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Abstract
In this note we augment the poly-Bernoulli family with two new combinatorial
objects. We derive formulas for the relatives of the poly-Bernoulli numbers using
the appropriate variations of combinatorial interpretations. Our goal is to show
connections between the di↵erent areas where poly-Bernoulli numbers and their
relatives appear and give examples of how the combinatorial methods can be used
for deriving formulas between these integer arrays.

1. Introduction

Poly-Bernoulli numbers were introduced by M. Kaneko [24] in 1997 as a general-
ization of the classical Bernoulli numbers during his investigations of multiple zeta
values. A great deal of attention is being paid to this sequence because of its inter-
esting properties, that were analytically proven by several authors. The importance
of the notion of the poly-Bernoulli numbers is also underlined by the fact that there
are several drastically di↵erent combinatorial interpretations [6]. The combinatorics
of the family of poly-Bernoulli numbers is highlighted by the bijections that cre-
ate connections between the alternative definitions. These bijections help us to
understand several of the properties of the poly-Bernoulli numbers.

In this paper we consider two number arrays that are relatives of poly-Bernoulli
numbers. The importance of this study is that in some combinatorial problems
these relatives arise naturally. Kaneko’s number-theoretical investigations also led
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to these numbers. We go through the known combinatorial interpretations of poly-
Bernoulli numbers [6] and for most of them we show that slight modifications of
the original combinatorial definition lead to the descriptions of the two related
sequences. We enrich the list of the poly-Bernoulli family with two classes of 01
matrices, permutation tableaux of rectangular shape, and permutations with a given
excedance set.

The outline of the paper is as follows. After a short introduction of the poly-
Bernoulli numbers, we define the poly-Bernoulli relatives using the well-known in-
terpretation of lonesum matrices. We derive di↵erent formulas for these arrays
using appropriate combinatorial interpretations. We close our discussion with a
conjecture related to the central binomial sum.

1.1. Poly-Bernoulli Numbers

The story of the Bernoulli numbers starts with investigating the sum of the mth
powers of the first n positive integers that are polynomials in n. Jacob Bernoulli
recognized the scheme in the coe�cients of these polynomials. Kaneko generalized
the well-known generating function of the Bernoulli numbers and defined the poly-
Bernoulli numbers.

Definition 1 ([25]). Poly–Bernoulli numbers (denoted by B(k)
n , where n is a posi-

tive integer and k is an integer) are defined by the following exponential generating
function 1X

n=0

B(k)
n

xn

n!
=

Lik(1� e�x)
1� e�x

, (1)

where

Lik(z) =
1X

i=1

zi

ik
.

From the combinatorial point of view, we are only interested in the poly-Bernoulli
numbers with negative k indices, since, in this case, the numbers form an array
of positive integers. From now on, when we refer to poly-Bernoulli numbers, we
will always mean poly-Bernoulli numbers with negative indices. For the sake of
convenience, we denote in the rest of the paper B(�k)

n as Bn,k. Table 1 below shows
the values of poly-Bernoulli numbers for small indices. An extended array can be
found in OEIS [33, A099594].

The symmetry of the array in n and k is immediately noticable. Analytically
this property is obvious from the symmetry of the double exponential function (2):

1X
k=0

1X
n=0

Bn,k
xn

n!
yk

k!
=

ex+y

ex + ey � ex+y
. (2)
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n, k 0 1 2 3 4 5
0 1 1 1 1 1 1
1 1 2 4 8 16 32
2 1 4 14 46 146 454
3 1 8 46 230 1066 4718
4 1 16 146 1066 6906 41506
5 1 32 454 4718 41506 329462

Table 1: The poly-Bernoulli numbers Bn,k

Three formulas of poly-Bernoulli numbers were proven combinatorially in the
literature:

1. the combinatorial formula ([8], [6])

Bn,k =
min(n,k)X

m=0

m!
⇢

n + 1
m + 1

�
m!
⇢

k + 1
m + 1

�
, (3)

2. the inclusion-exclusion type formula ([8])

Bn,k = (�1)n
nX

m=0

(�1)mm!
⇢

n

m

�
(m + 1)k, (4)

3. and the recurrence relation ([6])

Bn,k+1 = Bn,k +
nX

m=1

✓
n

m

◆
Bn�(m�1),k. (5)

One of the first (and widely known) combinatorial interpretations of the poly-
Bernoulli numbers is the set of lonesum matrices [8]. Lonesum matrices arise in
the roots of discrete tomography. In the late 1950’s Ryser [35] investigated the
problem of the reconstruction of a matrix from given row and column sums. The 01
matrices that are uniquely reconstructible from their row and column sum vectors
are called lonesum matrices. We denote the set of lonesum matrices of size n ⇥ k
as Lk

n. Note that we allow n = 0 (and k = 0 also), in which cases the empty matrix
is counted as lonesum.

Theorem 1 ([8]). The number of 01 lonesum matrices of size n ⇥ k is given by
the poly-Bernoulli numbers of negative k indices.

|Lk
n| =

min(n,k)X
m=0

(m!)2
⇢

n + 1
m + 1

�⇢
k + 1
m + 1

�
= Bn,k.



INTEGERS: 17 (2017) 4

Proof. (Sketch) Take a lonesum matrix M of size n⇥ k. Add a new column and a
new row with all 0 entries and obtain lonesum matrix cM of size (n + 1)⇥ (k + 1).
We know that cM contains at least one all-0 row and at least one all 0 column
(this information was not known for M). Partition the rows and the columns
according to the sum of their entries. In the case of lonesum matrices ‘having the
same row/column sum’ and ‘being equal’ is the same relation. Easy to see that
the number of row classes will be the same as the number of equivalence classes of
columns. We denote this common value by m + 1. The ‘plus one’ stands for the
class of extra row/column, the class of all 0 rows and all-0 columns. The row sums
order the (m many) classes of not all 0 rows. Similarly, the column sums order the
classes of not all 0 columns. Decoding M is easy when it is based on two partitions
and two orders.

