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Abstract
Motivated by multiple frequency determination in multiple undersampled wave-
forms, a generalization of the Chinese remainder theorem for multiple integers has
been of recent interest. Liao and Xia (2007) obtained a lower bound on the dy-
namic range of multiple integers for their unique recovery. In this paper, we present
a simplified bound with a simplified proof.

1. Introduction

The Chinese remainder theorem (CRT) tells us that a single nonnegative integer can
be reconstructed from its remainders modulo several pairwise coprime moduli if and
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only if the integer is less than the product of all the moduli. This ability to represent
a large integer as a list of small residues or remainders leads to applications in
numerous areas, such as cryptography, channel coding, and digital signal processing
[4, 9].

There are various generalizations of the CRT; see [1–3, 5, 6, 8, 10, 12–14, 16]
for some of them. In [12], motivated by multiple frequency detection from multi-
ple undersampled rates, Xia presented the following generalized CRT problem for
multiple integers.

Let � � 2 and m1, . . . ,m� be � pairwise coprime integers with 1 < m1 < · · · <
m� and let N = {N1, . . . , N⇢} be a set of ⇢ di↵erent nonnegative integers. For each
r 2 {1, . . . , �}, define the r-th residue set of N

Sr(N ) =
⇢[

l=1

{kl,r}, (1)

where kl,r is the remainder of Nl modulo mr.
The generalized CRT problem for multiple integers is to reconstruct the set N

from its residue sets Sr(N ), 1  r  �. Note that it is unknown which element in
N produces a given element in Sr(N ) for any r. Moreover, |Sr(N )| may be strictly
less than ⇢ for some r, since two or more integers in N may produce the same
residue in Sr(N ). We use | · | to denote the cardinality of a set.

A basic question for the generalized CRT is to determine the dynamic range
for the unique recovery. In what follows, we use M and S(N ) to denote the sets
{m1, . . . ,m�} and S1(N )⇥ · · ·⇥ S�(N ), respectively.

Definition 1. The dynamic range of M, denoted D⇢(M), is the minimal positive
integer D such that there exist two di↵erent ⇢-subsetsN ,N 0 of {0, . . . ,D} satisfying
S(N ) = S(N 0).

Equivalently, the dynamic range D⇢(M) is the largest positive integer D such
that the mapping

y = S(N ),N ✓ {0, 1, . . . ,D � 1} and |N | = ⇢

is invertible. For example, D1(M) =
Q�

r=1 mr by the conventional Chinese remain-
der theorem. However, due to the unknown correspondence between N and Sr(N )
for any r 2 {1, . . . , �}, the dynamic range for ⇢ > 1 seems extremely di�cult.

Example 1. Let � = 4, M = {5, 7, 11, 13}, ⇢ = 3, N = {13, 22, 35} and N 0 =
{0, 13, 22}. One can check that S(N ) = S(N 0) = {0, 2, 3}⇥{0, 1, 6}⇥{0, 2}⇥{0, 9}.
As N and N 0 are two di↵erent 3-subsets of {0, 1, . . . , 35}, the minimality of D3(M)
implies D3(M)  35.

The following basic lower bound on D⇢(M) was obtained by Xia [12]. For a set
S, we use maxS (resp. minS) to denote the maximum (resp. minimum) value of
S.
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Proposition 1. [12] We have

D⇢(M) � max

( b �
⇢ cY

r=1

mr,m�

)
. (2)

The lower bound was improved further in [7]. To state their result, we need some
notation.

Definition 2. An (ordered) ⇢-partition of M is a sequence of (possibly empty)
subsets, M1, . . . ,M⇢ of M, denoted (M1, . . . ,M⇢), such that each mr belongs to
one and only one of these subsets.

