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Abstract
In this short note, we present proofs of congruences satisfied by the Fourier coe�-
cients of the modular j-invariant. Our proofs are slightly di↵erent from the proof
discovered by J. Lehner.

1. Introduction

The well-known modular j-invariant is defined by

j(⌧) = 1728
E3

4(q)
E3

4(q)�E2
6(q)

=
1
q

+
1X

j=0

c(j)qj , (1)

where q = e2⇡i⌧ , Im ⌧ > 0,

E4(q) = 1 + 240
1X

j=1

j3qj

1� qj

E6(q) = 1� 504
1X

j=1

j5qj

1� qj
.

In 1949, J. Lehner [7] discovered that for any positive integer n, the following
congruences hold:

c(2n) ⌘ 0 (mod 211) (2)
c(3n) ⌘ 0 (mod 35) (3)
c(5n) ⌘ 0 (mod 52) (4)
c(7n) ⌘ 0 (mod 7). (5)
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Lehner’s proofs of these congruences were clearly explained in [2]. In Section 2, we
will revisit Lehner’s proofs and in Section 3, we provide proofs which are slightly
di↵erent from Lehner’s.

2. Lehner’s Proofs of (2)-(5)

Let
SL2(Z) :=

⇢✓
a b
c d

◆
|a, b, c, d 2 Z, ad� bc = 1

�

and
�0(N) =

⇢✓
a b
c d

◆
2 SL2(Z)|c ⌘ 0 (mod N)

�
.

Definition 1. We say that a function f(⌧) is automorphic under �0(N) if the
following three conditions are satisfied [4, p. 125]:

(a) The function f is meromorphic in the upper half-plane

H := {z 2 C|Im z > 0} .

(b) The function

f (A⌧) := f

✓
a⌧ + b

c⌧ + d

◆
= f(⌧)

for every A 2 G.

(c) For any � 2 SL2(Z), f(�⌧) has the form
1X

n=�m

ane2⇡in⌧/N ,

where m 2 Z.

For any function f(⌧) and any prime number p, define Up(f(⌧)) by

Up(f)(⌧) =
1
p

p�1X
�=0

f

✓
⌧ + �

p

◆
.

Note that if

f(⌧) =
1X

n=�m

a(n)qn,

then

Up(f)(⌧) =
1X

n=[�m/p]

a(np)qn.

It is known that [2, Section 4.5] that
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Theorem 2. If f(⌧) is automorphic under SL2(Z) then Up(f)(⌧) is automorphic
under �0(p).

We observe that if we replace SL2(Z) by �0(p), the same conclusion holds since
the key in the proof is that f(W ⌧) = f(⌧) for W 2 �0(p2). In other words we have
the following:

Theorem 3. Let p be a prime number. If f(⌧) is automorphic under �0(p) then
Up(f)(⌧) is automorphic under �0(p).

Lehner also showed that [2, Theorem 4.6]

Theorem 4. If f(⌧) is automorphic under SL2(Z) and if p is a prime, then

Up(f)(⌧) = Up(f)
✓
�1

⌧

◆
� 1

p
f

✓
� 1

p⌧

◆
+

1
p
f

✓
⌧

p

◆
. (6)

The above theorem is also true with slight modifications if SL2(Z) is replaced by
�0(p). The result is as follows:

Theorem 5. Let p be a prime number. If f(⌧) is automorphic under �0(p), then

Up(f)(p⌧) = Up(f)
✓
� 1

p⌧

◆
� 1

p
f

✓
� 1

p2⌧

◆
+

1
p
f (⌧) . (7)

We are now ready to describe Lehner’s proofs. Recall that when p = 2, 3, 5, 7, 13
the function

�p(⌧) =
✓

⌘(⌧)
⌘(p⌧)

◆24/(p�1)

(8)

is automorphic under �0(p) with a simple pole at i1 [2, Theorem 4.9]. It is known
that j(⌧) is automorphic under SL2(Z) and hence by Theorem 2, Up(j)(⌧) is auto-
morphic under �0(p). Using Theorem 4 (see [2, p. 89]), Lehner showed that

Up(j)(⌧) = p12/(p�1)�1
⇣
a1��1

p (⌧) + a2��2
p (⌧) + · · · + ap2��p2

p (⌧)
⌘

+ c(0), (9)

for some constants a1, a2, · · · , ap2 . Identity (9) immediately implies (2)–(5).

