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Abstract
Recently, Shen (2016) and Alanazi et al. (2016) studied the arithmetic properties
of the `-regular overpartition function A`(n), which counts the number of overpar-
titions of n into parts not divisible by `. In this note, we will present some new
congruences modulo 5 when ` is a power of 5.

1. Introduction

A partition of a natural number n is a nonincreasing sequence of positive integers
whose sum is n. For example, 6 = 3 + 2 + 1 is a partition of 6. Let p(n) denote the
number of partitions of n. We also agree that p(0) = 1. It is well-known that the
generating function of p(n) is given by

X
n�0

p(n)qn =
1

(q; q)1
,

where we adopt the standard notation

(a; q)1 =
Y
n�0

(1� aqn).

For any positive integer `, a partition is called `-regular if none of its parts are
divisible by `. Let b`(n) denote the number of `-regular partitions of n. We know
that its generating function is

X
n�0

b`(n)qn =
(q`; q`)1
(q; q)1

.

On the other hand, an overpartition of n is a partition of n in which the first occur-
rence of each distinct part can be overlined. Let p(n) be the number of overpartitions
of n. We also know that the generating function of p(n) is

X
n�0

p(n)qn =
(�q; q)1
(q; q)1

=
(q2; q2)1
(q; q)21

.
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Many authors have studied the arithmetic properties of b`(n) and p(n). We refer
the interested readers to the “Introduction” part of [6] and references therein for
detailed description.

In [5], Lovejoy introduced a function A`(n), which counts the number of over-
partitions of n into parts not divisible by `. According to Shen [6], this type of
partition can be named as `-regular overpartition. He also obtained the generating
function of A`(n), that is,

X
n�0

A`(n)qn =
(q`; q`)21(q2; q2)1
(q; q)21(q2`; q2`)1

. (1)

Meanwhile, he presented several congruences for A3(n) and A4(n). For A3(n), he
got

A3(4n + 1) ⌘ 0 (mod 2),
A3(4n + 3) ⌘ 0 (mod 6),
A3(9n + 3) ⌘ 0 (mod 6),
A3(9n + 6) ⌘ 0 (mod 24).

More recently, Alanazi et al. [1] further studied the arithmetic properties of A`(n)
under modulus 3 when ` is a power of 3. They also gave some congruences satisfied
by A`(n) modulo 2 and 4.

In this note, our main purpose is to study the arithmetic properties of A`(n)
when ` is a power of 5. When ` = 5 and 25, we connect A`(n) with r4(n) and r8(n)
respectively, where rk(n) denotes the number of representations of n by k squares.
The method for ` = 5 also applies to other prime `. When ` = 125, we show that

A125(25n) ⌘ A125(625n) (mod 5).

This can be regarded as an analogous result of the following congruence for over-
partition function p(n) proved by Chen et al. (see [4, Theorem 1.5])

p(25n) ⌘ p(625n) (mod 5).

When ` = 5↵ with ↵ � 4, we obtain new congruences similar to a result of Alanazi
et al. (see [1, Theorem 3]), which states that A3↵(27n + 18) ⌘ 0 (mod 3) holds for
all n � 0 and ↵ � 3.

2. New Congruence Results

2.1. ` = 5

One readily sees from the binomial theorem that for any prime p,

(q; q)p
1 ⌘ (qp; qp)1 (mod p). (2)
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Setting p = 5 and applying it to (1), we have

X
n�0

A5(n)qn ⌘
✓

(q; q)21
(q2; q2)1

◆4

(mod 5). (3)

Now let

'(q) :=
1X

n=�1
qn2

.

It is well-known that (see [2, p. 37, Eq. (22.4)])

'(�q) =
(q; q)21

(q2; q2)1
.

We therefore have

Theorem 1. For any positive integer n, we have

A5(n) ⌘
(

r4(n) if n is even
�r4(n) if n is odd

(mod 5). (4)

We know from [3, Theorem 3.3.1] that r4(n) = 8d⇤(n) where

d⇤(n) =
X

d|n, 4-d

d.

Let p 6= 5 be an odd prime and k be a nonnegative integer. One readily verifies
that

4k+3X
i=0

pi ⌘ (k + 1)
4X

i=1

i ⌘ 0 (mod 5).

