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Abstract
In this paper, we study how small a box contains at least two points from a modular
cubic polynomial y ⌘ ax3 + cx + d (mod p) with (a, p) = 1. We prove that some
square of side length p1/6+✏ contains two such points.

1. Introduction and Main Results

In the x-y plane, the most common way to define distance between two points is

d =
p

(x2 � x1)2 + (y2 � y1)2.

We say that two points are close to one another if d is small. However, if we are
working with curves (mod p), we may not be able to take the square root. So,
instead of using distance, we say that two points are close to each other if they are
both inside a box

B(X,Y ;H) := {(x, y) : X+1  x  X+H (mod p), Y +1  y  Y +H (mod p)}

for some X and Y with H small. We may say, in some sense, that the smallest
such H is the “distance” between the two points. Here and throughout the paper,
p stands for a prime number.

Recently, the author [1] studied the apparently new question of shortest “dis-
tance” in a modular hyperbola xy ⌘ c (mod p) and its relation with the least
quadratic nonresidue modulo p. Inspired by this, we try to study the shortest
“distance” for other kinds of curves.

For linear polynomials, the shortest distance can have order of magnitude pp
which is optimal. For example, take H = [pp] and m = H + 1. Then the numbers
mh for 1  h  H � 1 are all greater than H and less than p. Thus, when we
look at the linear equation y ⌘ mx (mod p), it cannot have two points in the box
B(X,Y,H). For if (x1, y1) and (x2, y2) are two such points with 1  x1 < x2 < p,
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say x2 = x1 + h for some 1  h < H. Then y2 � y1 = mx2 �mx1 = mh cannot
be any number between 1 and H � 1 (mod p). Hence there can be no such two
points from the line in the box. As for why pp is optimal, by any 1  a  p, two
of ak1 (mod p) and ak2 (mod p) must be within H + 1 from one another for some
1  k1 < k2  H + 1 by pigeonhole principle. So the two points (k1, ak1) and
(k2, ak2) on the line y ⌘ ax (mod p) are in a box of length H + 1.

Meanwhile the shortest distance can be as small as O(1) for quadratic polyno-
mials. Suppose p > 3. Starting from any quadratic polynomial y ⌘ ax2 + bx + c
(mod p), we can turn it to the form y ⌘ ax2 (mod p) after completing the square
as shifting does not a↵ect distance. Now, consider the two points (x1, ax2

1) and
(x2, ax2

2) with a(2x1 + 1) ⌘ 1 (mod p) and x2 = x1 + 1. One can verify that they
are both in the box B(x1 � 1, ax2

1 � 1; 2).
Next, we study the shortest distance for the next type of curves, namely cubic

polynomials. It turns out that this can be studied perfectly with the method of [1].
Let p > 3 be a prime, (a, p) = 1, and c any integer. We consider the reduced

modular cubic polynomial

Ca,c := {(x, y) : y ⌘ ax3 + cx (mod p)}.

The restriction to such reduced cubic polynomials is not restrictive at all as one can
transform a general cubic to such form through change of variables in x and y which
does not a↵ect the distance between points on the cubic polynomial. We consider
how small a box B(X,Y ;H) contains at least two points in Ca,c where X and Y
run through 0, 1, ..., p� 1. To study this, we need a recent result of Heath-Brown
[2] and Shao [3] on mean-value estimates of character sums:

Theorem 1. Given H  p, a positive integer and any ✏ > 0. Suppose that 0 
N1 < N2 < ... < NJ < p are integers satisfying Nj+1 � Nj � H for 1  j < J .
Then

JX
j=1

max
hH

|S(Nj ;h)|2r ⌧✏,r H2r�2p1/2+1/(2r)+✏

where
S(N ;H) :=

X
N<nN+H

�(n)

and � is any non-principal character modulo p.

Applying the above theorem, we can show that

Theorem 2. For any ✏ > 0, for any (a, p) = 1, integer c and H �✏ p1/6+✏, we
have

|Ca,c \B(X,Y ;H)| � 2

for some 0  X,Y  p� 1.
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As a consequence, we also have the following curious new results.

Corollary 1. For any ✏ > 0 and integer c, there exist 1  u1, v1, u2, v2 ⌧✏ p1/6+✏

such that ⇣u1

p

⌘⇣u3
1 + cu1 � v1

p

⌘
= 1

and ⇣u2

p

⌘⇣u3
2 + cu2 � v2

p

⌘
= �1.