This important theorem started the combinatorial investigations of poly-Bernoulli
numbers. It turned out that there are several alternative combinatorial ways to de-
scribe the poly-Bernoulli numbers. Some of them were investigated before Kaneko’s
pioneering work. Next we define two related 2-dimensional sequences combinatori-
ally.

1.2. PB-Relatives

We consider lonesum matrices with further restrictions on the occurrence of all
0 columns resp. all 0 rows. More precisely, let Lk

n(c|) denote the set of lonesum
matrices with the property that each column contains at least one 1 entry and let
Lk

n(c|r|) denote the set of lonesum matrices with the property that each column
and each row contains at least one 1 entry.

Definition 2. We denote the number of lonesum matrices of size n⇥ k without all
0 columns (|Lk

n(c|)|) by Cn,k. We denote the number of lonesum matrices of size
n⇥ k without all 0 columns and all 0 rows (|Lk

n(c|r|)|) by Dn,k.

First we give the combinatorial formulas for these two new number sequences.

Theorem 2. We have

(i) for n � 1 and k � 0

Cn,k = |Lk
n(c|)| =

min(n,k)X
m=0

(m!)2
⇢

n + 1
m + 1

�⇢
k

m

�
,

(ii) for n � 1 and k � 1

Dn,k = |Lk
n(c|r|)| =

min(n,k)X
m=0

(m!)2
⇢

n

m

�⇢
k

m

�
.
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Proof. (Sketch) (i): Since we know that there is no all 0 column, we do not need
the extra column. The extra row ensures that the extended matrix has the class of
all 0 rows. As m denotes the number of classes of (k many non-0) columns, m + 1
will be the number of classes of the n+1 rows. The rest is a straightforward repeat
of the original argument.

(ii) It follows immediately by the same logic.

Let us see the first few values of our new numbers:

n, k 0 1 2 3 4
1 1 1 1 1 1
2 1 3 7 15 31
3 1 7 31 115 391
4 1 15 115 675 3451
5 1 31 391 3451 25231

n, k 1 2 3 4 5
1 1 1 1 1 1
2 1 5 13 29 61
3 1 13 73 301 1081
4 1 29 301 2069 11581
5 1 61 1081 11581 95401

Table 2: Poly–Bernoulli relatives: Cn,k and Dn,k

Though these numbers seem to be just minor modifications of poly–Bernoulli
numbers, it turned out that they already appeared in earlier papers.

From the combinatorial definitions it is obvious that the sequences Bn,k and Dn,k

are symmetric in n and k.
Since the symmetry of the C-relatives, Cn,k, (Cn,k = Ck+1,n�1) does not follow

from the definition, we present proof for it in a latter section of this paper.
The combinatorial definitions make it clear that the sequence Cn,k is the binomial

transform of Dn,k, and the sequence Bn,k is the binomial transform of Cn,k.

Observation 1. The following identities hold:

(i)

Bn,k = 1 +
kX

i=1

✓
k

i

◆
Cn,i =

kX
i=0

✓
k

i

◆
Cn,i, (k � 0, n � 1),

(ii)

Cn,k =
nX

i=1

✓
n

i

◆
Di,k, (k � 1, n � 1),

(iii)

Bn,k = 1 +
nX

i=1

kX
j=1

✓
n

i

◆✓
k

j

◆
Di,j , (k � 1, n � 1).
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Proof. (i): In order to describe an arbitrary non-0 lonesum matrix, we need to
identify all its columns with at least one 1 (their number is denoted by i(> 0)) as
well as their entries in these i columns (that is describing a lonesum matrix of size
n ⇥ i that contains at least one 1 in each column). This simple fact proves the
formula (i).

We obtain (ii) by following the same argument on the rows. Equation (iii) sum-
marizes (i) and (ii).

We discuss other connections, recurrence relations, and combinatorial properties
of the pB–relatives Cn,k and Dn,k using appropriate combinatorial interpretations;
however, first we summarize the analytical properties of these numbers (obtained
by other authors).

1.3. Analytical Results in the Literature

Arakawa and Kaneko [4] introduced a function that is referred to in the literature
as the Arakawa-Kaneko function:

⇠k(s) :=
1

�(s)

Z 1

0

ts�1

et � 1
Lik(1� e�t)dt.

The values of this function at non-positive integers are given by

⇠k(�n) = (�1)nC(k)
n ,

where the generating function of the numbers {C(k)
n } (for arbitrary integers k) is

given by
1X

n=0

C(k)
n

xn

n!
=

Lik(1� e�x)
ex � 1

.

The exponential functions of two number sequences di↵er only by an ex (resp. ey)
factor, when one sequence is the binomial transform of the other. From this observa-
tion we can conclude the relation between poly-Bernoulli numbers and {C(�k)

n } and
it is immediately clear that C(�k)

n = Cn,k. Furthermore, we obtain the generating
function of Dn,k numbers.

Theorem 3. For all positive integers n and k

(i)
1X

n=1

1X
k=1

Cn,k
xn

n!
yk

k!
=

ex

ex + ey � ex+y
,

(ii)
1X

n=1

1X
k=1

Dn,k
xn

n!
yk

k!
=

1
ex + ey � ex+y

.
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Kaneko also showed a simple arithmetic connection between the two sequences
[26]:

Bn,k = Cn,k + Cn+1,k�1.

In our investigations we show this equality combinatorially using the variations of
the so called Callan permutations. Moreover, we prove a similar identity involving
the numbers Dn,k and Cn,k.

2. The 01 Matrices With Excluded Submatrices

The study of matrices that are characterized by excluded submatrices is an active
research area with many important results and applications [31]. Given two matrices
A and B, we say that A avoids B whenever A does not contain B as a submatrix.
(Given a matrix M , a submatrix of M is a matrix that can be obtained from M by
deletion of rows and columns.)

