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Abstract
We discuss and prove several properties of the classical Stern-Brocot tree before
turning our attention to a natural generalization, in which the tree is allowed to be-
gin with arbitrary rational starting terms. We prove that regardless of the choice of
starting terms, the tree will include every rational number between them. Moreover,
this is true independently of the way in which fractions are reduced.

1. Introduction

The Stern-Brocot tree was discovered independently by Moritz Stern [1] in 1858 and
Achille Brocot [2] in 1861. It was originally used by Brocot to design gear systems
with a gear ratio close to some desired value (like the number of seconds in a day)
by finding a ratio of smooth numbers (numbers that decompose into small prime
factors) near that value. Since smooth numbers factor into small primes, several
small gears could be connected in sequence to generate an e↵ective ratio of the
product of their teeth, thus creating a relatively small gear train while minimizing
its error [7].

The Stern–Brocot tree begins with the values 0
1 and 1

0 . Subsequent levels of
the tree are formed by inserting the mediant fraction a+c

b+d between every pair of
neighboring values a

b and c
d , and the process is repeated to infinity.

There is a close connection between the Stern-Brocot tree and continued frac-
tions: for instance, both can be used to compute the best smaller-denominator
rational approximation to a given fraction [7]. The connection comes from the fact
that the mediant of consecutive terms in the Stern-Brocot tree can be expressed
as an operation on the continued fraction expansions, whereby continued fractions
allow for a precise determination of where in the Stern-Brocot tree a particular
fraction will appear [3]. Retracing the tree upward gives a series of progressively
worse rational approximations with decreasing denominators.

Comment. Stern and Brocot had inadvertently developed an elegant way to find
the best smaller-denominator rational approximation to a given fraction. It was
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known that continued fractions could be used for the same purpose [7], which sug-
gested a connection between the two. Indeed, it was later discovered that the medi-
ant could be expressed as an operation on continued fraction expansions, whereby
continued fractions provided a way to determine where in the Stern-Brocot tree a
particular fraction would appear [3]. Retracing the tree upward would then give a
series of progressively worse rational approximations with decreasing denominators.

There are many other topics related to the Stern-Brocot tree [4]. For instance,
Farey sequences (ordered lists of the rationals between 0 and 1 with denominator
smaller than n) can be obtained by discarding fractions with denominator greater
than n from the nth row of the left half of the Stern-Brocot tree [3]. In addition, the
radii of Ford circles vary inversely with the squares of the corresponding terms in the
left half of the Stern-Brocot tree [3]. Variants of the Stern-Brocot tree include the
Calkin-Wilf tree [5] (another binary tree generated from a mediant-like procedure,
which also enumerates the rationals) and Stern’s diatomic series [6], studied more
recently in [8]. The Stern-Brocot tree has also been used to provide elementary
proofs of such results as Hurwitz’ theorem [9].

We begin this paper with a brief discussion of the classical Stern-Brocot tree
and give proofs of several of its properties. In Section 2 we cover the symmetry
of the tree, certain algebraic relations its elements satisfy, and they way its terms
reduce. We then introduce the notion of the cross-di↵erence and analyze its role in
the reduction of fractions, en route to a proof of Theorem 1 – that every rational
number between 0 and 1 appears in the Stern-Brocot tree.

In Section 3 we present a variant of the original Stern-Brocot tree, to which the
bulk of the paper is devoted. We consider starting with terms other than 0

1 and
1
0 , and ask which properties of the original tree extend to the general setting. In
particular, we prove that regardless of the choice of starting terms, every rational
number between the two starting terms appears in the tree. We do this first for
special values of the cross-di↵erence with Theorems 2, 3, and 4, before establishing
the general result as Theorem 7. As part of the proof, we develop the important
idea of tree equivalence.

2. The Classical Case – Notation and Definitions

In number theory, the Stern-Brocot tree is an infinite complete binary tree in which
the vertices correspond precisely to the positive rational numbers. The Stern-Brocot
tree can be defined in terms of Stern-Brocot sequences as follows. The 0th Stern-
Brocot sequence, which we denote by SB0, is

�
0
1 , 1

0

�
. In general, SBi denotes the

ith Stern-Brocot sequence and is formed by copying SBi�1, inserting the mediant
a+b
c+d between every pair of consecutive fractions a

b , c
d , and reducing all fractions to
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lowest terms. We have,

SB0 =
0
1
,

1
0

SB1 =
0
1
,

1
1

,
1
0

SB2 =
0
1
,

1
2

,
1
1
,

2
1

,
1
0

SB3 =
0
1
,

1
3

,
1
2
,

2
3

,
1
1
,

3
2

,
2
1
,

3
1

,
1
0
.

In bold are the mediant fractions that have been inserted, which are the vertices of
the Stern-Brocot tree. Thus the ith level of the Stern-Brocot tree is SBi \ SBi�1,
the fractions which appear for the first time in SBi. However, we will abuse the
notation slightly and use the term “tree” to refer to the collection of sequencesS

i SBi. The distinction is only semantic, but to be clear we refer to the SBi as
the “rows” of the Stern-Brocot tree (as opposed to levels).