In particular, by setting c = 0, we have
⇣u3

p

⌘⇣u3
3 � v3

p

⌘
= 1

and ⇣u4

p

⌘⇣u3
4 � v4

p

⌘
= �1

for some 1  u3, v3, u4, v4 ⌧✏ p1/6+✏.

Finally, we finish with the following

Conjecture 1. For any ✏ > 0, for any (a, p) = 1, integer c and H �✏ p✏, we have

|Ca,c \B(X,Y ;H)| � 2

for some 0  X,Y  p� 1.

Some Notation. Throughout the paper, p stands for a prime. The symbol |S|
denotes the number of elements in the set S. We also use the Legendre symbol
( ·

p ). The notations f(x) ⌧ g(x), g(x) � f(x) and f(x) = O(g(x)) are equiva-
lent to |f(x)|  Cg(x) for some constant C > 0. Finally, f(x) ⌧�1,...,�k g(x),
g(x) ��1,...,�k f(x) and f(x) = O�1,...,�k(g(x)) mean that the implicit constant C
may depend on �1, ..., �k.

2. The Basic Argument

Without loss of generality, we assume that p > 3. For (a, p) = 1 and any integer c,
suppose |Ca,c \B(X,Y ;H)| � 2 for some 0  X,Y  p� 1. This means that

y ⌘ ax3 + cx (mod p), and y + v ⌘ a(x + u)3 + c(x + u) (mod p) (1)

for some 1  x, y  p and 1  u, v  H. Subtracting, we get

v ⌘ 3au(x2 + ux + 3u2) + cu (mod p)
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where y denotes the multiplicative inverse of y modulo p (i.e. yy ⌘ 1 (mod p).)
After some algebra and completing the square, we have

(2x + u)2 ⌘ 43vau� 3u2 � 43ac (mod p).

The above process is reversible. So |Ca,c\B(X,Y ;H)| � 2 for some 0  X,Y  p�1
is equivalent to ⇣�3

p

⌘⇣a

p

⌘⇣u

p

⌘⇣au3 + 4cu� 4v
p

⌘
= 1.

We are going to restrict our attention to even u = 2u0’s and v = 2v0’s. So we want

⇣�3
p

⌘⇣a

p

⌘⇣u0

p

⌘⇣au03 + cu0 � v0

p

⌘
= 1 for some 1  u0, v0  H/2. (2)

3. Proofs of Theorem 2 and Corollary 1

Proof. Suppose (2) is not true. Then either

⇣�3
p

⌘⇣a

p

⌘⇣u0

p

⌘⇣au03 + cu0 � v0

p

⌘
= 0;

or ⇣�3
p

⌘⇣a

p

⌘⇣u0

p

⌘⇣au03 + cu0 � v0

p

⌘
= �1

for all 1  u0, v0  H/2. If the former is true for two pairs of 1  u0, v0  H/2, we
have

au03 + cu0 ⌘ v0 (mod p) and au003 + cu00 ⌘ v00 (mod p) (3)

which gives Theorem 2. Henceforth we suppose the latter is true for all but at most
one pair of 1  u0, v0  H/2. Hence

H2 ⌧
��� X

u0H/2

X
v0H/2

⇣u0

p

⌘⇣au03 + cu0 � v0

p

⌘���  X
u0H/2

��� X
v0H/2

⇣au03 + cu0 � v0

p

⌘���


⇣ X

u0H/2

1
⌘(2r�1)/(2r)⇣ X

u0H/2

��� X
v0H/2

⇣au03 + cu0 � v0

p

⌘���2r⌘1/(2r)
.

Suppose |Ca,c\B(X,Y ;H)|  1 for all 0  X,Y  p�1. Then the points au03+cu0

are spaced more than H apart. So we can apply Theorem 1 and get

H2 ⌧✏,r H(2r�1)/(2r)(H2r�2p1/2+1/(2r)+✏)1/(2r)

which gives H ⌧✏,r p(r+1)/(6r)+✏/2. This contradicts H �✏ p1/6+✏ if r is su�ciently
large. This final contradiction together with (3) gives Theorem 2.
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Proof. By setting a = 1, the above proof gives some 1  u0, v0 ⌧✏ p1/6+✏ such that

⇣�3
p

⌘⇣u0

p

⌘⇣u03 + cu0 � v0

p

⌘
= 1.

A similar argument also gives some 1  u00, v00 ⌧✏ p1/6+✏ such that

⇣�3
p

⌘⇣u00

p

⌘⇣u003 + cu00 � v00

p

⌘
= �1.

It follows that Corollary 1 is true.
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