Generally we can set the following problem: Let S = {M1, . . . ,Mr} be a set of
01 matrices. Let Mk

n(S) denote the set of n⇥k 01 matrices that do not contain any
matrix of the set S, let Mk

n(S; c|) denote these matrices with the extra condition
of containing in any column at least one 1, and let Mk

n(S; r|c|) denote those with
the same extra condition on rows too.

Lonesum matrices can be characterized also with the terminology of forbidden
submatrices [35]. Lonesum matrices are matrices that avoid the following set of
submatrices:

L =
⇢✓

1 0
0 1

◆
,

✓
0 1
1 0

◆�
.

Thus Lk
n = Mk

n(L), Lk
n(c|) = Mk

n(L; c|) and Lk
n(r|c|) = Mk

n(L; r|c|).
Interestingly, beyond the set L there are other sets S with |Mk

n(S)| = Bn,k.

2.1. The �-free Matrices and the Recurrence Relations

In [6] the authors investigated the so called �-free matrices, matrices with the
forbidden set:

� =
⇢✓

1 1
1 0

◆
,

✓
1 1
1 1

◆�
,

and showed bijectively that the number of n⇥k �-free matrices (their set is denoted
by Gk

n) are the Bn,k poly-Bernoulli numbers. Clearly, the forbiddance of all 0 rows
(resp. columns) has the same e↵ect in this case as in the case of the lonesum matrices.

Theorem 4. We have

(i)
|Gk

n(c|)| = Cn,k,
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(ii)
|Gk

n(r|c|)| = Dn,k.

The structure of these matrices gives a transparent explanation of the recursive
formula of poly-Bernoulli numbers that was first proven by Kaneko [4]. In the
same spirit we can establish the recurrence relations concerning the poly-Bernoulli
relatives.

Theorem 5. The following recursive relations hold:

(i)

Cn,k+1 =
nX

m=1

✓
n

m

◆
Cn�m+1,k, n � 1, k � 0,

(ii)

Dn,k+1 =
nX

m=1

✓
n

m

◆
(Dn�m,k + Dn�m+1,k), n � 1, k � 1.

Proof. (i): Cn,k+1 counts the �-free matrices of size n⇥(k+1) without all-0 column.
Each row of a �-free matrix falls into exactly one of the following three types

A. starts with 0

B. starts with 1 followed only by 0s

C. starts with 1 and contains at least one more 1.

Let m denote the number of rows that start with 1. Since all columns contain at
least one 1, we have m � 1. We can choose these m rows in

�n
m

�
di↵erent ways. The

first m� 1 rows have to be of type B; otherwise a � would appear. The remaining
(n�m+1)⇥ k elements can be filled with an arbitrary �-free matrix that contains
in any column at least one 1.

(ii): If we argue the same way as before, we obtain
nX

m=1

✓
n

m

◆
Dn�m+1,k,

but we do not count matrices that contain only type A and type B rows (and do
not have type C rows). In this case the remaining (n�m+1)⇥ k elements contain
at least one all 0 row (the remainder of a type B row). Hence, these matrices are
not counted in the above formula.

To correct the enumeration (to count the missing matrices) we must add the
term

nX
m=1

✓
n

m

◆
Dn�m,k,

and obtain the recurrence relation (ii).
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2.2. Permutation Tableaux of Size n ⇥ k

Permutation tableaux were introduced by Postnikov [34] during his investigations
of totally Grassmannian cells. They received a lot of attention after Viennot [41]
showed their one-to-one correspondence to permutations, alternative tableaux, and
the strong connection to the PASEP model in statistical mechanics. Bijections were
used to enumerate permutations according to certain statistics [16], [11].

Permutation tableaux are usually defined as 01 fillings of Ferrers diagrams with
the next two conditions:

• each column contains at least one 1.

• each cell with at least one 1 above in the same column and to its left in the
same row must contain the entry 1.

In the special case when the Ferrers diagram is an n ⇥ k array, the definition is
equivalent to the definition of the set Mk

n(P ; c|) with

P =
⇢✓

0 1
1 0

◆
,

✓
1 1
1 0

◆�
.

Theorem 6. We have

(i)
|Mk

n(P )| = Bn,k,

(ii)
|Mk

n(P ; c|)| = Cn,k,

(iii)
|Mk

n(P ; r|c|)| = Dn,k.

Proof. The first statement (i) is contained in [28] without the recognition of the
relation to the poly-Bernoulli numbers. In [42] in Lemma 4.3.5 the author also
proves the formula and as a corollary he recognized that the number of n ⇥ k
patterns of permutation diagrams is the poly-Bernoulli numbers Bn,k. For details
see [42].

(ii) and (iii) are proven by the obvious binomial correspondences between |Mk
n(P )|,

|Mk
n(P ; c|)|, and |Mk

n(P ; r|c|)|.

This theorem evolved from a certain bijection between permutations and permu-
tation tableaux that we cite in a latter section.

We see that in the case of permutation tableaux the important variant is the
C-relative, the one that corresponds to the restriction of the columns. This is one
of the reasons why we think that the introduction and investigation of the variants
of poly-Bernoulli numbers is useful.
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2.3. A Further Excluded Submatrix Set

Brewbaker made extensive computations considering 01 matrices with excluded
patterns [9]. These computations suggest the following theorem.

Theorem 7. Let Q be the set

Q =
⇢✓

1 1
1 0

◆
,

✓
1 0
1 1

◆�
.

Then we have

(i)
|Mk

n(Q)| = Bn,k,

(ii)
|Mk

n(Q; c|)| = Cn,k,

(iii)
|Mk

n(Q; r|c|)| = Dn,k.