Observe that the rows have reciprocal symmetry about their center; that is,
the jth term counted from the left is the reciprocal of the jth term counted from
the right [10]. In light of this, we will consider only the left half of the rows,
whose values are between 0 and 1 (inclusive) and which we will call Stern-Brocot
half-sequences. More formally, the Stern-Brocot half-sequence SBi is the sequence
{x 2 SBi+1|x  1}.

Finally, let the cross-di↵erence of two fractions a
b , c

d denote the quantity (bc�ad).
The following lemma is well-known [3]; we provide a proof because it illustrates a
method used later.

Lemma 1. For any two consecutive fractions a
b and c

d in SBi, their cross-di↵erence
equals 1.

Proof. The proof is by induction on the row number. The lemma obviously holds
for SB0 =

�
0
1 , 1

1

�
. Now suppose that it holds for the nth Stern-Brocot half-sequence,

and let a
b and c

d be any two consecutive fractions in SBn. Their mediant is equal
to a+c

b+d which can be written as
(a + c)/g

(b + d)/g

in lowest terms, where g = gcd(a + c, b + d). Yet we have

1 = (bc� ad) = (bc + ba)� (ad + ba) = (a + c)b� (b + d)a

where the first step follows from the induction hypothesis and the right-hand side is
divisible by g. It follows that g = 1, meaning a+c

b+d is in lowest terms. Thus, consec-

utive terms in SBn+1 are either of the form
⇣

a
b , a+c

b+d

⌘
or

⇣
a+c
b+d , c

d

⌘
for consecutive

a
b , c

d in SBn. We verify:

b(a + c)� a(b + d) = (bc� ad) = 1
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(b + d)c� (a + c)d = (bc� ad) = 1

and so in either case the cross-di↵erence is 1 – the induction is complete.

As a part of this proof, we have established the following corollary:

Corollary 1. Suppose the mediant of a
b , c

d is reduced by a factor of g. Then the
cross-di↵erence of the mediant with each of a

b , c
d is (bc� ad)/g, so that g|(bc� ad).

In particular, mediants in the Stern-Brocot tree never need to be reduced.

Let SBi[j] denote the j-th element in the i-th half-sequence. The following two
lemmas are quite straightforward [4]; their proofs are left as an exercise for the
reader.

Lemma 2. There are exactly 2i + 1 elements in SBi.

Lemma 3. We have SB[j] + SB[2i � j] = 1.

The next lemma will allow us to compute the terms of the Stern-Brocot half-
sequences explicitly. We remind the reader that Stern’s diatomic series, sometimes
called the Stern sequence, is the given by s(0) = 0, s(1) = 1, and for n � 2

s(n) =
⇢

s(n/2) if n is even
s((n� 1)/2) + s((n + 1)/2) if n is odd

The Stern sequence satisfies the identities s(2i+j) = s(j)+s(2i�j) = s(2i+1�j)[6].

Lemma 4. We have

SBi[j] =
s(j)

s(2i + j)
=

s(j)
s(j) + s(2i � j)

=
s(j)

s(2i+1 � j)
.

Proof. It is enough to show SBi[j] = s(j)/s(2i + j); the other assertions follow
immediately from the above identites. We proceed by induction on i. The base case
i = 0 is straightforward, so let us suppose the result holds for i = n and consider
SBn+1[j]. There are two cases here: either j is even, in which case SBn+1[j] was
copied from SBn[j], or else j is odd, in which case SBn+1[j] is the mediant of
SBn[bj/2c] and SBn[dj/2e].

If j is even, then j = 2j0 so we can write

SBn+1[j] = SBn[j0] =
s(j0)

s(2n + j0)
=

s(j)
s(2n+1 + j)

where the second step follows from the induction hypothesis, and the third step
from the fact that s(2k) = s(k).

If j is instead odd, then j = 2j0 + 1 so we have

SBn+1[j] = mediant(SBn[j0], SBn[j0+1]) =
s(j0) + s(j0 + 1)

s(2n + j0) + s(2n + j0)
=

s(j)
s(2n+1 + j)

.
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The second step follows from the induction hypothesis, and the third step uses the
fact that s(2k + 1) = s(k + 1) + s(k). The induction is complete, and the lemma
follows.

We can now apply these lemmas together to prove the following result; while the
theorem is well-known, the proof is di↵erent in spirit from the standard proofs. In
essence, it relies on the algorithm for writing a rational number as a finite contin-
ued fraction. More about the connection between continued fractions and Stern
sequences can be found in [6].

Theorem 1. All (reduced) fractions p
q 2 [0, 1] appear in some SBi.