3. Alternative Approach to (2)–(5)

The functions �p(⌧) for p = 2, 3, 5, 7, 13 are clearly analogues of j(⌧) and it is
natural to ask if congruences similar to (2)–(5) exist for the coe�cients of �p(⌧).

In our attempt to answer this question, we are led to an alternative approach to
(2)–(5). We first recall that the index

[SL2(Z) : �0(p)] = p + 1.
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Since j(⌧) is automorphic for �0(p), we conclude that j(⌧) must be a rational
function of �p(⌧). In particular, j(⌧) = P (�p(⌧))/Q(�p(⌧))), where P (x), Q(x) 2
Z[x], and P (x) is a polynomial of degree p+1. This is because there are p+1 poles
of j(⌧) in the fundamental region associated with �0(p). We list these identities as
follow:

j(⌧) = �2(⌧) + 28 · 3 +
216 · 3
�2(⌧)

+
224

�2
2(⌧)

= �3(⌧) + 22 · 33 · 7 +
2 · 39 · 5
�3(⌧)

+
22 · 314

�2
3(⌧)

+
318

�3
3(⌧)

= �5(⌧) + 2 · 3 · 53 +
32 · 55 · 7

�5(⌧)
+

22 · 58 · 13
�2

5(⌧)
+

32 · 510 · 7
�3

5(⌧)
+

2 · 3 · 513

�4
5(⌧)

+
515

�5
5(⌧)

= �7(⌧) + 22 · 11 · 17 +
2 · 74 · 41

�7(⌧)
+

24 · 76 · 11
�2

7(⌧)
+

5 · 77 · 132

�3
7(⌧)

+
24 · 79 · 17

�4
7(⌧)

+
2 · 711 · 23

�5
7(⌧)

+
22 · 713

�6
7(⌧)

+
714

�7
7(⌧)

= �13(⌧) + 2 · 373 +
5 · 132 · 233

�13(⌧)
+

22 · 74 · 133

�2
13(⌧)

+
23 · 7 · 134 · 487

�3
13(⌧)

+
22 · 5 · 112 · 135 · 17

�4
13(⌧)

+
2 · 11 · 137 · 137

�5
13(⌧)

+
22 · 5 · 137 · 1283

�6
13(⌧)

+
2 · 138 · 6043

�7
13(⌧)

+
22 · 5 · 11 · 139

�8
13(⌧)

+
23 · 7 · 1310 · 19

�9
13(⌧)

+
22 · 72 · 1311

�10
13(⌧)

+
52 · 1312

�11
13(⌧)

+
2 · 1313

�12
13(⌧)

+
1313

�13
13(⌧)

.

From the above identities, we deduce that

Theorem 6. Let �p(⌧) be defined as in (8) for p = 2, 3, 5, 7, 13 and let j(⌧) be
defined as in (1). Then

j(⌧) ⌘ �2(⌧) + 28 · 3 (mod 216)
⌘ �3(⌧) + 22 · 33 · 7 (mod 39)
⌘ �5(⌧) + 2 · 3 · 53 (mod 55)
⌘ �7(⌧) + 22 · 11 · 17 (mod 74)
⌘ �13(⌧) + 2 · 373 (mod 132).

From Theorem 6, we observed the following:

Corollary 1. Let p = 2, 3, 5, 7, 13 and

�p(⌧) =
1
q

+
1X

k=0

dp(k)qk.
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Then for n � 1,

c(n) ⌘ d2(n) (mod 216)
⌘ d3(n) (mod 39)
⌘ d5(n) (mod 55)
⌘ d7(n) (mod 74)
⌘ d13(n) (mod 132)

Corollary 1 implies that the coe�cients dp(n) satisfy congruences similar to (2)–
(5).

