common root.
It follows that the resultant Res(f, g) of f and g is given by

Res(f, g) = fs
r gr

s

Y
1ir,1js

(↵i � �j) 6= 0,

where ↵1, . . . ,↵r are the roots of f and �1, . . . ,�s are the roots of g in an algebraic
closure of K(x2, . . . , xm) and Res(f, g) 2 K[x2, . . . , xm] (see [3, p.119]). Then there
exist a2, . . . , am 2 K so that Res(f, g)(a2, . . . , am) 6= 0. Let F = f(x1, a2, . . . , am)
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and G = g(x1, a2, . . . , am). Then F,G 2 K[x1] and so ↵F,�G 2 R[x1] for some
↵,� 2 Z. Thus

Res(↵F,�G) = ↵s�rfs
r (a2, . . . , am)gr

s(a2, . . . , am)
Y

1ir,1js

�
↵0i � �0j

�
,

where ↵01, . . . ,↵
0
r are the roots of F and �01, . . . ,�

0
s are the roots of G in an algebraic

closure of K. It is clear that

Res(↵F,�G) = Res(↵f,�g)(a2, . . . , am) = ↵s�rRes(f, g)(a2, . . . , am) 6= 0,

which implies that F , G have no common root and the leading coe�cient of F
and G are fr(a2, . . . , am) 6= 0 and gs(a2, . . . , am) 6= 0, respectively. Then deg F =
degx1

f < degx1
g = deg G. If there are infinitely many ⌫ 2 P 0 such that

a(f + ⌫g) = u⌫v⌫

for some a 2 Z, u⌫ , v⌫ 2 R[x1, x2, . . . , xm] with degx1
u⌫ � 1,degx1

v⌫ � 1 and
either ⌫ divides the leading coe�cient of u⌫ 2 R[x2, . . . , xm][x1] or ⌫ divides the
leading coe�cient of v⌫ 2 R[x2, . . . , xm][x1], then for such ⌫, we obtain

b(F + ⌫G) = U⌫V⌫

for some b 2 Z, U⌫ , V⌫ 2 R[x1] with deg U⌫ � 1,deg V⌫ � 1 and either ⌫ divides the
leading coe�cient of U⌫ or ⌫ divides the leading coe�cient of V⌫ . This contradicts
Theorem 1.

3. Further Results

The condition that either ⌫ divides the leading coe�cient of u⌫ or ⌫ divides the
leading coe�cient of v⌫ , is essential in Theorem 1. To see this, it is enough to
consider f(x) = 1 and g(x) = x3 in Q[x]. Then

f(x) + k3g(x) = 1 + k3x3 = (1 + kx)
�
1� kx + k2x2

�
for all positive integers k.

In this section, we give some further results concerning the reducibility of f + ⌫g
that does not satisfy the above condition, where f, g are polynomials in Z[x] with
deg g = 2 or 3.

Proposition 1. Let f, g 2 Z[x] be such that g is monic, deg f < deg g = 2 and
f(x)+pqg(x) = pqx2+Ax+B with p, q, A,B 2 Z and pq 6= 0. Then f(x)+pqg(x) =
(px + a)(qx + b) in Z[x] if and only if

a =
A ±

p
A2 � 4pqB

2q
and b =

A⌥
p

A2 � 4pqB

2p
(6)

are integers.
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Proof. It is easy to show that if the integers a and b are as in (6), then f(x) +
pqg(x) = (px + a)(qx + b).

Conversely, assume that f(x)+pqg(x) = (px+a)(qx+b) for some a, b 2 Z. Then

f(x) + pqg(x) = pqx2 + (qa + pb)x + ab.

Thus A = qa + pb and B = ab. It follows that qa2 �Aa + pB = 0 and so (6) holds
as desired.

Example 5. Let f(x) = x � 2 and g(x) = x2 be polynomials in Z[x] and p =
3, q = 5. Since f(x) + 3 · 5g(x) = 15x2 + x � 2, we have A = 1, B = �2 and so
a = 1±

p
1+8·15
10 , b = 1⌥

p
1+8·15
6 . As a and b are integers, we obtain a = �1, b = 2.

By Proposition 1, we deduce that

f(x) + 3 · 5g(x) = (3x� 1)(5x + 2).

Proposition 2. Let f, g 2 Z[x] be such that g is monic, deg f < deg g = 3 and
f(x) + pqg(x) = pqx3 + Ax2 + Bx + C with p, q, A,B,C 2 Z and pq 6= 0. Then
f(x) + pqg(x) = (px + a)(qx2 + bx + c) in Z[x] if and only if

a = 3
p

↵ + 3
p

� +
A

3q
,

b =
2A
3p
�

3
p

↵q

p
�

3
p

�q

p
, (7)

c =
B

p
� 1

p

✓
3
p

↵ + 3
p

� +
A

3q

◆✓
2A
3p
�

3
p

↵q

p
�

3
p

�q

p

◆
,

are integers, where

↵ = �Q

2
+

r
Q2

4
+

P 3

27
, � = �Q

2
�

r
Q2

4
+

P 3

27
, (8)

with
P =

pB

q
� A2

3q2
, Q =

pBA

3q2
� 2A3

27q3
� p2C

q
. (9)

Proof. It is easy to show that if the integers a, b and c are as in (7), then f(x) +
pqg(x) = (px + a)(qx2 + bx + c).

Conversely, assume that f(x)+pqg(x) = (px+a)(qx2+bx+c) for some a, b, c 2 Z.
Then

f(x) + pqg(x) = pqx3 + (qa + pb)x2 + (ab + pc)x + ac.

Thus A = qa + pb,B = ab + pc,C = ac, and so

a =
A� pb

q
and ab = B � pc. (10)
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It follows that
a3 � A

q
a2 +

pB

q
a� p2C

q
= 0. (11)

Substituting a by y + A/3q, we get the equation

y3 +
✓

pB

q
� A2

3q2

◆
y +

✓
pBA

3q2
� 2A3

27q3
� p2C

q

◆
= 0,

which has y = 3
p

↵ + 3
p

� as a solution, where ↵,� and P,Q are defined as in (8)
and (9), respectively. Thus, a = 3

p
↵ + 3

p
� + A

3q is a solution of (11). Taking the
integer a in (10), we obtain b and c as in (7) as desired.

Example 6. Let f(x) = 16x2 � 25x + 1, g(x) = x3 + x be polynomials in Z[x] and
p, q be prime numbers. Then f(x) + pqg(x) = pqx3 + 16x2 + (pq � 25)x + 1. If

f(x) + pqg(x) = (px + a)(qx2 + bx + c)

for some a, b, c 2 Z, then

ac = 1, pb + aq = 16 and pc + ab = pq � 25.

If a = c = �1, then

pb� q = 16 and 25� b = p(q + 1). (12)

It follows that 0 < b  24 and more precisely, only b = 7 satisfies the two equations
in (12). Thus, 18 = p(q + 1), which implies that p = 3, q = 5. Hence

f(x) + 15g(x) = (3x� 1)(5x2 + 7x� 1) = 15x3 + 16x2 � 10x + 1.

If a = c = 1, then
pb + q = 16 and 25 + b = p(q � 1). (13)

It follows that b(p2 + 1) = 5(3p� 5) > 0 and so b > 0. Thus, 0 < q < 16 and more
precisely, only q = 3 satisfies two equations in (13). Then pb = 13, which implies
that p = 13, b = 1. Thus,

f(x) + 39g(x) = (13x + 1)(3x2 + x + 1) = 39x3 + 16x2 + 14x + 1.
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