Proof. Let us induct on the denominator q. The base cases q = 1 and q = 2 are
straightforward – the fractions 0

1 and 1
1 appear in SB0, whereas 1

2 appears in SB1.
Now suppose the result holds for all q  n, and let m

n+1 be any irreducible fraction
with denominator n + 1.

If m
n+1 < 1

2 , then consider the fraction m
n+1�m , which has denominator at most n.

Since gcd (m,n + 1�m) = gcd (m,n + 1) = 1, m
n+1�m appears in SBi for some i by

the induction hypothesis. Equivalently, by Lemma 4, there exist i, j with s(j) = m
and s(2i � j) = (n + 1�m). It follows that

SBi+1[j] =
s(j)

s(j) + s(2i � j)
=

m

m + (n + 1�m)
=

m

n + 1

as desired. If, instead, m
n+1 > 1

2 , then by Lemma 3 this fraction appears in SBi

if and only if n+1�m
n+1 appears in SBi. Since n+1�m

n+1 < 1
2 , we can reason as we did

above to finish.

By reciprocal symmetry it follows that the Stern-Brocot tree contains all the
positive rationals.

3. Arbitrary Starting Terms

One variant of the Stern-Brocot tree that arises quite naturally comes from varying
the two starting terms – that is, beginning instead with any pair of rational numbers.
The process of inserting mediants is exactly the same: the mediant fraction a+c

b+d is
reduced and inserted between the consecutive fractions a

b and c
d . Since the cross-

di↵erence (bc � ad) is no longer necessarily 1, the generalized tree may contain
reducible fractions, which can be reduced in many ways: to lowest terms, not at all,
or partially. Moreover, these choices can be made independently for all fractions. An
example of a tree with nontrivial reduction is the following, with reduced fractions
in bold:
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2
5
,

5
11

2
5
,

7
16

,
5
11

2
5
,

3
7

,
7
16

,
4
9

,
5
11

2
5
,

5
12

,
3
7
,

10
23

,
7
16

,
11
25

,
4
9
,

9
20

,
5
11

.

Let us introduce some notation. We use S0(a
b , c

d ) to stand for the sequence
�

a
b , c

d

�
,

and for i � 1 let Si(a
b , c

d ) denote a sequence formed by inserting mediants between
all consecutive pairs of fractions in Si�1(a

b , c
d ) and reducing fractions somehow. We

use the term “tree” to refer to T (a
b , c

d ) =
S

i Si(a
b , c

d ), and say that Si is the ith row
of T (a

b , c
d ). For example, the first few rows of T (2

1 , 3
1 ) are

S0

✓
2
1
,
3
1

◆
=

2
1
,

3
1

S1

✓
2
1
,
3
1

◆
=

2
1
,

5
2
,

3
1

S2

✓
2
1
,
3
1

◆
=

2
1
,

7
3
,

5
2
,

8
3
,

3
1

We shall investigate how these generalized Stern-Brocot trees behave and whether
they exhibit any of the properties of the original. Of particular interest to us is
whether every rational number between the two starting terms appears in some row.
We are also interested in the cross-di↵erence, as it is critical in determining how
values in the tree reduce. We now present three intermediate results, characterized
by the value of the cross-di↵erence.

Theorem 2. Suppose the fractions a
b and c

d satisfy (bc � ad) = 1. Then for any
tree T (a

b , c
d ), every rational number in the interval [a

b , c
d ] appears in T (a

b , c
d ).

Proof. Suppose x
y 2 [a

b , c
d ]. We can write

x

y
=

(1� �)a + �c

(1� �)b + �d

where 0  �  1 by virtue of the fact that a
b 

x
y 

c
d . In fact, we can solve for �

exactly:

� =
(bx� ay)

(bx� ay) + (cy � dx)
.
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Since (bc� ad) = 1, fractions are never reducible and so we can write down the
jth element of the ith row of T (a

b , c
d ) explicitly as

s(2i � j)a + s(j)c
s(2i � j)b + s(j)d

.

This follows by an identical induction to that in the proof of Lemma 4, but is also
intuitively clear: without reduction, the expression of SBi(a

b , c
d )[j] as a weighted

combination of a
b and c

d is the same as in the original Stern-Brocot tree. Now observe
that if we could write � = s(j)/s(2i � j) for some i, j then we would be done since
SBi(a

b , c
d ) = x

y by definition of � and choice of i, j. Yet this must be possible, since
0  �  1, together with the fact that � is rational, implies that � appears in the
original Stern-Brocot tree whence it must be of the form s(j)/s(2i� j) for some i, j
by Lemma 4. The result follows.

Comment. Proof. We know the result holds when a
b = 0

1 and c
d = 1

1 . Every
number in this range can be written as z

w+z for some choice of w, z. But this is just

0w + 1z
1w + 1z

which means we can obtain any combination of 2 weights that describe the contri-
bution of the two starting terms.