Following [7], we define

b(⇢) = max
(M1,...,M⇢)

min
1l⇢

Y
mr2Ml

mr (3)

and
c(⇢) = min

(M1,...,M⇢)
max
1l⇢

Y
mr2Ml

mr, (4)

where the outermost maximum of (3) and the minimum of (4) are taken over all
⇢-partitions (M1, . . . ,M⇢) of M, and

Q
mr2Ml

mr = 1 if Ml = ;.
The main result of Liao and Xia [7] can now be stated as follows:

Proposition 2. [7] We have

D2(M) � max
�
b(2),m�

 
(5)

and for ⇢ � 3,

D⇢(M) � max

(
min

�
c(⇢), b(2)

 
,

d �
⇢ eY

r=1

mr,m�

)
. (6)

The goal of this paper is to show that the right-hand side of (6) is simply c(⇢).
Moreover, this leads to a simpler proof of (6). We remark that the exact dynamic
range for two integers (⇢ = 2) was obtained recently in [11], by extending a key idea
in [15].

2. Simplification of (6)

We begin with bounds on b(⇢) and c(⇢) obtained in [7].
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Lemma 1. [7] Let ⇢ � 2. We have

(i) b(⇢) 
✓

�Q
r=1

mr

◆ 1
⇢

and

(ii) c(⇢) � max

( d �
⇢ eQ

r=1
mr,m�

)
.

Lemma 2. Let ⇢ � 3. If
��1Y
r=1

mr < m� (7)

then b(2) < c(⇢) = m�; otherwise, c(⇢)  b(2).

Proof. Assume (7) holds. Let

(M1,M2, . . . ,M⇢) = ({m1, . . . ,m��1}, {m�}, ;, . . . , ;) . (8)

Then, by (7), we have

max
1l⇢

Y
mr2Ml

mr = max

(
��1Y
r=1

mr,m� , 1, . . . , 1

)
= m� , (9)

which implies c(⇢)  m� by the minimality of c(⇢). On the other hand, by Lemma
1 (ii), c(⇢) � m� . This proves c(⇢) = m� .

Now by Lemma 1 (i) and (7),

b(2) 
 

�Y
r=1

mr

! 1
2

< m� . (10)

This completes the proof of the first half.
Next, we assume

��1Y
r=1

mr � m� . (11)

Let (M1,M2) = ({m1, . . . ,m��1}, {m�}). Then, by (11),

min
1l2

Y
mr2Ml

mr = min

(
��1Y
r=1

mr,m�

)
= m� . (12)

This, by the maximality of b(2), implies

b(2) � m� . (13)
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Let (M0
1,M0

2) be a bipartition of M such that

b(2) = min

8<
:

Y
mr2M0

1

mr,
Y

mr2M0
2

mr

9=
; . (14)

Without loss of generality, we may assume

b(2) =
Y

mr2M0
1

mr, (15)

i.e.,
Q

mr2M0
1
mr 

Q
mr2M0

2
mr. Note that the inequality is necessarily strict since

m1, . . . ,m� are pairwise coprime. Thus,
Y

mr2M0
1

mr <
Y

mr2M0
2

mr. (16)

From (13), (15) and (16), we have
Y

mr2M0
2

mr > m� (17)

and hence |M0
2| � 2 since m� is the largest modulus in M.

Now let (M0
2,1,M0

2,1) be any bipartition of M0
2 with M0

2,i 6= ; for i = 1, 2. We
claim Y

mr2M0
2,i

mr 
Y

mr2M0
1

mr for i = 1, 2. (18)

Suppose to the contrary that (18) does not hold, say,
Y

mr2M0
2,1

mr >
Y

mr2M0
1

mr. (19)

Then we consider a new bipartition of M:

(M00
1 ,M00

2) = (M0
1 [M0

2,2,M0
2,1). (20)

As M0
2,2 6= ;, we have Y

mr2M00
1

mr >
Y

mr2M0
1

mr. (21)

Combining (19) with (21) leads to

min

8<
:

Y
mr2M00

1

mr,
Y

mr2M00
2

mr

9=
; >

Y
mr2M0

1

mr (22)
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and hence b(2) >
Q

mr2M0
1
mr by the maximality of b(2). This is a contradiction

to (15) and hence (18) is proved.
Now, as ⇢ � 3, we can define

(M⇤
1,M⇤

2, . . . ,M⇤
⇢) = (M0

1,M0
2,1,M0

2,2, ;, . . . , ;), (23)

where the last ⇢� 3 (possibly zero) parts are all empty sets. By (18), we have

max
1l⇢

Y
mr2M⇤

l

mr =
Y

mr2M0
1

mr (24)

and hence c(⇢) 
Q

mr2M0
1
mr by the minimality of c(⇢). This implies c(⇢)  b(2)

by (15) and hence finishes the proof of this lemma.

