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Abstract
We provide a simple proof for the Ramanujan-type congruence for (3, 7)-regular
bipartitions modulo 3 which was conjectured by Donna.Q.J.Dou. Furthermore, we
also find some new infinite families of congruences for (3, 7)-regular bipartitions
modulo 3.

1. Introduction

Throughout the paper, we assume that |q| < 1. For a positive integer n, we use the
standard notation

(a; q)0 = 1, (a; q)n :=
n�1Y
k=0

(1� aqk) and (a; q)1 =
1Y

k=0

(1� aqk).

A partition of a positive integer n is a finite non-increasing sequence of positive
integers �1,�2, . . . ,�r such that

Pr
i=1 �i = n. The �i are called the parts of the

partition. We shall set p(0) = 1 and for n � 1, let p(n) denote the number of
partitions of n. The generating function for p(n) is given by

1X
n=0

p(n)qn =
1

(q; q)1
.

1The author is thankful to the University Grant Commission, New Delhi for awarding UGC-
BSR Fellowship, under which this work has been done
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In 1919, Ramanujan [8], [9, pp.210–213] found nice congruence properties for p(n)
moduli 5, 7 and 11. Namely, for any nonnegative integer n,

p(5n + 4) ⌘ 0 (mod 5),
p(7n + 5) ⌘ 0 (mod 7)

and

p(11n + 6) ⌘ 0 (mod 11).

For a positive integer ` � 2, a partition is called `-regular if none of its parts is
divisible by `. Let b`(0) = 1 and for n � 1, let b`(n) denote the number of `-regular
partitions of n. Then the generating function for b`(n) is given by

1X
n=0

b`(n)qn =
(q`; q`)1
(q; q)1

.

A bipartition (�, µ) of n is a pair of partitions (�, µ) such that the sum of all the
parts equals n. A (k, `)-regular bipartition of n is a bipartition (�, µ) of n such
that � is a k-regular partition and µ is a `-regular partition. Let Bk,`(n) denote the
number of (k, `)-regular bipartitions of n. Then the generating function of Bk,`(n)
is given by

1X
n=0

Bk,`(n)qn =
(qk; qk)1(q`; q`)1

(q; q)21
. (1)

Recently, Lin [6, 7] discovered several infinite families of congruences for B7,7(n)
and B13,13(n) modulo 3. For example, he proved that for ↵ � 2 and n � 0,

B7,7

⇣
3↵n +

5 · 3↵�1 � 1
2

⌘
⌘ 0 (mod 3)

and

B13,13

⇣
3↵n + 2 · 3↵�1 � 1

⌘
⌘ 0 (mod 3).

Very recently, by using relations between certain cubic theta functions, Dou [4]
proved the following congruence for (3, 11)-regular bipartitions modulo 11.

Theorem 1. ([4, Theorem 1.1]) For all integers ↵, n with ↵ � 2 and n � 0, we
have

B3,11

⇣
3↵n +

5⇥ 3↵�1 � 1
2

⌘
⌘ 0 (mod 11). (2)

In the same paper, Dou presented the following two conjectures on B5,7(n) and
B3,7(n).
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Conjecture 1. ([4, Conjecture 1.1]) For any n � 0,

B5,7(7n + 6) ⌘ 0 (mod 7). (3)

Conjecture 2. ([4, Conjecture 1.2, Equations 1.9, 1.10, 1.11]) For any n � 0,

B3,7(An + B) ⌘ 0 (mod 2), (4)
B3,7(Cn + D) ⌘ 0 (mod 3), (5)
B3,7(En + F ) ⌘ 0 (mod 9), (6)

where (A,B) 2 {(14, 4), (14, 10), (16, 1), (28, 6), (32, 21)}, (C,D) = (4, 3), (E,F ) 2
{(7, 3), (7, 4), (14, 13), (21, 6), (21, 20), (25, 3), (25, 13), (25, 18), (25, 23)}.

In the final version of Dou’s paper [4], she made the following note on page
537.“We are informed that Conjecture 1.1 and Congruence (1.10) are both true and
have been verified by the referee using the theory of modular forms. It would be
interesting to give an elementary proof of Conjectures 1.1 and 1.2 by using other
identities in q-series”.

The main purpose of this paper is to highlight the importance of a q-series ap-
proach in settling part of Dou’s Conjecture 1.2, namely Equation 1.10 [4]. We also
establish some new infinite families of congruences modulo 3 for B3,7(n) which are
analogous to (2).