If bc�ad = 1 for some a, b, c, d, reduction of fractions never takes place, meaning
we only need to show that any number x

y with a
b 

x
y 

c
d can be written as

aw + cz

bw + dz

for appropriate choice of w, z, since under the transformation 0 ! a, 1 ! b, 1 ! c,
1 ! d, we can reduce the problem to the appearance of a particular fraction in
T (0

1 , 1
1 ) which we know happens.

We want
aw + cz

bw + dz
=

x

y
,

or equivalently,

(ay)w + (cy)z = (bx)w + (dx)z,

(bx� ay)w = (cy � dx)z

(bx� ay)(w + z) = [(bx� ay) + (cy � dx)]z,

z

z + w
=

(bx� ay)
(bx� ay) + (cy � dx)

,

meaning we can take w = cy�dx and z = bx�ay which are both positive integers.
Then the fraction x

y appears in T (a
b , c

d ).
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Let us consider a concrete example. Suppose we wanted to prove that 4
5 2 [23 , 1

1 ]
appears in T (2

3 , 1
1 ). Keeping the same notation, � = 2

3 since

4
5

=
1
3 (2) + 2

3 (1)
1
3 (3) + 2

3 (1)
.

Then 4
5 should appear in T (2

3 , 1
1 ) in exactly the same position as 2

3 appears in
T (0

1 , 1
1 ), which is easy to verify.

The idea of looking at weight combinations to turn questions about the appear-
ance of fractions in one tree into questions about the appearance of fractions in
another tree is important. Indeed, this can only be done when the trees are “equiv-
alent”, a notion we will make precise later. The main result depends heavily on this
principle.

Observe that Theorem 2 deals with the special case when (bc � ad) = 1. Since
fractions are never reducible in this case, there is a unique tree T (a

b , c
d ). For other

values of the cross-di↵erence, fractions may have non-trivial reduction. This means
the expression T (a

b , c
d ) is ambiguous if we have not specified a reduction scheme.

For the next two theorems, we assume we reduce fractions to lowest terms. This
will enable us to use Theorem 2 to prove that all rationals between the starting
terms appear in the tree.

For a prime p, let Sp
i (a

b , c
d ) denote the highest power of p which divides any of

the cross-di↵erences xjyj�1 � xj�1yj , where xj�1
yj�1

, xj

yj
are consecutive in Si(a

b , c
d ).

Also let vp(x) denote the highest power of p which divides x.

Theorem 3. Suppose a
b , c

d are fractions with v2(bc � ad) = m. Then S2
i (a

b , c
d ) 

max(m� i, 0) for all i.

For instance, consider T (1
9 , 1

1 ), where bc� ad = 8 = 23 – after 3 rows, all cross-
di↵erences become unity. Again, reduced fractions are indicated in bold:

1
9

1
1

1
9

1
5

1
1

1
9

1
7

1
5

1
3

1
1

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

Proof. We prove this by strong induction on m. When m = 0, (bc � ad) is odd;
by Corollary 1 all cross-di↵erences in T (a

b , c
d ) divide (bc� ad) so they are also odd.

Now assume the result holds for all k  `, and suppose v2(bc�ad) = `+1. Consider
the parity of a, b, c, d; since a

b and c
d are in lowest terms, a and b cannot both be
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even, nor can both c and d. Also, bc and ad must have the same parity since their
di↵erence is a non-trivial power of 2. If both are odd, then a, b, c, d must all be odd.
If both are even, either a, c are even and b, d are odd, or else a, c are odd and b, d
are even. In either case, the numerator and denominator of the mediant fraction
a+c
b+d are both even. Thus in the next row, we have

S1

⇣a

b
,
c

d

⌘
=

a

b
,
x

y
,
c

d

where x = (a+c)/g, y = (b+d)/g, and 2|g. By Corollary 1, (bx�ay) = (cy�dx) =
(bc� ad)/g so that S2

1(a
b , c

d )  `. The result now follows by applying the induction
hypothesis to the subtrees S0(a

b , x
y ) and S0(x

y , c
d ).

In particular, if (bc�ad) = 2m then every consecutive pair (xj�1
yj�1

, xj

yj
) in Sm(a

b , c
d )

satisfies xjyj�1 � xj�1yj = 1. Applying Theorem 2 to each such pair we have the
following.

Corollary 2. Let a
b , c

d be fractions satisfying bc� ad = 2m. Then the tree T (a
b , c

d )
obtained by reducing fractions to lowest terms contains every rational number in
[a
b , c

d ].

Replacing the prime p = 2 with p = 3 yields the following analog of Theorem 3.

Theorem 4. Suppose a
b , c

d are fractions with v3(bc � ad) = n. Then S3
2i(

a
b , c

d ) 
max(n� i, 0) for all i.

Proof. We prove this by induction on n. When n = 0, (bc � ad) is not divisible
by 3; by Corollary 1 all cross-di↵erences in T (a

b , c
d ) divide (bc � ad), so they must

also not be divisible by 3. Now assume the result holds for all k  `, and suppose
v3(bc� ad) = ` + 1. We do casework on the values of a, b, c, d modulo 3, using the
fact that 3|(bc� ad).