Proof. (i): Let M be a matrix in Mk
n(Q) and Qn,k = |Mk

n(Q)|. Let j1 > j2 > · · · >
jm be the indices of the rows of the 1 entries in the first column (m � 0). When
m = 0 or m = 1, the first column does not restrict the remaining n⇥ (k�1) entries;
hence, it can be filled with an arbitrary matrix in Mk�1

n (Q). When m � 2 the rows
j1, j2, . . . jm are identical; otherwise one of the submatrices in Q would appear. It
is enough to describe a (n �m + 1) ⇥ (k � 1) Q-free matrix in order to define M .
We have:

Qn,k = (n + 1)Qn,k�1 +
nX

m=2

✓
n

m

◆
Qn�m+1,k�1.

Hence, the Qn,k numbers and the poly-Bernoulli numbers satisfy the same recur-
rence relation. Induction proves (i).

(ii), (iii): The above proof of recurrence relation easily extends to show the
corresponding recurrence relations for |Mk

n(Q; c|)| and |Mk
n(Q; r|c|)|.

3. Permutations

In this section we consider classes of permutations that are enumerated by the poly-
Bernoulli numbers as well as their relatives. As usual let {1, . . . , n} = [n] and Sn

denote the set of permutations of [n].
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3.1. Vesztergombi Permutations

The permutations we consider in this section are permutations that are restricted by
constraints on the distance between the elements and their images. The enumeration
of such permutation classes is a special case of a more general problem setting that
were investigated by many authors. Given n subsets A1, A2, . . . An of [n], determine
the number of permutations ⇡ such that ⇡(i) 2 Ai for all i 2 [n]. The problem can be
formulated as the enumeration of 1–factors of a bipartite graph, as the determination
of the permanent of a 01 matrix, or as the number of rook-placements of a given
board. In general, these formulations do not make the problem easier.

We want to use the results of Lovász and Vesztergombi ([40],[32], [30]) for deriva-
tion of the inclusion-exclusion type formulas for Cn,k and Dn,k. We recall definitions
and main ideas for the sake of clearity. Detailed combinatorial proofs and analytical
derivations can be found in the cited articles.

Let f(r, n, k) denote the number of permutations ⇡ 2 Sn+k satisfying

�(k + r) < ⇡(i)� i < n + r.

Theorem 8 ([40]). For all non-negative integers n, k and r the following holds:

f(r, n, k) =
nX

m=0

(�1)n+m(m + r)!(m + r)k

⇢
n + 1
m + 1

�
.

The original proof is analytic and depends on the solution of certain di↵erential
equations for a generating function based on the f(r, n, k) numbers. The di↵erential
equations capture the recurrence relations that follow from the expanding rules of
the corresponding permanent.

Launois [29] realized the connection of this formula to the poly-Bernoulli num-
bers, namely that f(2, n� 1, k � 1) = Bn,k.

We call a permutation ⇡ of [n + k] Vesztergombi permutation if

�k  ⇡(i)� i  n

for all i 2 [n + k].

Theorem 9 ([29]). Let Vk
n denote the set of Vesztergombi permutations. Then

|Vk
n| = Bn,k.

Beyond the analytical derivation of the formula one can find combinatorial proofs
of the theorem in the literature. In [27] the authors define an explicit bijection
between Vesztergombi permutations and lonesum matrices. In [30] we find a com-
binatorial proof for a more general case that includes the theorem. For the sake of
completeness we present here the direct combinatorial proof from [7].
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Proof. (Theorem 9.) The |Vk
n| is the permanent of the (n + k) ⇥ (n + k) matrix

A = (aij), where

aij =
⇢

1 if � k  i� j  n, i = 1, . . . , n + k
0 otherwise.

The matrix A is built up of 4 blocks, two all 1 matrices (Jn,k, Jk,n), an upper
(Tn) and a lower (T k) triangular matrix. Precisely, let A be the matrix:

A =


Jn,k Tn

T k Jk,n

�
,

where Jn,k 2 {0, 1}n⇥k: Jn,k(i, j) = 1 for all i, j, Jk,n 2 {0, 1}k⇥n: Jk,n(i, j) = 1
for all i, j, Tn 2 {0, 1}n⇥n: Tn(i, j) = 1 if and only if i � j, and T k 2 {0, 1}k⇥k:
T k

ij = 1 if and only if i  j.
For a term in the expansion of the permanent we have to select exactly one 1

from each row and each column. The number of ways of selecting 1s from the
triangular matrices is given by the Stirling number of the second kind. (See proof
for instance in [30].) So if a term contains m 1’s from the upper left block Jn,k ( in
m! di↵erent ways), then it contains n �m 1’s from Tn (in

�n+1
m+1

 
di↵erent ways);

m 1’s from the lower right block Jk,n (in m! di↵erent ways) and finally k �m 1’s
from T k (in

� k+1
m+1

 
di↵erent ways). The total number of terms in the expansion of

the permanent of A is

min(n,k)X
m=1

m!
⇢

n + 1
m + 1

�
m!
⇢

k + 1
m + 1

�
.

This proves the theorem.

Suitable modifications of the definition of Vesztergombi permutations lead to the
pB–relatives. Let Vk⇤

n denote the set of permutations ⇡ of [n + k] such that

�k  ⇡(i)� i < n for all i 2 [n + k],

and let Vk⇤⇤
n denote the set of permutations ⇡ of [n + k] such that

�k < ⇡(i)� i < n for all i 2 [n + k].
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Theorem 10 ([40]). The number of the modified Vesztergombi permutations Vk⇤
n

and Vk⇤⇤
n are given by the poly–Bernoulli relatives.

(i)
|Vk⇤

n | = Cn,k,

(ii)
|Vk⇤⇤

n | = Dn,k.

Proof. In these cases the blocks Tn, T k are slightly changed. The modifications are
straightforward; hence, the details are omitted.

Corollary 1. The inclusion-exclusion type formulas of the poly–Bernoulli relatives
are as follows

(i)

Cn,k =
nX

m=0

(�1)n+mm!(m + 1)k

⇢
n + 1
m + 1

�
,

(ii)

Dn,k =
nX

m=0

(�1)n+mm!mk

⇢
n + 1
m + 1

�
.

