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Abstract
Weakened Ramsey numbers are a natural generalization of the definition of a t-
colored Ramsey number Rt(G), defined to be the least natural number p such that
every t-coloring of the edges in the complete graph Kp has a monochromatic sub-
graph isomorphic to G. For s < t, one can define Rt

s(G) to be the least natural num-
ber p such that every t-coloring of the edges in Kp contains a subgraph isomorphic
to G that is spanned by edges in at most s colors. It follows that Rt

1(G) = Rt(G),
but few explicit values are known for values of s > 1. The goals of this article are
two-fold. First, we show how the work of Su, Li, Luo, and Li done in 2002 can be
used to derive new lower bounds for fifteen weakened Ramsey numbers of the form
R3

2(Kn). Then we turn our attention to the analogue of weakened Ramsey numbers
in the setting of r-uniform hypergraphs, proving some explicit and general bounds
for such numbers.

1. Introduction

A common generalization of classical Ramsey numbers is the addition of multiple
colors. In particular, one can define the Ramsey number Rt(G) to be the least
natural number n such that every coloring of the edges of the complete graph Kn
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on n vertices using t colors results in a monochromatic subgraph isomorphic to the
graph G. In 1977, Chung, Chung, and Liu [3] further generalized this definition by
allowing for subgraphs isomorphic to G using at most s of the t colors (1  s < t).
Define Rt

s(G) to be the least natural number n such that every coloring of the edges
of Kn using t colors results in a subgraph isomorphic to G that is spanned by edges
using at most s colors. The existence of these “weakened” Ramsey numbers follows
from the observation that

Rt
s(G)  Rt(G).

Several authors have considered Rt
s(G) (eg., see [3], [4], [6], and [7]) and many

explicit values are now known. In Section 2, we review known bounds for certain
small weakened Ramsey numbers and show how the work of Su, Li, Luo, and Li
[9] on cubic residue graphs allows for the determination of new lower bounds for
R3

2(Kn) for fifteen values of n.
Next, we turn our attention to generalizing the definition of Rt

s(G) to hypergraphs
and proving some preliminary bounds. Recall that an r-uniform hypergraph H =
(V,E) consists of a nonempty finite set V of vertices and a set E of unordered
r-tuples of distinct elements in V , called hyperedges (or r-edges). We denote by
K(r)

n the complete r-uniform hypergraph on n vertices, where n = 1 or n � r.
Analogous to Rt

s(G), the weakened hypergraph Ramsey number Rt
s(H; r) is the

least natural number n such that every coloring of the r-edges in K(r)
n using t colors

results in a subhypergraph isomorphic to H that is spanned by hyperedges using at
most s colors. Anytime we refer to an s-colored hypergraph (or graph), we mean
one that is spanned by hyperedges (or edges) using at most s colors. In other words,
an s-colored hypergraph may use fewer than s colors.

In Section 3, we o↵er explicit lower and upper bounds for certain small weakened
hypergraph Ramsey numbers. In Section 4, a couple of general results are given
that are independent of the specific choices of s and t. Finally, we conclude with
some directions for future inquiry involving weakened Ramsey numbers for both
graphs and r-uniform hypergraphs.

2. Bounds for R3
2(Kn) when n � 4

As a simple first example, consider the weakened Ramsey number R3
2(K3) (first

considered in [4]). The 3-coloring of the edges of K4 in Figure 1 lacks 2-colored
triangles, from which it follows that R3

2(K3) � 5. Also, for every 3-coloring of
the edges in K5, a vertex x is incident with at least two edges that are the same
color resulting in a 2-colored triangle, implying that R3

2(K3)  5. In addition to
R3

2(K3) = 5, it is known that R3
2(K4) = 10 [4], but little is known about R3

2(Kn)
when n � 5. These weakened Ramsey numbers will be the focus of this section.
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Figure 1: A 3-coloring of the edges of K4 that lacks a 2-colored triangle.

Building on the ubiquitous role Paley graphs have played in the determination
of lower bounds for certain diagonal Ramsey numbers, in 2002, Su, Li, Luo, and
Li [9] developed an algorithm for determining the clique numbers of cubic residue
graphs and their complements. Using their algorithm, they were able to produce
16 new lower bounds for non-diagonal Ramsey numbers. In this section, we show
how their results on the complements of cubic residue graphs can be used to obtain
new lower bounds for fifteen weakened Ramsey numbers of the form R3

2(Kn), when
n � 5.