If bc ⌘ ad ⌘ 0 (mod 3), then 3 divides one of b, c and one of a, d. Since gcd(a, b) =
gcd(c, d) = 1, either 3|b, d or 3|a, c. Without loss of generality suppose 3|a, c. Then
3 - b, d meaning either b ⌘ �d (mod 3) or b ⌘ �2d (mod 3). In the first case,
a+c
b+d 2 S1(a

b , c
d ) is reduced by a factor g where 3|g; it follows by Corollary 1 that

S3
1(a

b , c
d )  ` so we can finish by induction on the subtrees. In the second case,

2a+c
2b+d , a+2c

b+2d 2 S2(a
b , c

d ) are reduced by factors g1, g2 where 3|g1, g2; it follows by
Corollary 1 that S3

2(a
b , c

d )  ` and again we finish by induction on the subtrees.
If bc ⌘ ad ⌘ 1 (mod 3), then (b, c), (a, d) (mod 3) 2 {(1, 1), (2, 2)}. If (b, c) and

(a, d) are the same modulo 3 – both either (1, 1) or (2, 2) – then 3|2a + c, 3|2b + d,
3|a+2c, and 3|b+2d. Thus 2a+c

2b+d , a+2c
b+2d 2 S2(a

b , c
d ) are reducible by a factor of 3, and

we reason as before. Instead, if one of (a, b), (c, d) is (1, 1) and the other is (2, 2),
then 3|a + c and 3|b + d, so the fraction a+c

b+d 2 SB1(a
b , c

d ) is reducible by a factor of
3. Either way, S3

2(a
b , c

d )  ` so we can invoke the induction hypothesis as before.
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Finally, if bc ⌘ ad ⌘ 2 (mod 3) then (b, c), (a, d) (mod 3) 2 {(2, 1), (1, 2)}. If
they are the same modulo 3 – both either (1, 2) or (2, 1) – then 3|a+c and 3|b+d so
a+c
b+d 2 SB1(a

b , c
d ) is reducible by a factor of 3. If, instead, one of (a, b), (c, d) is (1, 2)

and the other is (2, 1), then 3|2a+ c, 3|2b+d, 3|a+2c, and 3|b+2d so the fractions
2a+c
2b+d , a+2c

b+2d 2 SB2(a
b , c

d ) are reducible by a factor of 3. Once again, S3
2(a

b , c
d )  ` so

we are done by induction.

In particular, if (bc�ad) = 2m3n then combining Theorems 3 and 4 we conclude
that every consecutive pair (xj�1

yj�1
, xj

yj
) in Smax(m,2n)(a

b , c
d ) satisfies xjyj�1�xj�1yj =

1. Applying Theorem 2 to each such pair we see that the following holds.

Corollary 3. Let a
b , c

d be fractions satisfying bc�ad = 2m3n. Then the tree T (a
b , c

d ),
obtained by reducing fractions to lowest terms, contains every rational number in
[a
b , c

d ].

Comment. Let the width wi(T ) denote the maximum cross-determinant of any
consecutive pair in the i-th row of a tree T , we have proven that wi+1(T )|wi(T )
(Corollary 1). Moreover, we’ve shown that 2|wi(T ) implies wi+1(T ) < wi(T ) and
that 3|wi(T ) implies wi+2(T ) < wi(T ) when wi(T ) > 1.

The primes 2 and 3 are special; in general, non-trivial cross-di↵erences can persist
indefinitely in the tree. Take, for instance, p = 5, and consider the tree T (1

3 , 2
1 ),

displayed below with reduced fractions in bold. Despite many reductions, there
is always a consecutive pair of fractions whose cross-di↵erence is divisible by 5.
Lemma 5 makes this precise.

1
3

2
1

1
3

3
4

2
1

1
3

4
7

3
4

1
1

2
1

1
3

1
2

4
7

7
11

3
4

4
5

1
1

3
2

2
1

Lemma 5. Let p > 3 be a prime. For all i, there exists j so that the cross-
di↵erences of the consecutive pairs Si

�
0
1 , p

1

�
[2j], Si

�
0
1 , p

1

�
[2j+1] and Si

�
0
1 , p

1

�
[2j+

1], Si

�
0
1 , p

1

�
[2j + 2] are divisible by p. In particular, Sp

i (0
1 , p

1 ) � 1 for all i.

Proof. We use induction on i; the base cases i = 0 and i = 1 follow by construction
and from the fact that p 6= 2, respectively. Let us now suppose the result holds for
Sn(0

1 , p
1 ), i.e. there are consecutive fractions

u

v
,

(u + w)/g

(v + x)/g
,

w

x
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in Sn(0
1 , p

1 ) where u
v , w

x are consecutive in Sn�1(0
1 , p

1 ) and its mediant in Sn(0
1 , p

1 )
is reduced by some factor g which is coprime to p. In fact, since g divides the
cross-di↵erence of the starting terms (Corollary 1), we must have g = 1. We will
show that either u

v or w
x , along with u+w

v+x and their mediant with the former, are
the consecutive fractions we seek in Sn+1(0

1 , p
1 ).