Proof. Clearly |Vk⇤
n | = f(1, n, k � 1) and |Vk⇤⇤

n | = f(0, n, k).

In [32] Theorem 1 describes the asymptotic behavior of Dn,n.

Theorem 11 ([32]). The asymptotic of Dn,n for all n � 1 is given by the following
formula

Dn,n ⇠
s

1
2⇡(1� ln 2)

(n!)2
1

(ln 2)2n
.

3.2. Permutations With Excedance Set [k]

Permutations that have special restrictions on their excedance set are enumerated
by the poly-Bernoulli numbers as well as their relatives. We note that the connection
of this class of permutations to poly-Bernoulli numbers is not mentioned directly in
the literature.

We call an index i an excedance (resp. weak excedance) of the permutation ⇡
when ⇡(i) > i (resp. ⇡(i) � i). According to this, we define the set of excedances
(resp. the set of weak excedances) of a permutation ⇡ as E(⇡) := {i|⇡(i) > i} and
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WE(⇡) := {i|⇡(i) � i}. Further, let us define the following sets of permutations of
[n + k] with conditions on their excedance sets:

Ek
n := {⇡|⇡ 2 Sn+k and WE(⇡) � [k] and ⇡(i) = i if i 2 WE(⇡) and k < i  n + k},

Ek⇤
n := {⇡|⇡ 2 Sn+k and E(⇡) = [k]},

Ek⇤⇤
n := {⇡|⇡ 2 Sn+k and E(⇡) = [k] and ⇡(i) 6= i for all 1  i  n + k}.

The main result in this line of research is summarized in the next theorem.

Theorem 12. The following three statements hold:

(i)
|Ek

n | = Bn,k,

(ii)
|Ek⇤

n | = Cn,k,

(iii)
|Ek⇤⇤

n | = Dn,k.

Proof. There are trivial bijections between these permutations and the three vari-
ants of Vesztergombi permutations. We obtain the underlying matrices of the per-
mutation classes Ek

n , Ek⇤
n , and Ek⇤⇤

n by shifting the building blocks of the underlying
matrix A of the appropriate variant of the Vesztergombi permutation. We just
sketch the necessary ideas for (i).

In this case we need to compute the permanent of the following matrix E:

E =


Tk Jk,n

Jn,k Tn

�
,

where Jn,k 2 {0, 1}n⇥k and Jk,n 2 {0, 1}k⇥n are as above (the all 1 matrices),
Tk 2 {0, 1}k⇥k: Tk(i, j) = 1 if and only if i � j, and Tn 2 {0, 1}n⇥n: Tn(i, j) = 1
if and only if i  j.

The terms in the expansion of perE can be bijectively identified with the terms
in the corresponding expansion of the permanent A.

Next we connect Ek
n in another way to the poly-Bernoulli family; hence, we give

an alternative proof of (i).
As previously mentioned, permutation tableaux are well-studied objects and se-

veral bijections are known between permutations and permutation tableaux. We
describe here a bijection that is a bijection between the sets Mk

n(P ) and Ek
n when

applying it to the subset of permutation tableaux with rectangular Ferrers shapes.

Theorem 13. The following statement holds:

|Mk
n(P )| = |Ek

n |.
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We modify the bijection given in [11] in order to have the following properties:
excedances of the permutation correspond to column labels and fixed points of
the permutation to labels of empty rows. These modifications do not change the
bijection essentially.

Proof. (Sketch) Consider an n ⇥ k 01 matrix that avoids the submatrices in the
set P and contains at least one 1 in any column. We assign a permutation to this
matrix the following way:

Label the positions of the rows from left to right by [k], the positions of the
columns from bottom to top by [n]. We define the zig-zag path by bouncing right
or down every time we hit a 1. For i we find ⇡(i) by starting at the top of the
column i (the left of the row i) following the zig-zag path until the boundary where
we hit the row or column labeled by j. We set ⇡(i) = j.

The defined map gives a bijection between the two sets in the theorem.

In [2] the authors investigated the number of the extremal excedance set statistic,
i.e., the asymptotic of Cn,n.

Theorem 14 ([2]). The asymptotic of Cn,n for all n � 1 is given by the following
formula:

Cn,n ⇠
 

1
2 log 2

p
(1� log 2)

+ o(1)

!✓
1

2 log 2

◆2n

(2n)!.

3.3. Callan Permutations

Callan gave an alternative description of poly-Bernoulli numbers in a note in OEIS
[33]. As Callan permutations play an important role in proving combinatorial prop-
erties of pB-relatives, his description is repeated in Theorem 15.

Definition 3. Callan permutations are the permutations of [n + k] in which each
substring whose support belongs to N = {1, 2, . . . , n} or K = {n+1, n+2, . . . , n+k}
is increasing.

We call the elements in N left-value elements and those of K right-value elements.
For the sake of convenience we rewrite K ⌘ {1,2, . . . ,k} (N = {1, 2, . . . , n}).
Actually, we need just the distinction between the elements of the sets N and K
and an order in N and K.

Let Ck
n denote the set of Callan permutations.

Theorem 15. For all n � 1 and k � 0 we have

|Ck
n| =

min(n,k)X
m=0

(m!)2
⇢

n + 1
m + 1

�⇢
k + 1
m + 1

�
= Bn,k.
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Proof. (Sketch) Let ⇡ 2 Ck
n. Let e⇡ = 0⇡(k + 1), where 0 is a new left value and

k + 1 is a new right value. Divide e⇡ into maximal blocks of consecutive elements
in such a way that each block is a subset of {0} [ N (left blocks) or a subset of
K [ {k + 1} (right blocks). The partition starts with a left block (the block of
0) and ends with a right block (the block of k + 1). So the left and right blocks
alternate, and their number is the same, say m+1. Describing a Callan permutation
is equivalent to specifying m, a partition ⇧ bN of bN = {0}[N into m+1 classes (one
class is the class of 0, the other m classes are called ordinary classes), a partition ⇧ bK
of bK = K[̇{k + 1} into m+1 classes (m many of them not containing k + 1, these
are the ordinary classes), and two orderings of the ordinary classes. This proves the
claim of Callan.

