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Abstract
Using an elementary identity, we prove that for infinitely many polynomials P (x) 2
Z[X] of fourth degree, the equation

nQ
k=1

P (k) = y2 has finitely many solutions in

Z. We also give an example of a quartic polynomial for which the product of its
consecutive values is infinitely often a perfect square.

1. Introduction

Over the last few years, there has been a growing interest in identifying whether
certain product sequences contain perfect squares. In 2008 Javier Cilleruelo [1]
proved a conjecture of Amdeberhan [2], that the product (12 +1)(22 +1) · · · (n2 +1)
is a square only for n = 3. Soon after, Jin-Hui Fang [3] achieved to prove that

both products
nQ

k=1
(4k2 + 1) and

nQ
k=1

�
2k(k � 1) + 1

�
are never squares. There are

not many similar results for quadratic polynomials. However, in a recent paper [4]
two certain cases of quartic polynomials have been investigated in a similar vain.
In this paper we will prove, using elementary arguments, that there is actually an

infinite list of quartic polynomials P (x) such that the product
nY

k=1

P (k) is a square

finitely often. At the end of the paper we discuss some special examples that can
be handled by this method. We begin with a polynomial identity which is the key
ingredient throughout this article.

Lemma 1. Let f(x) = x2 +ax+ b be a quadratic polynomial. For every x 2 R, the
following formula is valid:

f
�
f(x) + x

�
= f(x)f(x + 1).
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Proof. We can verify this just by doing elementary manipulations but we will prove
the lemma using a clever observation. Since f(x) is a polynomial of second degree,
Taylor’s formula gives f

�
f(x) + x

�
= f(x) + f 0(x)f(x)

1! + f2(x). This is equal to
f(x)

�
1 + f 0(x) + f(x)

�
. But 1 + f 0(x) + f(x) = 1 + 2x + a + x2 + ax + b =

(x+1)2 +a(x+1)+ b = f(x+1). Hence we have: f
�
f(x)+x

�
= f(x)f(x+1).

This simple formula will play a key role in the proof of the main theorem. For
convenience of notation we set P (k) = f

�
f(k) + k

�
= f(k)f(k + 1). It can be seen

that P (k) = k4 +2(a+1)k3 +
�
(a+1)2 +2b+a)

�
k2 +(a+1)(2b+a)k + b2 +ab+ b.

In the proof of the main theorem, we require a and b to obey a certain restriction.
Under this restriction, we are able to prove that equation (1) shown below, has
finitely many solutions.

2. Main Results

Theorem. Let a, b,m 2 Z and a + b + 1 = m2. Then the diophantine equation
nY

k=1

P (k) = y2 (1)

has finitely many solutions, where P (k) is as above.

Proof. Using Lemma 1 we can rewrite equation (1) as

f(1)f(2)f(2)f(3) · · · f(n)f(n + 1) = y2

which reduces to f(1)f(n + 1)
nY

k=2

(f(k))2 = y2. Since f(1) = a + b + 1 = m2

we conclude that f(n + 1) = y2

m2
nQ

k=2
(f(k))2

. It becomes clear that equation (1) is

satisfied whenever f(n + 1) is a perfect square. It remains to prove that among the
values of f(k) occur finitely many squares. Write

k2 + ak + b = z2 (2)

for some z 2 Z. This means that for su�ciently large k, k2 < z2 < (k + 2a)2 if
a > 0 or, (k + 2a)2 < z2 < k2 if a < 0. (If a = 0 then equation (2) transposes to
(z�k)(z+k) = b which clearly has finitely many solutions). Both of the inequalities
yield z = k+c for some c 2 Z with |c| < |2a|. So, (2) becomes k2+ak+b = (k+c)2

which has finitely many solutions as the reader may easily verify.

It su�ces to choose some nice values for a and b in order to demonstrate the
theorem. Choosing (a, b) = (�1, 1) we have f(k) = k2 � k + 1 hence the following:
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Corollary.
nY

k=1

(k4 + k2 + 1) is a square only for n = 1.

Proof. If (a, b) = (�1, 1) then f(1) = 12. Repeating the previous arguments, it
su�ces to show that k2 � k + 1 = y2 has one solution. Indeed, if k2 � k + 1 = y2

then we must have k2  y2 < (k + 1)2 which yields y = k and so k = 1. The claim
follows.

Remark. Arguing as in the previous section, we may present an example which
shows that equation (1) has infinitely many solutions. Choosing (a, b) = (�4, 2) we
have f(k) = k2�4k+2 and P (k) =

�
k(k�3)

�2�2. We can prove that the product
nY

k=4

⇣�
k(k� 3)

�2 � 2
⌘

is a square infinitely often. Here we start with k = 4 to omit

any trivial case in which the product has negative factors. The product is a square
if f(4)f(n+1) = 2(n�1)2�4 = y2. It is a routine matter to prove that both y and
n�1 must be even. The last equation can be written as (y

2 )2�2(n�1
2 )2 = �1 which

is a special case of the negative Pell equation X2 � 2Y 2 = �1. This equation has
the fundamental solution (1, 1) and all it’s positive solutions can be found by taking
odd powers of 1 +

p
2. The positive solutions are (Xn, Yn) where Xn + Yn

p
2 =

(1 +
p

2)2n�1. The next solution is (X2, Y2) = (7, 5) which gives n = 11. As an

example we can verify that
11Y

k=4

⇣�
k(k � 3)

�2 � 2
⌘

= 2469889382242.
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