Let p ⌘ 1 (mod 6) be a prime and Fp the finite field of order p. The multiplicative
group F⇥p is cyclic, so we can write F⇥p = hgi for some g 2 F⇥p . Let � : F⇥p �! C⇥

be a cubic character (ie., a character of order 3). That is, � is a homomorphism,
and if we let ⇣3 = e2⇡i/3, then �(g) maps to either ⇣3 or ⇣2

3 , and this choice uniquely
determines �. Without loss of generality, assume that g is a fixed generator that
satisfies �(g) = ⇣3. An arbitrary element in F⇥p has the form gk and the congruence
class of k modulo 3 uniquely determines its image under �.

The cubic residue graph Gp is defined to have vertex set V (Gp) = Fp and edge
set

E(Gp) = {ab | b� a 2 Ker(�)}.

The assumption p ⌘ 1 (mod 6) guarantees that �(b � a) = �(a � b), making Gp

well-defined. It should also be observed that the set of cubic residues

F⇥3
p = {y 2 F⇥p | y = x3 for some x 2 F⇥p }

is the kernel of �. The algorithm developed by Su, Li, Luo, and Li [9] allowed them
to determine the clique numbers !(Gp) and !(Gp) for primes p ⌘ 1 (mod 6) up to
1327. The following theorem will enable us to apply their results in [9] to weakened
Ramsey numbers.
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Theorem 1. Let p ⌘ 1 (mod 6) be a prime and Gp be the corresponding cubic
residue graph. If n = !(Gp), then R3

2(Kn+1) > p.

Proof. Form a 3-coloring of the edges in Kp by identifying the vertices with Fp and
coloring each edge ab according to which left coset of Ker(�) the di↵erence b � a
is in. If b� a 2 Ker(�), then color ab red. If b� a 2 gKer(�), then color ab blue.
Finally, if b � a 2 g2Ker(�), then color ab green. The graph spanned by the red
edges is isomorphic to Gp. Let G0

p be the subgraph spanned by the blue edges and
G00

p be the subgraph spanned by the green edges. The maps �1 : V (Gp) �! G0
p

given by x 7! gx and �2 : V (Gp) �! G00
p given by x 7! g2x are easily confirmed to

be isomorphisms. Of course, this implies that Gp, G0
p, and G00

p are isomorphic and
these are precisely the subgraphs that include exactly two of the three colors. From
this construction, it follows that R3

2(K!(Gp)+1) > p.

p !(Gp) Ramsey bound

19 4 R3
2(K5) > 19

31 6 R3
2(K7) > 31

43 7 R3
2(K8) > 43

97 8 R3
2(K9) > 97

109 9 R3
2(K10) > 109

163 10 R3
2(K11) > 163

229 11 R3
2(K12) > 229

349 13 R3
2(K14) > 349

439 14 R3
2(K15) > 439

487 15 R3
2(K16) > 487

673 16 R3
2(K17) > 673

769 17 R3
2(K18) > 769

1051 18 R3
2(K19) > 1051

1303 19 R3
2(K20) > 1303

1327 20 R3
2(K21) > 1327

Table 1: Lower bounds for some weakened Ramsey numbers R3
2(Kn).

Using the results from Table 1 of [9] for the clique numbers of Gp, we immediately
obtain the lower bounds for R3

2(Kn) given in Table 1.
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3. Weakened Hypergraph Ramsey Numbers

Now, we turn our attention to Rt
s(H; r), the analogues of weakened Ramsey numbers

in the setting of r-uniform hypergraphs. The first nontrivial case that we consider
is R3

2(K
(3)
4 ; 3). Theorem 2 gives a lower bound, while Theorem 3 provides an upper

bound.

Theorem 2. R3
2(K

(3)
4 ; 3) � 7.

Proof. The hypergraph K(3)
6 has 20 hyperedges. If we denote the vertices by a, b,

c, d, e, and f , then we can color the hyperedges as follows.

Red : abc, abd, cde, adf, bcf, bef

Blue : bcd, ade, abe, acf, bdf, cef

Green : acd, ace, bce, bde, abf, cdf, def

One can check directly that removing any two vertices results in a K(3)
4 that con-

tains hyperedges in all three colors. Thus, we have constructed a 3-coloring of the
hyperedges in K(3)

6 that lacks a 2-colored K(3)
4 .

As with classical Ramsey numbers, constructions provide lower bounds, while
upper bounds are achieved by more theoretical means.

Theorem 3. R3
2(K

(3)
4 ; 3)  8.

Proof. We use K(3)
4 � t to denote K(3)

4 with one hyperedge deleted. From Page 52
in [8], we see that R2(K(3)

4 � t,K(3)
4 ; 3) = 8. That is, for any 3-coloring of K(3)

8 with
colors red, blue, and green, there is either a red K(3)

4 � t, or a K(3)
4 with colors blue

and green. In both cases, there is a 2-colored K(3)
4 .

Theorem 4. The weakened Ramsey number R4
3(K

(3)
4 ; 3) = 5.