2. Basic Results

For |ab| < 1, Ramanujan’s general theta function f(a, b) is defined by [1]

f(a, b) =
1X

n=�1
an(n+1)/2bn(n�1)/2.

We need the following lemmas to prove our results:

Lemma 1. ([3, Theorem 2.2]). For any prime p � 5, we have

(q; q)1 =

p�1
2X

m=� p�1
2

m6=±p�1
6

(�1)mq
3m2+m

2 f(�q
3p2+(6m+1)p

2 ,�q
3p2�(6m+1)p

2 )

+ (�1)
±p�1

6 q
p2�1

24 (qp2
; qp2

)1, (7)

where the choice of the ± sign is made so that (±p� 1)/6 is an integer. Note that
(3m2 +m)/2 6⌘ (p2�1)/24 (mod p) as m runs through the range of the summation.

Lemma 2. ([5]). We have

(�q; q2)1(�q7; q14)1 � (q; q2)1(q7; q14)1 = 2q(�q2; q2)1(�q14; q14)1. (8)
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3. Main Results

In this section, we give a simple proof of (5) using q-series identities. We also prove
some infinite families of congruences for (3, 7)-regular bipartitions modulo 3. The
following lemma is the crux of Theorem 2 settling part of Dou’s Conjecture 1.2 [4].

Lemma 3. Let
P1

n=0 D(n)qn = (q7; q7)1(q; q)1. Then

(q7; q7)1(q; q)1 =
1X

n=0

D(2n)q2n � q(q4; q4)1(q28; q28)1. (9)

Proof. In view of (8), we see that

1X
n=0

(�1)nD(n)qn �
1X

n=0

D(n)qn

= (q14; q14)1(q2; q2)1
⇣
(�q7; q14)1(�q; q2)1 � (q7; q14)1(q; q2)1

⌘
= 2q(q14; q14)1(q2; q2)1(�q14; q14)1(�q2; q2)1
= 2q(q28; q28)1(q4; q4)1,

which implies that

1X
n=0

D(2n + 1)q2n+1 = �q(q28; q28)1(q4; q4)1. (10)

This completes the proof of Lemma 3.

Theorem 2. ([4, Conjecture 1.2, Equation 1.10]) For any n � 0,

B3,7(4n + 3) ⌘ 0 (mod 3). (11)

Proof. Taking k = 3 and ` = 7 in (1), we have

1X
n=0

B3,7(n)qn =
(q3; q3)1(q7; q7)1

(q; q)21
. (12)

By the binomial theorem, it is easy to see that for any positive integers k and m,

(qm; qm)3k
1 ⌘ (q3m; q3m)k

1 (mod 3). (13)

Using (13) in (12), we have

1X
n=0

B3,7(n)qn =
(q3; q3)1(q7; q7)1(q; q)1

(q; q)31
⌘ (q7; q7)1(q; q)1 (mod 3). (14)
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Using (9) in the above congruence, we obtain
1X

n=0

B3,7(n)qn ⌘
1X

n=0

D(2n)q2n � q(q4; q4)1(q28; q28)1 (mod 3). (15)

Since there are no terms q4n+3 in (15), we find that for any n � 0

B3,7(4n + 3) ⌘ 0 (mod 3).

Lemma 4. For any integers t, n � 0, we have

B3,7

⇣
4tn +

4t � 1
3

⌘
⌘ (�1)tB3,7(n) (mod 3). (16)

Proof. We will prove this lemma by induction on t. Congruence (16) is trivially
true for t = 0. Extracting the terms of the form q4n+1 on both sides of (15) and
then using (14), we obtain

1X
n=0

B3,7(4n + 1)qn ⌘ �(q7; q7)1(q; q)1 ⌘ �
1X

n=0

B3,7(n)qn (mod 3),

which implies that (16) holds for t = 1. Assume that (16) is true for t = m (m � 2).
Using (16) with t = m and (9), we have

1X
n=0

B3,7

⇣
4mn +

4m � 1
3

⌘
qn

⌘ (�1)m
⇣ 1X

n=0

B(2n)q2n � q(q4; q4)1(q28; q28)1
⌘

(mod 3). (17)

Extracting the terms involving q4n+1 in the above congruence, we obtain
1X

n=0

B3,7

⇣
4m(4n + 1) +

4m � 1
3

⌘
qn ⌘ (�1)m+1(q7; q7)1(q; q)1 (mod 3).