The role of 0 and k + 1 were important. With the help of them we had the
information of how the left and right blocks follow each other.

Let Ck
n(⇤, l) be the set of Callan permutations of N [̇K that end with a left-value

element (and hence with a left block). The star is to remind the reader that there is
no condition on the leading block of our permutation. Similarly, let Ck

n(l, ⇤) be the
set of Callan permutations of N [̇K that start with a left-value element. Let Ck

n(l, r)
be the set of Callan permutations of N [̇K that start with a left-value element and
end with a right element. We define the sets analogously: Ck

n(r, ⇤), Ck
n(⇤, r), Ck

n(r, l),
Ck

n(l, l), and Ck
n(r, r).

If we take a Callan permutation and reverse the order of its blocks (leaving
the order within each block) we obtain a Callan permutation too. This simple
observation proves the following equalities:

|Ck
n(⇤, l)| = |Ck

n(l, ⇤)|,

|Ck
n(r, l)| = |Ck

n(l, r)|.

Now we state our next theorem that gives a new interpretation of pB-relatives
with the help of Callan permutations.

Theorem 16. We have

(i) for all n � 1 and k � 0

Cn,k = |Ck
n(⇤, l)| =

min(n,k)X
m=0

(m!)2
⇢

n + 1
m + 1

�⇢
k

m

�
,

(ii) for all n � 1 and k � 1

Dn,k = |Ck
n(l, r)| =

min(n,k)X
m=0

(m!)2
⇢

n

m

�⇢
k

m

�
.
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Proof. (i): Take a ⇡ 2 Ck
n(⇤, l) and extend it with a starting 0 (an extra left value):

b⇡ = 0⇡. One extra element is enough to control the structure of blocks, because
b⇡ starts and ends with a left block. Let m + 1 be the number of left blocks, m
is the number of right blocks (and the number of ordinary left blocks, i.e., blocks
not containing 0). The rest of the proof is a straightforward modification of the
previous one.

(ii): Without any extra element we control the starting and ending block. m
denotes the common number of left and right blocks.

The next lemma is implicit in [6]. Since it is central for us, we present it here.

Lemma 2. There is a bijection

' : Ck
n(⇤, l) ! Ck+1

n�1(⇤, r).

Proof. Take any ⇡ 2 Ck
n(⇤, l). Find n (the largest left value) in it. It is the last

element of one of the left blocks (possibly the very last element of ⇡).
Assuming that n is not the last element of ⇡, then it is followed by a right block

R and by at least one left block. Exchange n to k + 1 and move R to the end of ⇡.
The permutation that we obtain this way will be '(⇡).

If n is the last element of ⇡, then exchange it to k + 1.
In both cases the described image is obviously in Ck+1

n�1(⇤, r). In order to see that
' is a bijection, we need to construct its inverse. This can be done easily based on
k + 1.

The lemma gives us a  : Ck
n(⇤, r) ! Ck�1

n+1(⇤, l) bijection too.
In [6] this lemma was used to prove that

P
k,`:k+`=n(�1)kBk,` = 0. We use the

lemma for di↵erent purposes. First we prove the symmetry of the Cn,k numbers.

Corollary 2. The array Cn,k has the symmetry property:

Cn,k = Ck+1,n�1.

Proof. Change the role of left and right values. The two orderings remain; hence,
we obtain a Callan permutation (the blocks remain the same). This leads to a
bijection between Ck

n(⇤, l) and Cn
k (⇤, r). Using the previous lemma we obtain that

Cn,k = |Ck
n(⇤, l)| = |Cn

k (⇤, r)| = |Cn�1
k+1 (⇤, l)| = Ck+1,n�1.

The next application of our lemma will be a simple connection between poly-
Bernoulli numbers and its C-relative. It was proven in [26] with analytical methods.
Here we present a combinatorial proof.
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Theorem 17 ([26]). The following arithmetic relation between poly-Bernoulli num-
bers and poly-Bernoulli C-relatives holds

Bn,k = Cn,k + Ck,n = Cn,k + Cn+1,k�1.

Proof. We know that Bn,k = |Ck
n| and Ck

n = Ck
n(⇤, l)[̇Ck

n(⇤, r). We have a bijection
between Ck

n(⇤, r) and Ck�1
n+1(⇤, l). Hence,

Bn,k = |Ck
n| = |Ck

n(⇤, l)|+ |Ck
n(⇤, r)| = Cn,k + |Ck�1

n+1(⇤, l)| = Cn,k + Cn+1,k�1.

A similar connection is true between Cn,k and Dn,k.

Theorem 18. We have

Cn,k = Dn,k + Dn�1,k + Dn�1,k+1.

Proof. We know that Cn,k = |Ck
n(⇤, l)| and Ck

n(⇤, l) = Ck
n(r, l)[̇Ck

n(l, l). It follows
that

Cn,k = |Ck
n(⇤, l)| = |Ck

n(r, l)|+ |Ck
n(l, l)| = Dn,k + |Ck

n(l, l)|.

The second term can be handled as we handled Ck
n(⇤, l) in our lemma. We present

a bijection ' : Ck
n(l, l) ! Ck+1

n�1(l, r)[̇Ck
n�1(r, l).

Let ⇡ 2 Ck
n(l, l). Find the position of n (the largest left value) in ⇡. It is the last

element of one of the left blocks. If it is in the last block then simply rewrite it to
k + 1. If it is not in the last block then there is a following right block R and at
least one more left block. Then also rewrite it to k + 1 and at the same time move
R to the end of ⇡. The resulting permutation is '(⇡).