Note also that d⇤(n) is multiplicative. Thus we conclude

Theorem 2. Let p 6= 5 be an odd prime and k be a nonnegative integer. Let n be
a nonnegative integer. We have

A5(p4k+3(pn + i)) ⌘ 0 (mod 5), (5)

where i 2 {1, 2, . . . , p� 1}.

Example 1. If we take p = 3, k = 0, and i = 1, then

A5(81n + 27) ⌘ 0 (mod 5) (6)

holds for all n � 0.
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We also note that if an odd prime p is congruent to 9 modulo 10, then 1 + p ⌘ 0
(mod 5). We therefore have A5(p(pn+ i)) ⌘ 0 (mod 5) for i 2 {1, 2, . . . , p� 1}. On
the other hand, if we require 1+ p+ p2 ⌘ 0 (mod 5), then (2p+1)2 ⌘ �3 (mod 5).
However, since (�3|5) = �1 (here (⇤|⇤) denotes the Legendre symbol), such p does
not exist. The above observation yields

Theorem 3. Let p ⌘ 9 (mod 10) be a prime and n be a nonnegative integer. We
have

A5(p(pn + i)) ⌘ 0 (mod 5), (7)

where i 2 {1, 2, . . . , p� 1}.

Example 2. If we take p = 19 and i = 1, then

A5(361n + 19) ⌘ 0 (mod 5) (8)

holds for all n � 0.

We should mention that this method also applies to other primes `. In fact, if
we set p = ` in (2) and apply it to (1), then

A`(n) ⌘
(

r`�1(n) if n is even
�r`�1(n) if n is odd

(mod `). (9)

Recall that the explicit formulas of r2(n) and r6(n) are also known. From [3,
Theorems 3.2.1 and 3.4.1], we have

r2(n) = 4
X
d|n

�(d),

and
r6(n) = 16

X
d|n

�(n/d)d2 � 4
X
d|n

�(d)d2,

where

�(n) =

8><
>:

1 n ⌘ 1 (mod 4),
�1 n ⌘ 3 (mod 4),
0 otherwise.

Through a similar argument, we conclude that

Theorem 4. For any nonnegative integers n, k, odd prime p, and i 2 {1, 2, . . . , p�
1}, we have

A3(p2k+1(pn + i)) ⌘ 0 (mod 3) where p ⌘ 3 (mod 4),
A3(p3k+2(pn + i)) ⌘ 0 (mod 3) where p ⌘ 1 (mod 4),
A7(p6k+5(pn + i)) ⌘ 0 (mod 7) where p 6= 7.
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2.2. ` = 25

Analogous to the congruences under modulus 3 for A9(n) obtained by Alanazi et
al. [1], we will present some arithmetic properties of A25(n) modulo 5. Rather than
using the technique of dissection identities, we build a connection between A25(5n)
and r8(n) and then apply the explicit formula of r8(n). It is necessary to mention
that this method also applies to the results of Alanazi et al. as the following relation
holds

A9(n) ⌘ (�1)nr8(n) (mod 3).

Note that

X
n�0

A25(n)qn =
(q25; q25)21
(q50; q50)1

(q2; q2)1
(q; q)21

⌘
✓

(q5; q5)21
(q10; q10)1

◆5
0
@X

n�0

p(n)qn

1
A (mod 5).

Extracting powers of the form q5n from both sides and replacing q5 by q, we have

X
n�0

A25(5n)qn ⌘
✓

(q; q)21
(q2; q2)1

◆5
0
@X

n�0

p(5n)qn

1
A

⌘ '(�q)8 (mod 5).

Here we use the following celebrated result due to Treneer [7]
X
n�0

p(5n)qn ⌘ '(�q)3 (mod 5).

It is known that the explicit formula of r8(n) (see [3, Theorem 3.5.4]) is given by

r8(n) = 16(�1)n��3 (n),

where
��3 (n) =

X
d|n

(�1)dd3.

We therefore conclude that

Theorem 5. For any positive integer n, we have

A25(5n) ⌘ ��3 (n) (mod 5). (10)

One also readily deduces several congruences from Theorem 5.
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Theorem 6. Let p 6= 5 be an odd prime and k be a nonnegative integer. Let n be
a nonnegative integer. We have

A25(5p4k+3(pn + i)) ⌘ 0 (mod 5), (11)

where i 2 {1, 2, . . . , p� 1}.