Suppose otherwise, for the sake of contradiction. Then both the mediants u+(u+w)
v+(v+x)

and (u+w)+w
(v+x)+x would have to be reduced by a factor of (exactly) p. From p|(2u + w)

and p|(u + 2w) we conclude that u ⌘ w ⌘ 0 (mod p) since p 6= 3. Similarly,
v ⌘ x ⌘ 0 which gives the contradiction: we would have reduced the mediant u+w

v+w

by a factor of p in the previous row. Thus the induction is complete, and the result
follows.

We would now like to extend Theorems 2, 3, and 4 to all possible values of the
cross-di↵erence and all reduction schemes. That is, we wish to show that regardless
of the value of bc� ad and the way in which fractions are reduced, the tree T (a

b , c
d )

contains all rational numbers in [a
b , c

d ]. In order to do this, we will require the
notions of corresponding elements and equivalent trees.

Let e1 be an element of some tree T1 which occupies position j in row i of this
tree. For any other tree T2, we will call e1 and e2 2 T2 corresponding elements if
and only if e2 occupies position j in row i of T2.

Given two trees, we say they are equivalent if and only if all pairs of corresponding
elements have the same gcd and are reduced by exactly the same factor. We do
not insist this factor be the greatest common factor; here and afterwards, we allow
trees with any reduction scheme — i.e., any pattern of (proper) fraction reduction
that may vary from fraction to fraction. Equivalent trees are very closely related in
structure. In fact,

Theorem 5. Let T1 = T (a1
b1

, c1
d1

) and T2 = T (a2
b2

, c2
d2

) be two equivalent trees. If
e1 = p1

q1
2 T1 and e2 = p2

q2
2 T2 are corresponding elements, then e1 and e2 are

the same weighted combination of the initial terms in their respective trees. More
formally, let (x, y, g) be the unique triple of nonnegative integers satisfying gcd(x, y)
= 1, p1 = (a1x + c1y)/g, and q1 = (b1x + d1y)/g. Then p2 = (a2x + c2y)/g and
q2 = (b2x + d2y)/g.

This theorem can be viewed as a generalization of Theorem 2.

Proof. We argue by induction on the row number r. When r = 0, the conclusion is
obvious. Now let m1, n1 be arbitrary consecutive fractions in row r of T1, and let
m2, n2 be the corresponding elements in T2. It su�ces to show that the mediants of
these pairs are the same weighted combination of the initial terms in their respective
trees. We can write

m1 =
(wma1 + zmc1)/gm

(wmb1 + zmd1)/gm
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and
n1 =

(wna1 + znc1)/gn

(wnb1 + znd1)/gn

for the appropriate wm, zm, wn, zn, gm, gn. Taking the mediant, we arrive at

s1 =
([gnwm + gmwn]a1 + [gnzm + gmzn]c1)/gmgn

([gnwm + gmwn]b1 + [gnzm + gmzn]d1)/gngm
.

Note that the weights are no longer necessarily coprime; however, if we let gw =
gcd(gnwm + gmwn, gnzm + gmzn) then we can write

s1 =
([(gnwm + gmwn)/gw]a1 + [(gnzm + gmzn)/gw]c1)/(gmgn/gw)
([(gnwm + gmwn)/gw]b1 + [(gnzm + gmzn)/gw]d1)/(gmgn/gw)

where the weights are now relatively prime. Additionally, it is possible we reduce
s1. If g is the common factor we cancel, then s1 is a weighted combination of the
starting terms a1

b1
, c1

d1
precisely as follows:

s1 =
([(gnwm + gmwn)/gw]a1 + [(gnzm + gmzn)/gw]c1)/(gmgng/gw)
([(gnwm + gmwn)/gw]b1 + [(gnzm + gmzn)/gw]d1)/(gmgng/gw)

.

Now consider T2. By the induction hypothesis, m2, n2 are the same weighted
combination of the starting terms as m1, n1. We can therefore compute the mediant
of m2, n2 via analogous algebra:

s2 =
([(gnwm + gmwn)/gw]a2 + [(gnzm + gmzn)/gw]c2)/(gmgn/gw)
([(gnwm + gmwn)/gw]b2 + [(gnzm + gmzn)/gw]d2)/(gmgn/gw)

.

Once more, we must divide to account for the fact that the weights are not neces-
sarily coprime. Yet T1 and T2 are equivalent, so the factor by which T2 is reduced
is the same factor by which T1 was reduced – namely, g. Hence s2 is a weighted
combination of the starting terms a2

b2
, c2

d2
precisely as follows:

s2 =
([(gnwm + gmwn)/gw]a2 + [(gnzm + gmzn)/gw]c2)/(gmgng/gw)
([(gnwm + gmwn)/gw]b2 + [(gnzm + gmzn)/gw]d2)/(gmgng/gw)

.