Now, we can give a simplification for the right-hand side of (6).

Theorem 1. For ⇢ � 3, we have

max

(
min

�
c(⇢), b(2)

 
,

d �
⇢ eY

r=1

mr,m�

)
= c(⇢). (25)

Proof. We consider two cases according to Lemma 2 as follows.
If (7) holds, then b(2) < m� . Clearly, d�

⇢ e  � � 1 and hence by (7),

d �
⇢ eY

r=1

mr 
��1Y
r=1

mr < m� . (26)

Thus, the left-hand side of (25) is equal to m� . Note in this case, m� = c(⇢) by
Lemma 2. Thus, (25) holds.

If (7) does not hold, then c(⇢)  b(2). Now, (25) clearly follows by Lemma 1
(ii).

3. A Simple Proof of (6)

We begin with a simple but crucial lemma, whose proof can be regarded as a
refinement of that used in [12].

Lemma 3. Let N 2 {0, . . . , c(⇢) � 1} and N = {N1, . . . , N⇢} ✓ {0, . . . , c(⇢) � 1}.
If N mod mr 2 Sr(N ) for each r 2 {1, . . . , �}, then N 2 N .

Proof. For each l 2 {1, . . . , ⇢}, we define the set

Al = {mr : N ⌘ Nl mod mr}. (27)
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For each mr, since N mod mr 2 Sr(N ), there exists at least one l 2 {1, . . . , ⇢} such
that N ⌘ Nl mod mr, i.e., mr 2 Al. Therefore,

⇢
[

l=1
Al = M. In order to form a

⇢-partition of M, we define

Ml =

 
l[

i=1

Ai

!
�
 

l�1[
i=1

Ai

!
(28)

for l = 1, . . . , ⇢, where the empty union
0S

i=1
Ai is defined as the empty set. Clearly,

(M1, . . . ,M⇢) is a ⇢-partition of M and Ml ✓ Al. Let Ml⇤ be the one in
M1, . . . ,M⇢ such that the product of all mr 2Ml⇤ is the maximum, i.e.,

Y
mr2Ml⇤

mr = max
1l⇢

Y
mr2Ml

mr. (29)

Hence, by the minimality of c(⇢),

c(⇢) 
Y

mr2Ml⇤

mr. (30)

It su�ces to show N = Nl⇤ . As Ml⇤ ✓ Al⇤ , the definition of Al⇤ implies

N ⌘ Nl⇤ mod mr for mr 2Ml⇤ . (31)

By (30) and the assumption of this lemma, we see that both N and Nl⇤ are less thanQ
mr2Ml⇤

mr. Therefore, the conventional CRT implies N = Nl⇤ from (31).

Now, we can give a proof of (6). We rewrite (6) as follows by Theorem 1.

Theorem 2. For ⇢ � 3, we have

D⇢(M) � c(⇢). (32)

Proof. It follows from Definition 1 that D⇢(M) � ⇢. Thus, if c(⇢)  ⇢ then (32)
holds. Therefore, we may assume c(⇢) > ⇢. Let N and N 0 be any two ⇢-subsets of
{0, 1, . . . , c(⇢)� 1} satisfying Sr(N 0) = Sr(N ) for each r 2 {1, . . . , �}. It su�ces to
show N 0 = N .

Let N 0 2 N 0. Then 0  N 0 < c(⇢) and N 0 mod mr 2 Sr(N 0) = Sr(N ). By
Lemma 3, we obtain that N 0 2 N and hence N 0 ✓ N . Similarly, N ✓ N 0 and
hence N 0 = N , as desired.

We remark that the equality in (32) may hold for some special cases. Consider
Example 1. Clearly, c(3) = 5⇥7 = 35 and hence D3(M) � 35. Recalling D3(M) 
35 in Example 1, we have D3(M) = 35.
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