Proof. It is easy to see that

��3 (p4k+3) = �
4k+3X
i=0

p3i ⌘ �(k + 1)
4X

i=1

i ⌘ 0 (mod 5).

Note also that ��3 (n) is multiplicative. The theorem therefore follows.

Furthermore, if p ⌘ 9 (mod 10) is a prime, then 1+ p3 ⌘ 0 (mod 5). This yields

Theorem 7. Let p ⌘ 9 (mod 10) be a prime and n be a nonnegative integer. We
have

A25(5p(pn + i)) ⌘ 0 (mod 5), (12)

where i 2 {1, 2, . . . , p� 1}.

2.3. ` = 125

From the generating function (1), we have

X
n�0

A125(n)qn =
(q125; q125)21(q2; q2)1
(q; q)21(q250; q250)1

= '(�q125)
X
n�0

p(n)qn.

Extracting terms of the form q125n and replacing q125 by q, we have
X
n�0

A125(125n)qn = '(�q)
X
n�0

p(125n)qn.

According to [4, Eq. (5.3)], we know that p(125(5n ± 1)) ⌘ 0 (mod 5). We also
know from [2, p. 49, Corollary (i)] that

'(�q) = '(�q25)� 2qM1(�q5) + 2q4M2(�q5),

where M1(q) = f(q3, q7) and M2(q) = f(q, q9). Here f(a, b) is the Ramanujan’s
theta function defined as

f(a, b) :=
1X

n=�1
an(n+1)/2bn(n�1)/2 = (�a; ab)1(�b; ab)1(ab; ab)1.
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Now we extract terms involving q5n from
P

n�0 A125(125n)qn and replace q5 by q,
then X

n�0

A125(625n)qn ⌘ '(�q5)
X
n�0

p(625n)qn (mod 5).

Finally, we use the following congruence from [4, Theorem 1.5] for p(n)

p(25n) ⌘ p(625n) (mod 5),

and obtain X
n�0

A125(625n)qn ⌘ '(�q5)
X
n�0

p(25n)qn (mod 5),

which coincides with
X
n�0

A125(25n)qn ⌘ '(�q5)
X
n�0

p(25n)qn (mod 5).

We therefore conclude

Theorem 8. For any nonnegative integer n, we have

A125(25n) ⌘ A125(625n) (mod 5). (13)

2.4. ` = 5↵ with ↵ � 4

We know from (1) that in this case
X
n�0

A5↵(n)qn = '
⇣
�q5↵

⌘ X
n�0

p(n)qn.

Note that for ↵ � 4, '
�
�q5↵�

is a function of q625. Hence A5↵(625n + 125) (resp.
A5↵(625n+500)) is a linear combination of values of p(625n+125) (resp. p(625n+
500)). Thanks to [4, Eq. (5.3)], we know that p(625n + 125) ⌘ 0 (mod 5) and
p(625n + 500) ⌘ 0 (mod 5) hold for all n � 0. Hence

Theorem 9. For any nonnegative integer n and positive integer ↵ � 4, we have

A5↵(625n + i) ⌘ 0 (mod 5), (14)

where i = 125 and 500.

Note also that for ↵ � 2, extracting terms of the form q25n and replacing q25 by
q, we obtain X

n�0

A5↵(25n)qn = '
⇣
�q5↵�2

⌘ X
n�0

p(25n)qn.
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On the other hand, we extract terms involving q625n from
P

n�0 A5↵+2(n)qn and
replace q625 by q, then

X
n�0

A5↵+2(625n)qn = '
⇣
�q5↵�2

⌘ X
n�0

p(625n)qn.

Thanks again to [4, Theorem 1.5], which states that p(25n) ⌘ p(625n) (mod 5) for
all n � 0, we conclude

Theorem 10. For any nonnegative integer n, we have

A5↵(25n) ⌘ A5↵+2(625n) (mod 5) (15)

for all ↵ � 2.

It follows from Theorems 9 and 10 that

Theorem 11. For any nonnegative integer n and positive integer ↵ � 4, we have

A5↵(52j(625n + i)) ⌘ 0 (mod 5) (16)

for all integers 0  j  (↵� 4)/2, where i = 125 and 500.
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