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Abstract
We extend two combinatorial identitites published by Engbers and Stocker in 2016.
Among others, we prove that if b, n and r are integers such that b � 1 and n� 1 �
r � 0, then
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The special case b = 1 is due to Engbers and Stocker.

1. Introduction and Statement of Results

The work on this note is inspired by an interesting research paper published by
Engbers and Stocker [1] in 2016. The authors use combinatorial techniques to show
that the identities
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are valid for all integers n and r with n � 1 � r � 0. Actually, they prove a bit
more. They present summation formulas involving
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, where s is a natural

number. The identities (1) and (2) turn out to be the most attractive special cases.
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Here, we provide a di↵erent kind of extension. We study the sums
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where b, n and r are integers with n � 1 � r � 0. In the next sections, we use
the concept of generating functions to prove new extensions of (1) and (2). Our
extension of (1) reads as follows.

Theorem 1. Let b, n and r be integers with n� 1 � r � 0.
(i) If b � 1, then
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The case b = 1 gives (1) whereas the special cases b = 0 and b = �1 lead to the
elegant identities
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The sum
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is closely related to Sr,n(b). We apply
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Using (5) with b = 1, 0,�1, respectively, we conclude from Theorem 1 that the
following counterparts of (1), (3) and (4) are valid:
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In Section 3, we prove a generalization of (2).

Theorem 2. Let b, n and r be integers with n� 1 � r � 0.
(i) If b � 1, then
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(ii) If b  0, then
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In particular, the special cases b = 1 and b = 0,�1 lead to (2) and
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respectively.

2. Proof of Theorem 1
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Then, see [3, pp. 78, 81],
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Comparing the coe�cients of xnur, we find the identity

Sr,n(0) =
rX

k=0

✓
r

k

◆2✓k + n

2r

◆
=

✓
n

r

◆2

.
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we get

Sr,n(b) =
rX

k=0

✓
r

k

◆2 �bX
j=0

✓
�b

j

◆✓
k + j + n

2r

◆
(�1)�b�j

=
�bX
j=0

✓
�b

j

◆
(�1)�b�jSr,j+n(0) =

�bX
j=0

✓
�b

j

◆
(�1)�b�j

✓
j + n

r

◆2

.

This completes the proof of Theorem 1.

3. Proof of Theorem 2

As before, we consider the bivariate generating function
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The proof of Theorem 2 is complete.
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