Proof. Trivially, R4
3(K

(3)
4 ; 3) > 4 since the four hyperedges in K(3)

4 could each receive
a di↵erent color. Assume that R4

3(K
(3)
4 ; 3) > 5. Then there exists a 4-coloring of

the hyperedges in K(3)
5 such that each of the five subsets of four vertices can have

their underlying subhypergraphs colored using all four colors. However, each edge
among these four sets is shared with exactly one other set, so each edge is counted
twice among the five subsets of four vertices and at most two distinct hyperedges of
the K(3)

5 can receive the same color. This leads to at most eight hyperedges, leaving
two uncolored, giving a contradiction. Thus,

R4
3(K

(3)
4 ; 3)  5,

resulting in the equality in the statement of the theorem.
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4. General Constructive Bounds

Now, we shift our attention to proving a couple of general inequalities for weakened
hypergraph Ramsey numbers. The following theorem applies to two of the weak-
ened (hypergraph) Ramsey numbers that we have already considered (R3

2(K3) and
R4

3(K
(3)
4 ; 3)). In the case of R3

2(K3), it agrees with the upper bound noted at the
beginning of Section 2, and in the case of R4

3(K
(3)
4 ; 3), it is weaker than the upper

bound we found in Theorem 4.

Theorem 5. For r � 2, we have Rr+1
r (K(r)

r+1; r)  2r + 1.

Proof. Pick v1, v2, . . . , vr�1 2 V (K(r)
2r+1). There will be

2r + 1� (r � 1) = r + 2

hyperedges that include v1, v2, . . . , vr�1, and one other vertex. Coloring these hy-
peredges with r + 1 colors, there must exist two hyperedges colored the same color.
Without loss of generality, assume that av1v2 · · · vr�1 and bv1v2 · · · vr�1 are red.
The remaining r � 1 hyperedges that include both a, b, and r � 2 vertices from
{v1, v2, . . . , vr�1} can be colored with any arbitrary r � 1 colors other than red.
Then we are able to color a K(r)

r+1 using at most r colors.

Theorem 6. If m > r � 2, then

Rt
s(K

(r)
(m�1)2+1; r) > (Rt

s(K
(r)
m ; r)� 1)2.

Proof. Let n = Rt
s(K

(r)
m ; r)�1 and consider n copies of K(r)

n . Color the hyperedges
within each copy of K(r)

n using t colors such that no s-color copy of K(r)
m exists.

Identify the copies of K(r)
n with the vertices in K(r)

n and color the hyperedges whose
vertices all come from distinct copies of K(r)

n using t colors, again avoiding an s-
color copy of K(r)

m . Color the remaining hyperedges arbitrarily using the t colors
(these are the hyperedges that have at least two but not all vertices in some copy
of K(r)

n . Then the largest s-color complete hypergraph will include vertices from at
most m � 1 copies of K(r)

n and at most m � 1 vertices from each included copy of
K(r)

n . Thus,
Rt

s(K
(r)
(m�1)2+1; r) > n2,

completing the proof of the theorem.

5. Future Inquiry

We conclude by listing some directions for future inquiry involving weakened (hy-
pergraph) Ramsey numbers.
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1. Su, Li, Luo, and Li’s [9] algorithm was published in 2002, so current computing
power may enable the computation of clique numbers for cubic residue graphs
and their complements that was not possible previously. Such results would
imply new lower bounds for R3

2(Kn) analogous to the bounds found in Section
2.

2. It is likely that Su, Li, Luo, and Li’s [9] algorithm can be extended to character
di↵erence graphs (see [1]) for characters of order t � 3. Implementing such
an algorithm to find the clique numbers for the complements of such graphs
would result in lower bounds for Rt

t�1(Kn).

3. In the most general form, Chung, Chung, and Liu ([3] and [4]) defined the
weakened Ramsey number R3

2(G1, G2, G3) to be the least natural number
n such that every 3-coloring of the edges in Kn results in a red and blue
copy of G1, a blue and green copy of G2, or a red and green copy of G3.
Extend weakened hypergraph Ramsey numbers to this non-diagonal case and
even consider subhypergraphs other than those that are complete (eg., paths,
cycles, trees, stars, etc...).

4. In [2], numerous inequalities were given for hypergraph Ramsey numbers
building on previously known inequalities for graphs. Do any of the con-
structions considered in [2] have “weakened” analogues?

5. One generalization of classical Ramsey numbers comes when one restricts
to Gallai colorings. A Gallai coloring is one that avoids rainbow (3-colored)
triangles. The corresponding Ramsey numbers in this setting are called Gallai-
Ramsey numbers (eg., see [5]). What can be said about weakened Ramsey
numbers when only Gallai colorings are considered and can these definitions
also be extended to hypergraphs?
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