Thus the mediants s1 and s2 are the same weighted combination of the initial terms
in their respective trees, and so the result follows from induction.

Immediately we have the following lemma:

Lemma 6. If T1 = T (a1
b1

, c1
d1

) and T2 = T (a2
b2

, c2
d2

) are equivalent trees and T2

contains all rational numbers in the interval [a2
b2

, c2
d2

], then T1 contains all rational
numbers in the interval [a1

b1
, c1

d1
].
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Proof. The tree T2 contains all rational numbers in the interval [a2
b2

, c2
d2

] if and only
if all possible weights (x, y) are attainable. Indeed, every rational number in this
interval can be written uniquely as a weighted combination of a

b , c
d , which means

if some weight is not attainable, the corresponding fraction does not appear. But
since T1 and T2 are equivalent, the set of weights attainable in T1 is exactly the set
of weights attainable in T2. Since all possible weights are attainable in T2, they are
all attainable in T1 and so T1 contains all rational numbers in [a1

b1
, c1

d1
].

Now that we can indirectly show that a tree T (a
b , c

d ) contains all rational numbers
in the interval [a

b , c
d ], we are motivated to establish equivalence between a general

tree T (a
b , c

d ) and some particularly malleable one.

Theorem 6. For any tree T (a
b , c

d ), there exists a positive integer V such that
T (a

b , c
d ) is equivalent to a tree of the form T (0

1 , D
V ), where D = (bc � ad) is the

cross-di↵erence of the pair a
b , c

d .

Proof. Suppose there existed a positive integer V such that gcd(ax+ cy, bx+dy) =
gcd(Dy, x + V y) for all x, y (although we consider only coprime x, y since clearly
both sides are linear). We claim it would follow that T1 = T (a

b , c
d ) and T2 = T (0

1 , D
V )

are equivalent when T2 is reduced according to the same reduction scheme as T1.
Indeed, if this condition is met then for any fraction in T1 which is reduced, it is
possible to reduce the corresponding fraction in T2 by the same factor so that the
reduction schemes can be kept consistent.

It remains only to show that some such V exists. Let the prime factorization of
D be pe1

1 pe2
2 · · · pek

k . By Corollary 1, if a fraction in a tree with cross-di↵erence D
reduces by some factor g, then g|D. Hence it is enough to show that there exists
some V such that for all pi, min(vpi(ax + cy), vpi(bx + dy)) = min(vpi(Dy), vpi(x +
V y)). We remind the reader that vp(x) denotes the p-adic valuation of x, i.e. the
highest power to which p divides it.

From the fact that pi|D and gcd(a, b) = gcd(c, d) = 1, it follows that pi divides
exactly zero, one, or two of a, b, c, d. However, pi cannot divide just one of a, b, c, d
lest it divide exactly one of ad and bc, contradicting the fact that it divides their
di↵erence D. We now consider the two cases separately.

Case 1: pi - a, b, c, d.
We claim we can take V ⌘ a�1c ⌘ b�1d (mod pei

i ). Let mi = min(vpi(ax +
cy), vpi(bx + dy)) and let ni = min(vpi(Dy), vpi(x + V y)). Since pmi

i divides any
linear combination of (ax + cy) and (bx + dy), in particular we have

pmi
i |b(ax + cy)� a(bx + dy) = (bc� ad)y = Dy =) vpi(Dy) � mi.

Suppose vpi(x + V y) < ei. Since a is not divisible by pi,

vpi(x + V y) = vpi(ax + aV y) = vpi(ax + cy) � mi.
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Of course, we can also reason in the opposite direction:

vpi(ax + cy) = vpi(ax + aV y) = vpi(x + V y) � ni

and
pni

i |(ab(x + V y)�Dy) = a(bx + dy) =) vpi(bx + dy) � ni.

Hence, unless vpi(x+V y) � ei, we have ni � mi and mi � ni whence mi = ni as
desired. If, instead, vpi(x + V y) � ei, we will show mi = ni = ei so that either way
the claim holds. Indeed, vpi(Dy) = ei since pi|y together with pi|(x + V y) would
imply pi|x which contradicts the fact that x, y are relatively prime. By hypothesis
vpi(x + V y) � ei, and so ni = min(vpi(Dy), vpi(x + V y)) = ei. Next observe
vpi(ax + aV y) � ei and vpi((aV � c)y) � ei so that vpi(ax + cy) � ei. Moreover,

a(bx + dy) = b(ax + cy)�Dy

whence vpi(bx + dy) = vpi(a(bx + dy)) � ei. However, Dy has pi-adic valuation
exactly ei, and is a linear combination of (ax + cy) and (bx + dy); it follows that
mi = min(vpi(ax + cy), vpi(bx + dy)) = ei, and so we are done with Case 1.