We now use Theorem 6 to prove (2)–(5). From Theorem 3, we note that
Up(�p(⌧)) is automorphic for �0(p) and hence, it is a polynomial in 1/�p(⌧). In
fact, it is a polynomial of degree 1 in 1/�p(⌧), as shown in the following theorem.

Theorem 7. Let �p(⌧) be defined as in (8) for p = 2, 3, 5, 7, 13. Then

Up(�p)(⌧) = �p�1+12/(p�1)

✓
1

�p(⌧)

◆24/(p�1)

� 24
p� 1

. (10)

Proof. By making use of the following formula [2, Theorem 3.1]

⌘

✓
�1
⌧

◆
=
p
�i⌧⌘(⌧), (11)

we note that

�p

✓
�1
p⌧

◆
=

0
BB@

⌘

✓
�1
p⌧

◆

⌘

✓
�1
⌧

◆
1
CCA

24/(p�1)

=
p12/(p�1)

�p(⌧)
. (12)

Moreover, Up(�p) has no pole at i1. We thus focus on the pole at 0 by applying
the transformation ⌧ ! �1/p⌧ . From Theorem 5, we find that

Up(�p)
✓
�1
p⌧

◆
+

1
p
�p (⌧) =

1
p
�p

✓
�1
p2⌧

◆
+ Up(�p)(p⌧). (13)

The terms on the right-hand side have no pole at i1 as a result of (12). Thus,
replacing �1/(p⌧) by ⌧ , we deduce together with (12) that

F (⌧) = Up(�p)(⌧) +
1
p
�p

✓
�1
p⌧

◆
= Up(�p)(⌧) +

p�1+12/(p�1)

�p(⌧)

has no poles at either 0 and i1 and so, F (⌧) must be a constant, and in particular,
must be equal to the constant term dp(0) of �p(⌧). We also see that dp(0) is the
coe�cient of q in (1�q)24/(p�1), since all other non-constant terms in the expression
for �p(⌧) involve higher powers of q. Thus, we have dp(0) = �24/(p� 1).
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This result was previously established by P. Jenkins and N. Andersen in [1]. We
discovered this proof without the knowledge of their work.

Applying Up to both sides of the congruences stated in Theorem 6, we deduce
that

Theorem 8. Let �p(⌧) be defined as in (8) for p = 2, 3, 5, 7, 13 and let j(⌧) be
defined as in (1). Then

U2(j(⌧))� 744 ⌘ � 211

�2(⌧)
(mod 216)

U3(j(⌧))� 744 ⌘ � 35

�3(⌧)
(mod 39)

U5(j(⌧))� 744 ⌘ � 52

�5(⌧)
(mod 55)

U7(j(⌧))� 744 ⌘ � 7
�7(⌧)

(mod 74)

U13(j(⌧))� 744 ⌘ � 1
�13(⌧)

(mod 132).

From the first four congruence relations in the above Theorem, it is now clear
that (2)–(5) hold. Moreover, by observing that since 1�q13k ⌘ (1�qk)13 (mod 13),

1
�p(⌧)

= q
1Y

k=1

(1� q13k)2

(1� qk)2
⌘ q

1Y
k=1

�
1� qk

�24
(mod 13),

hence the last congruence gives, for n � 1, Newman’s congruence [8, (13)]

c(13n) ⌘ �⌧(n) (mod 13), (14)

where ⌧(n) is given by

q
1Y

k=1

�
1� qk

�24
=

1X
j=1

⌧(j)qj .

We emphasize that our proof of (14) is di↵erent from Newman’s proof given in [8].

4. The Group �0(11) and c(11n)

Besides (2)–(5), Lehner [6, (1.4)] discovered that

c(11n) ⌘ 0 (mod 11). (15)

The proof of (15) is more complicated than the congruences we considered so far
as there is no “Hauptmodul” such as �p(⌧) (p = 2, 3, 5, 7, 13) for us to work with.