Using (14) in the above congruence and then equating the coe�cients of qn, we see
that (16) is holds for t = m + 1. By induction, we see that (16) is true for any
integer t � 0.

Theorem 3. For t � 0 and n � 0, we have

B3,7

⇣
4t+1n +

5⇥ 22t+1 � 1
3

⌘
⌘ 0 (mod 3), (18)

B3,7

⇣
7 · 4tn +

5⇥ 22t+1 � 1
3

⌘
⌘ 0 (mod 3), (19)

B3,7

⇣
7 · 4tn +

13 · 4t � 1
3

⌘
⌘ 0 (mod 3) (20)
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and

B3,7

⇣
7 · 4tn +

19 · 4t � 1
3

⌘
⌘ 0 (mod 3). (21)

Proof. From [2, Entry 17(v), p. 303], we recall that

(q; q)1 = (q49; q49)1

 
E(q7)
C(q7)

� q
A(q7)
E(q7)

� q2 + q5 C(q7)
A(q7)

!
,

where

A(q) :=
f(�q3,�q4)
(q2; q2)1

, E(q) :=
f(�q2,�q5)
(q2; q2)1

and C(q) :=
f(�q,�q6)
(q2; q2)1

.

Employing above identity in (14) and then extracting the coe�cients of q7n+r for
r 2 {3, 4, 6}, we find that

B3,7(7n + 3) ⌘ 0 (mod 3), (22)
B3,7(7n + 4) ⌘ 0 (mod 3), (23)

and

B3,7(7n + 6) ⌘ 0 (mod 3). (24)

Congruences (18)-(21) easily follows from (22)-(24), (16) and (5).

In the statement of the following theorem, we use the Legendre symbol
⇣

a
p

⌘
. Let

p � 3 be a prime. The Legendre symbol
⇣

a
p

⌘
is defined by

⇣a

p

⌘
:=

8><
>:

1, if a is a quadratic residue modulo p and a 6⌘ 0 (mod p),
�1, if a is a quadratic nonresidue modulo p,
0, if a ⌘ 0 (mod p).

Theorem 4. Let p � 5 be a prime such that (�7
p ) = �1. For n, t � 0, we have

1X
n=0

B3,7

⇣
p2tn +

p2t � 1
3

⌘
qn ⌘ (q; q)1(q7; q7)1 (mod 3). (25)

Proof. Form (14), it follows that (25) is true for t = 0. Suppose that (25) is true
for t = m (m � 1). Now, we consider the congruence

7 · 3m2 + m

2
+

3k2 + k

2
⌘ p2 � 1

3
(mod p), (26)
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where �p�1
2  k,m  p2�1

2 and
⇣
�7
p

⌘
= �1. The congruence (26) can be rewritten

as

(6k + 1)2 + 7(6m + 1)2 ⌘ 0 (mod p).

Since
⇣
�7
p

⌘
= �1, we find that

6k + 1 ⌘ 6m + 1 ⌘ 0 (mod p),

which implies that k = m = ±p�1
6 is the only solution of (26). Employing (7) in

(25) with t = m and then extracting the terms involving qpn+ p2�1
3 , we obtain

1X
n=0

B3,7

⇣
p2m

⇣
pn +

p2 � 1
3

⌘
+

p2m � 1
3

⌘
qpn ⌘ (qp; qp)1(q7p; q7p)1 (mod 3).

(27)

Replacing qp by q in (27), we see that (27) is true for t = m + 1.

Corollary 1. Let p � 5 be a prime such that (�7
p ) = �1. For n, t � 0, we have

B3,7

⇣
p2t+2n +

(3k + p) · p2t+1 � 1
3

⌘
⌘ 0 (mod 3),

for 1  k  p� 1.

Proof. Equating the coe�cients of qpn+k for 1  k  p � 1 in (27), we obtain the
required congruence.

During revision of our paper, we became aware of related work addressing all of
Dou’s conjectures submitted soon after the current article. The interested reader
may compare our results and techniques with those of Xia and Yao [11] and Wang
[10].

Acknowledgment The authors thank the referee for his/her many valuable sug-
gestions which enhanced the quality of presentation of this paper.
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