So far we did the same as we did in the proof of the lemma. The only problem
is that the image is not necessarily in Ck+1

n�1(l, r). It is possible that the block of n
is the first block of ⇡ and it consists of only one element. Then the lemma’s idea
leads to '(⇡) where the leading element is k + 1. In this very special case (n is the
first element of ⇡) we just erase n from ⇡ in order to obtain '(⇡).

Now it is clear that we defined a map with Ck+1
n�1(l, r)[̇Ck

n�1(r, l) as codomain.
To see that it is a bijection we construct its inverse: if we have a permutation from
Ck

n�1(r, l), then the inverse puts a starting n in front of it. If we have a permutation
from Ck+1

n�1(l, r), then the inverse works as in our lemma.
The bijection leads to a swift conclusion of our proof:

Cn,k = Dn,k+|Ck
n(l, l)| = Dn,k+|Ck

n�1(r, l)|+|Ck+1
n�1(l, r)| = Dn,k+Dn�1,k+Dn�1,k+1.
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4. Acyclic Orientations of Bipartite Complete Graphs

The connection of poly-Bernoulli numbers to acyclic orientations of the bipartite
complete graph was discovered independently in two lines of research. (An acyclic
orientation of a graph is an assignment of direction to each edge of the graph such
that there are no directed cycles.)

Cameron, Glass and Schumacher [13] investigated the problem of maximizing
the number of acyclic orientations of graphs with v vertices and e edges. They
conjectured that for v = 2n and e = n2 the extremal graph is Kn,n. Along their
research they counted the acyclic orientations of Kn,k, and established a bijection
between these orientations and lonesum matrices of size n⇥ k.

In [19], Section 4. the authors realized the connection of the permutations with
extremal excedance sets and acyclic orientations with a unique sink. Without refer-
ring to the C-relatives of poly-Bernoulli numbers they gave an interpretation of the
Cn,k numbers in terms of acyclic orientations of complete bipartite graphs. Their
proof is a specialization of general statements; we redo the version by elementary
means.

We extend their results with an interpretation for Dn,k and summarize this line
of research in the next theorem. We need some notation. Let N = {u1, u2, . . . , un},bN = N [ {u}, M = {v1, v2, . . . , vk}, and cM = M [ {v} be vertex sets. Let KA,B

denote the complete bipartite graph on A[̇B. Let Dk
n denote the set of acyclic

orientations of KN,M . Let Dk
n
0 denote the set of acyclic orientations of KN,cM ,

where v is the only sink (vertex without outgoing edge). Let Dk
n
00 denote the set

of acyclic orientations of K bN,cM , where u is the only source (vertex without ingoing
edge) and v is the only sink.

Theorem 19. The next three statements hold

(i) [13]
|Dk

n| = Bn,k,

(ii) [19]
|Dk

n
0| = Cn,k,

(iii)
|Dk

n
00| = Dn,k.

Proof. (i): An acyclic orientation of KN,M can be coded by a 01 matrix B of size
n⇥ k the following way: bi,j = 0 whenever the edge uivj is oriented from ui to vj ,
and bi,j = 1 whenever the edge uivj is oriented from vj to ui. It is easy to check
that the orientation is acyclic if and only if the corresponding matrix B does not
contain any of the submatrix of the set L; hence, B is a lonesum matrix. This
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establishes a bijection between the sets Dk
n and Lk

n. The claim follows from our
previous results.

(ii): Take a binary matrix that codes an orientation of a complete bipartite graph
KA,B. An all 0 column (the column of vertex w 2 B) corresponds to the information
that w is a sink. Hence, if we take an arbitrary orientation of KN,cM from Dk

n
0, then

its restriction to KN,M will be acyclic. Its coding binary matrix cannot contain an
all 0 column, since an all 0 column would correspond to a second sink. Note that
there is no restriction on rows. The elements of N cannot be sinks, since the edges
connecting them to v are outgoing edges.

The above argument gives us a bijection between Dk
n
0 and Lk

n(c|) that proves our
claim.

(iii): It is a straightforward extension of the previous proof.

Some classical results about the acyclic orientations of complete bipartite graphs
are as follows.

The chromatic polynomial of a graph G is a polynomial chrG(q) such that, for
a natural number k, chrG(k) gives the number of good k-colorings of G. A famous
result of Stanley [37] states that the number of the acyclic orientations of a graph
is equal to the absolute value of the chromatic polynomial of the graph evaluated
at �1. Green and Zaslavsky [22] showed that the number of acyclic orientations
with a given unique sink is (up to sign) the coe�cient of the linear term of the
chromatic polynomial (see [21] for elementary proofs). In [22] it is also proven that
the number of acyclic orientations of a graph G with a specified uv edge, such that
u is the unique source and v is the unique sink, is the derivative of the chromatic
polynomial evaluated at 1 (the necessary signing is taken). Again [21] presents an
elementary discussion of this result.

By putting together the information quoted above, we obtain the following the-
orem.

Theorem 20. The poly-Bernoulli numbers and their relatives can be expressed
using the chromatic polynomial of a complete bipartite graph as follows:

(i) ([13])
Bn,k = (�1)n+kchrKn,k(�1),

(ii) ([19])
Cn,k = (�1)n+k[q]chrKn,k+1(q),

(iii)

Dn,k = (�1)n+k

✓
d

dq
chrKn+1,k+1

◆
(1).

The chromatic polynomials of complete bipartite graphs are well-understood. We
list a few results on this subject.
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The exponential generating function of the chromatic polynomial of Kn,k (See
[38], Ex. 5.6): X

n�0

X
k�0

chrKn,k(q) · xn

n!
yk

k!
= (ex + ey � 1)q.