Case 2: Exactly two of a, b, c, d are divisible by pi.
Note that pi cannot divide a and b simultaneously, lest a

b would be reducible. Sim-
ilarly, pi cannot divide c and d simultaneously. It is also not possible that pi|a, d or
pi|b, c; in this case, exactly one of bc, ad would be divisible by pi which contradicts
the fact that their di↵erence D is divisible by pi. Thus either pi divides a and c, or
else pi divides b and d.

Without loss of generality suppose pi|a, c. Then in particular, b is invertible
modulo pei and so we can choose V ⌘ b�1d (mod pei

i ). If the choice of a�1c as
opposed to b�1d in Case 1 seemed arbitrary, it is because a�1c ⌘ b�1d (mod pei

i )
when they are both well-defined. Now suppose vpi(bx + dy) < ei. Since b is not
divisible by pi we have

vpi(bx + dy) = vpi(b
�1(bx + dy)) = vpi(x + V y).

In addition, vpi(ax + cy) = vpi(b(ax + cy)) where we can write

b(ax + cy) = a(bx + dy) + Dy.

It follows that vpi(ax+cy) = vpi(bx+dy). Finally, from vpi(Dy) � ei > vpi(bx+dy)
we conclude that

mi = vpi(bx + dy) = vpi(x + V y) = ni.

The only case left to consider is when vpi(bx + dy) � ei. Notice that both Dx
and Dy are linear combinations of (ax + cy) and (bx + dy), as we have

Dx = c(bx + dy)� d(ax + cy)
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and
Dy = b(ax + cy)� a(bx + dy).

Thus vpi(Dx), vpi(Dy) � mi. However, since x and y are relatively prime,

min(vpi(Dx), vpi(Dy)) = ei

so that mi  ei. From the fact that vpi(Dx), vpi(Dy) � ei it is apparent that
equality must hold, i.e. mi = ei.

Finally, we show ni = ei as well. First, vpi(x + V y) = vpi(bx + dy) � ei. If y is
not divisible by pi, then vpi(Dy) = ei and so ni = min(vpi(Dy), vpi(x + V y)) = ei

as desired. Yet if pi were to divide y, then pi|(x + V y) would force pi|x as well,
contradicting the fact that x, y are coprime. At last, we are finished with the proof
of Theorem 6.

We can take advantage of the linearity of the equivalent tree T (0
1 , D

V ) to prove
the following:

Theorem 7. If a
b , c

d are any two rational numbers, T (a
b , c

d ) contains all rational
numbers in the interval [a

b , c
d ].

Proof. We use strong induction on the value of the cross-di↵erence D = (bc� ad).
When D = 1, the claim is simply the statement of Theorem 2. Now suppose
that, for some n, the claim holds for all values D  n. To show that it holds for
D = n + 1, we will show that for all positive integers V and reduction schemes, the
tree T (0

1 , n+1
V ) contains all rational numbers in the interval [01 , n+1

V ]. By Lemma 6
and Theorem 6, this is su�cient.

Let x 2 [01 , n+1
V ] be an arbitrary rational. The value x

n+1 appears in the tree
T (0

1 , 1
V ) since this tree has cross-di↵erence 1. Suppose this value appears for the

first time in row k. For 0  i < k, define Li to be the greatest fraction less than
x

n+1 in row i of T (0
1 , 1

V ). Similarly, let Ri be the least fraction greater than x
n+1 in

row i of T (0
1 , 1

V ).
Suppose for the sake of contradiction that x does not appear in T (0

1 , n+1
V ). Let

us analogously define li to be the greatest fraction less than x in row i of T (0
1 , n+1

V )
and ri to be the least fraction greater than x.

At first, l0 = 0
1 and r0 = n+1

V while L0 = 0
1 and R0 = 1

V . We also know that

(li+1, ri+1) 2 {(li,mediant(li, ri)), (mediant(li, ri), ri)}.

If mediant(li, ri) is ever reduced, the cross-di↵erence of li+1 and ri+1 is reduced
by the same factor (Corollary 1) meaning it is strictly less than n + 1. But since
x 2 [li+1, ri+1] the inductive hypothesis implies x 2 T (li, ri) with the induced
reduction scheme, which is in turn contained in T (0

1 , n+1
V ).

Thus we can assume the mediant of li and ri never needs to be reduced for any
i. By the linearity of addition, a simple (finite) induction gives li = (n + 1)Li and
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ri = (n + 1)Ri. Since the mediant of Lk�1 and Rk�1 is x
n+1 by hypothesis, and

because the mediant of lk�1 and rk�1 does not have to be reduced, the mediant
fraction formed from lk�1 and rk�1 must be (n + 1)( x

n+1) = x, contradicting the
fact that x does not appear in T (0

1 , n+1
V ).

It follows by induction that every rational number in [a
b , c

d ] appears in T (a
b , c

d ),
regardless of the choice of a, b, c, d and independently of the reduction scheme.
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