INTEGERS: 17 (2017) 7

Let

�(⌧) =
112E4(11⌧)�E4(⌧)

120⌘4(⌧)⌘4(11⌧)
, (16)

↵(⌧) =
1

⌘2(11⌧)⌘2(⌧)

0
@ X

m,n2Z

qm2+mn+3n2

1
A (17)

and

�(⌧) =
1

2 · 112

�
↵2(⌧)� 10↵(⌧)� 22� �(⌧)

�
. (18)

Lehner [5, pp. 501–505] showed that the set of modular functions invariant under
�0(11) is generated by ↵(⌧) and �(⌧). Since j(⌧) is a modular function for �0(11),
we find that

j(⌧) = �23 · 3 · 53 · 8243 + ↵(⌧)� 2 · 112 · 1531 · 2467�(⌧)
+ 2 · 3 · 112 · 23 · 1481↵(⌧)�(⌧)� 3 · 114 · 37 · 79 · 103�2(⌧) (19)
+ 3 · 114 · 14621�2(⌧)↵(⌧)� 22 · 7 · 116 · 1879�3(⌧)
+ 5 · 116 · 23 · 29�3(⌧)↵(⌧)� 118 · 1483�4(⌧) + 118 · 103�4(⌧)↵(⌧)
� 24 · 1110�5(⌧) + 1110�5(⌧)↵(⌧).

To continue with our proof of (15), we need to show that �(⌧) has a power series
in q with integer coe�cients. This is given by the following lemma of Lehner [5,
Lemma 3]:

Lemma 1. Let �(⌧) be defined as in (18) and

�(⌧) =
1
2
�
↵2(⌧)� 10↵(⌧)� 22 + �(⌧)

�
. (20)

If

�(⌧) =
1X

k=1

ckqk

and

�(⌧) =
1X

k=1

c0kqk

then ck, c0k 2 Z.

Proof. First, we observe that

↵2(⌧) ± �(⌧) =
1

⌘4(⌧)⌘4(11⌧)

0
B@
0
@ X

m,n2Z
qm2+mn+3n2

1
A

2

± (112g(⌧)� g(⌧))

1
CA .
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Note that the right-hand side can be written as
 

1 + 2
X

m>0,n

qm2+mn+3n2

!2

± 1 ± 2

 
112

1X
k=1

k3q11k

1� q11k
�

1X
k=1

k3qk

1� qk

!

and this shows that the coe�cients in the series expansion of

↵2(⌧)� 10↵(⌧)� 22 ± �(⌧)

are even integers and that in particular, we have c0k 2 Z.

To show that ck 2 Z, we consider

E2(⌧) = 1� 24
1X

k=1

kqk

1� qk
, q = e2⇡i⌧

and define
E(⌧) =

1
⌘2(⌧)⌘2(11⌧)

(11E2(11⌧)�E2(⌧))2 .

Let
G1(⌧) = 2 · 112�(⌧) = ↵2(⌧)� 10↵� 22� �(⌧)

and
G2(⌧) = 2�(⌧) = ↵2(⌧)� 10↵� 22 + �(⌧).

Then we find that

E(⌧) =
170
121

G1(⌧)G2(⌧) + 50G1(⌧) + 50G2(⌧) + 1776. (21)

From (21), we deduce that (G1(⌧)G2(⌧))/121 has series expansion with integer
coe�cients. Moreover, 1/G2(⌧) has integer series expansion with integer coe�cients,
because the leading term of G2(⌧) is q�2. Hence,

2�(⌧) =
1

112
G1(⌧) =

1
112

�
↵2(⌧)� 10↵(⌧)� 22� �(⌧)

�
(22)

has series expansion with integer coe�cients. We have already seen in the begin-
ning of the proof that the right hand side of (22) has series expansion with even
coe�cients and hence, we conclude that ck 2 Z.

Our proof of Lemma 1 uses (21) and is di↵erent from Lehner’s proof.
We now continue with our proof of (15). From (19) and Lemma 1, we deduce

that
j(⌧) ⌘ ↵(⌧)� 109 (mod 112). (23)



INTEGERS: 17 (2017) 9

Next, observe that

U11(↵)(⌧) = �23 · 3 · 283 · 331 + 119�5(⌧)↵(⌧)� 24 · 119�5(⌧) + 117 · 103�4(⌧)↵(⌧)
� 117 · 1483�4(⌧) + 5 · 115 · 23 · 29�3(⌧)↵(⌧)� 22 · 7 · 115 · 1879�3(⌧)
+ 3 · 113 · 14621�2(⌧)↵(⌧)� 3 · 113 · 37 · 79 · 103�2(⌧)
+ 2 · 3 · 11 · 23 · 1481�(⌧)↵(⌧)� 2 · 11 · 1531 · 2467�(⌧).