Several formulas for the chromatic polynomial of complete bipartite graphs are
known (See for instance [39], [19], [23]):

chrKn,k(q) =
nX

i=0

kX
j=0

⇢
n

i

�⇢
k

j

�
(q)i+j ,

where (q)` = q(q � 1)(q � 2) . . . (q � `+ 1) is the “falling factorial”, and

chrKn,k(q) =
X
m�0

0
@ nX

i=0

kX
j=0

s(i + j,m)
⇢

n

i

�⇢
k

j

�1A qm,

where s(n, k) is the (signed) Stirling number of the first kind.
Simple arithmetic leads to the following theorem.

Theorem 21. The following three statements hold:

(i)

Bn,k = (�1)n+k
n+kX
l=0

nX
i=0

kX
j=0

(�1)ls(i + j, l)
⇢

n

i

�⇢
k

j

�
,

(ii)

Cn,k = (�1)n+k
nX

i=0

k+1X
j=0

s(i + j, 1)
⇢

n

i

�⇢
k + 1

j

�
,

(iii)

Dn,k = (�1)n+k
n+k+2X

l=0

n+1X
i=0

k+1X
j=0

ls(i + j, l)
⇢

n + 1
i

�⇢
k + 1

j

�
.

We note that the formula in (ii) is implicit in [19] without mentioning the poly-
Bernoulli connection.

5. Algorithms for Generating the Series

In this section we recall algorithms that compute the arrays Bn,k, Cn,k and Dn,k.
We will see that in this context the array of the poly-Bernoulli relative Dn,k arises
naturally.
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This line of research was initiated by the Akiyama–Tanigawa algorithm that
generates the Bernoulli numbers. Let us define the array an,i recursively (based on
{a0,i}) by the rule:

an+1,i = (i + 1)(an,i � an,i+1).

Akiyama and Tanigawa [1] proved that if the initial sequence is a0,i = 1
i then an,0 is

the nth Bernoulli number. Let us denote by AT the transformation {a0,i}! {an,0}.
The Akiyama–Tanigawa theorem says that AT ({1/(i+1)}i) = {Bi}i (with B1 = 1

2 ).
Kaneko [25] showed that for any initial sequence a0,i the following holds

an,0 =
nX

i=0

(�1)ii!
⇢

n + 1
i + 1

�
a0,i.

Hence, we obtain the following theorem.

Theorem 22. For all positive integers k

(i) [25]
AT ({(i + 1)k}i) = {(�1)iCi,k}i,

(ii)
AT ({ik}i) = {(�1)iDi,k}i.

The poly-Bernoulli numbers themselves can also be generated by such simple
rules. Chen [14] changed the recursive rule in the Akiyama–Tanigawa algorithm

bn+1,i = ibn,i � (i + 1)bn,i+1,

and showed that in this case

bn,0 =
nX

i=0

(�1)ni!
⇢

n

i

�
b0,i.

Let us denote by BT the transformation {b0,i}! {bn,0}, the transformation based
on the modified recursive rule. It follows that BT ({1/(i + 1)}i) = {Bi}i (with
B1 = �1

2 ). Furthermore, we have the following theorem.

Theorem 23. For all positive integers k

BT ({(i + 1)k}i) = {(�1)iBi,k}i.

6. Diagonal Sum of Poly-Bernoulli Numbers

The diagonal sum of poly-Bernoulli numbers as well as their relatives arise in ana-
lytical, number theoretical, and combinatorial investigations [33], [26], [2]. However,
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a satisfactory formula is still missing. The diagonal sum of the poly-Bernoulli num-
bers X

n+k=N

Bn,k

are referred to in OEIS [33] A098830:

1, 2, 4, 10, 32, 126, 588, 3170, . . .

The diagonal sum of the C-relatives are also referred to in OEIS [33] A136127:

1, 2, 5, 16, 63, 294, 1585, . . .

The simple arithmetic relation between Bn,k and Cn,k of Theorem 17. implies that
(except the first entry) A098830 is exactly the double of A136127.

From the combinatorial point of view, the diagonal sum enumerates sets of the
combinatorial objects which we listed in this paper previously. However, there are
combinatorial objects where this sum itself arises naturally: there is no reason for
the division of the basic set of size N into two sets of size n and k with n + k = N .
Here we mention some of them:

• The ascending-to-max property [20] is one of the characteristic properties of
permutations that are su�x arrays of binary words. Su�x arrays play an
important role in e�cient searching algorithms of given patterns in a text.

• Cycles without stretching pairs [2] received attention because of their connec-
tion to a result of Sharkovsky in discrete dynamical systems. The occurrence
of a stretching pair within a periodic orbit implies turbulence [17]. In [17]
we find also the description of strong connections to permutations that avoid
(21� 34) or (34� 21) as generalized patterns.

• The introduction of the combinatorial non-ambiguous trees [5] that are com-
pact embeddings of binary trees in a grid, was motivated by enumeration of
parallelogram polynomios. Non-ambiguous trees are actually special cases of
tree-like tableaux, objects that are in one-to-one correspondence with permu-
tation tableaux.

From the analytical results we recall here an interesting connection to the central
binomial sum CB(k) defined as:

CB(k) =
X
n�1

nk�2n
n

� .
Borwein and Girgensohn [10, Section 2.] showed that

CB(N) = PN + QN
⇡p
3
,
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where PN and QN are explicitly given rationals.
Stephan’s computations suggest the following interesting conjecture [33]:

Conjecture 1. For all N � 0
X

n+k=N

Bn,k = 3PN .

Based on the explicit formula that was given in [10] we can reformulate Stephan’s
conjecture:

X
n+k=N

Bn,k = 3PN = (�1)N+1 1
2

N+1X
j=1

(�1)jj!
⇢

N + 1
j

� �2j
j

�
3j�1

j�1X
i=0

3i

(2i + 1)
�2i

i

� .

It would be interesting to prove the conjecture or/and to find a simple expression
for the diagonal sum.

Acknowledgement. The authors are thankful for an anonymous referee for useful
suggestions.
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