Again, by Lemma 1, we conclude that

U11(↵)(⌧) ⌘ 6 (mod 11),

which together with (23) yields (15).
We conclude this section by giving another approach to the derivation of (19).

Since j(⌧) is a modular function invariant under SL2(Z), j(11⌧) is a modular func-
tion invariant under �0(11). Therefore, j(11⌧) can be expressed in terms of �(⌧)
(see (20)) and ↵(⌧). The resulting identity is

j(11⌧) = �5(⌧)↵(⌧)� 24�5(⌧) + 103�4(⌧)↵(⌧)� 1483�4(⌧) (24)
+ 5 · 23 · 29�3(⌧)↵(⌧)� 22 · 7 · 1879�3(⌧) + 3 · 14621�2(⌧)↵(⌧)
� 3 · 37 · 79 · 103�2(⌧) + 2 · 3 · 23 · 1481�(⌧)↵(⌧)
� 2 · 1531 · 2467�(⌧) + ↵(⌧)� 23 · 3 · 53 · 8243.

It is known from [5, (4.53)] that

↵

✓
� 1

11⌧

◆
= ↵(⌧) and �

✓
� 1

11⌧

◆
= ��(⌧).

Hence,

�

✓
� 1

11⌧

◆
= 112�(⌧). (25)

Replacing ⌧ by �1/(11⌧) in (24) and using the fact that j(�1/⌧) = j(⌧), we obtain
(19). Note that the presence of 112 in most of the coe�cients of (19) is a consequence
of the transformation formula (25) for �(⌧). We also observe that it is necessary to
show that the coe�cients of the q-series expansion of �(⌧) are integers (Lemma 1)
so that the right-hand side of (25) is congruent to 0 modulo 112.

5. Conclusion

At the beginning of Section 3, we mentioned that this article is motivated by
our attempt to understand if Fourier coe�cients of other Hauptmoduls such as
�p(⌧), p = 2, 3, 5, 7, 13, satisfy congruences similar to Fourier coe�cients of j(⌧).
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We have shown that the answer is a�rmative. The natural question to ask is if
the Fourier coe�cients of other Hauptmoduls associated to “genus 0” discrete sub-
groups of SL2(Z) (see [3]) satisfy congruences modulo power of primes related to
the level of the Hauptmoduls. It turns out that the answer is again positive. For
example, if

F (⌧) =
✓

⌘(⌧)⌘(2⌧)
⌘(3⌧)⌘(6⌧)

◆4

=
1
q

+
1X

j=0

⌫(j)qj ,

then for n � 1,
⌫(3n) ⌘ 0 (mod 33). (26)

One way to prove this congruence is to use the identity

U3(F )(⌧) = � 27
F (⌧)

� 4.

Another way is to first write

F (⌧) = G(⌧)� 7� 8
G(⌧)

where
G(⌧) =

⌘3(2⌧)⌘9(3⌧)
⌘3(⌧)⌘9(6⌧)

,

followed by applying U3 to both sides. One then notes that since

U3(G)(⌧) = � 3
1 + G(⌧)

+ 3

and
U3

✓
8
G

◆
(⌧) =

24
G(⌧)� 8

,

we have whenever |G(⌧)| < 1,

U3(F )(⌧) = �3(1�G(⌧) + G2(⌧) + · · · ) + 3� 7 + 3(1 + G(⌧)/8 + (G(⌧)/8)2 + · · · ).

If we simplify the right-hand side as a power series in G(⌧), the numerator of the
coe�cient of Gj(⌧) is

3((�1)j+1 · 8j + 1).

Since
(�1)j+1 · 8j + 1 ⌘ 0 (mod 9),

we deduce that
U3(F )(⌧) ⌘ �4 (mod 33),

which implies (26). The second proof is obviously motivated by the proof we gave
in Section 3.
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