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Abstract
Let G be a finite abelian additive group. In this paper, we deal with a combinatorial
constant related to short zero-sum sequences over the abelian p-groups.

1. Introduction

Let G be a finite abelian additive group with exponent exp(G). A sequence S over
G is written as

S =
|S|Y
i=1

gi =
Y
g2G

gvg(S) with vg(S) 2 Z�0

where vg(S) is called the multiplicity of g in S and |S| denotes the length of the
sequence S. By the definition of multiplicity, we see that

|S| =
X
g2G

vg(S) 2 Z�0.

The sum of all the terms of the sequence S is given by

�(S) =
X
g2G

vg(S)g 2 G.

A sequence S over G is called a zero-sum sequence if �(S) = 0. A sequence S is
called a short zero-sum sequence if �(S) = 0 and |S| 2 [1, exp(G)]. For all integers
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k 2 Z�0 and for a sequence S over G, we define

Nk(S) =

�����
(

I ⇢ [1, |S|] :
X
i2I

gi = 0, |I| = k

)����� ,
which denotes the number of zero-sum subsequences of S of length k. The Daven-
port constant, D(G), is the minimal positive integer t such that any given sequence
S over G of length |S| � t contains a nonempty zero-sum subsequence. The con-
stant ⌘(G) is the minimal positive integer t such that any given sequence S over G
of length |S| � t contains a short zero-sum subsequence. Finally, the EGZ constant
s(G) is the minimal positive integer t such that any given sequence S over G of
length |S| � t contains a zero-sum subsequence T of length |T | = exp(G).

These constants are classical invariants attached to a finite abelian group G in
combinatorial number theory and have received a lot of attention (see for instance
[1, 2, 5, 6, 7, 9, 10, 15, 16]). When G is a cyclic group, we have ⌘(G) = |G|
and s(G) = 2|G| � 1, by the well-known Erdős-Ginzburg-Ziv theorem [4]. For this
contribution, this constant s(G) is called EGZ constant. When G ⇠= C2

p for a prime
p, Olson [13, 14] proved in 1969 that ⌘(C2

p) = 3p� 2 and C. Reiher [15] proved in
2007 that s(C2

p) = 4p� 3, which was, earlier, conjectured by Kemnitz [11] in 1983.
In general, if G ⇠= Cm�Cn with m|n is the abelian group of rank 2, then it is known
that s(G) = ⌘(G)+n�1 = 2m+2n�3 as given in [10]. In 1995, Alon and Dubiner
[1] proved that s(Cr

n)  c(r)n where c(r) is a computable constant depends only on
the rank r.

When G is of rank � 3, nothing more is known. Even when G ⇠= C3
p , for any

prime p, these constants are still unkonwn. Recently, Fan, Gao, Wang and Zhong
[7] determined the values ⌘(G) and s(G) for special type of abelian groups of rank 3.
Apart from these results, Schmid and Zhuang [16] proved that if G is a finite abelian
p-group with D(G) = 2 exp(G)� 1, then s(G) = 2D(G)� 1 = ⌘(G) + exp(G)� 1.
Moreover, they conjectured the following.

Conjecture 1. ([16]) Let G be a finite abelian p-group with D(G)  2 exp(G)� 1.
Then

s(G) = 2D(G)� 1 = ⌘(G) + exp(G)� 1.

In this article, we prove the following theorems toward Conjecture 1 for a large
class of abelian p-groups using the techniques employed in a recent paper of Gao,
Han and Zhang [8].

Theorem 1. Let H be a finite abelian p-group of rank r(H) and exp(H) = pm for
some positive integer m and for some prime p with p > 2r(H) and D(H) � 1 =
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kpm + t for some positive integer k and a non-negative integer t satisfying 0  t 
(pm � 1)/2. For all positive integers n with pn � 2(D(H)� 1), let G = Cpn �H be
the abelian p-group satisfying D(G)  2pn � 1 = 2 exp(G)� 1. Let S be a sequence
over G of length pn + 2(D(H) � 1). If Npn+j0pm

(S) = 0 for some integer j0 with
1  j0  k, then S contains a short zero-sum subsequence.

In [8], Gao, Han and Zhang proved Conjecture 1 for the abelian p-groups G
satisfying k = 1 or t 2 [pm/2, pm) (notation is as in Theorem 1). In the following
theorem, we deal with the complement of this result.

Theorem 2. Let H be a finite abelian p-group of rank r(H) and exp(H) = pm

for some positive integer m and for some prime p with p > 2r(H) and D(H) �
1 = kpm + t for some positive integer k and a non-negative integer t satisfying
0  t  (pm � 1)/2. For all positive integers n with pn � 2(D(H) � 1) + pm, let
G = Cpn � H be the abelian p-group satisfying D(G)  2pn � 1 = 2 exp(G) � 1.
Then, we have,

⌘(G)  2D(G)� exp(G) + (exp(H)� t� 1) = pn + 2(D(H)� 1) + pm � t.

Note that when G = Cpn �H, then D(G) = pn +D(H)�1. Therefore, Theorem 2
states that ⌘(G)  (2D(G)�1)�exp(G)+(exp(H)�t) for the case t 2 [0, (pm�1)/2]
and hence exp(H)� t� 1 is the extra term against Conjecture 1.

2. Preliminaries

Throughout this section, we take H to be a finite abelian p-group of rank r(H)
and exponent exp(H) = pm for some positive integer m. Also, we write D(H) �
1 = kpm + t for some positive integer k and a non-negative integer t satisfying
0  t  (pm � 1)/2. Choose any integer n such that pn � 2(D(H) � 1) and let
G = Cpn �H.

We have the following lemmas which are needed in the proof of Theorem 1 and
Theorem 2.

Lemma 2.1. ([8]) Let v = (k + 1)pm �D(H) = pm � t � 1. Let S be a sequence
over G of length |S| = pn + 2(D(H) � 1) such that S contains no short zero-sum
subsequences. For all integers i with 0  i  k � 1, let T be a subsequence of S of
length |T | = |S|� ipm. Then we have the following;

1 +
hX

u=0

✓
h

u

◆ kX
j=1

(�1)j�1Npn+jpm�u(T ) ⌘ 0 (mod p), (2.1)
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for all h 2 [0, v].

Lemma 2.2. Let v = (k+1)pm�D(H) = pm�t�1. Let S be a sequence over G of
length |S| = pn +2(D(H)�1) such that S contains no short zero-sum subsequences.
For all integers i and h satisfying 0  i  k � 1 and 0  h  v � 1, we have

✓
|S|
ipm

◆
+

kX
j=1

(�1)j�1
hX

u=0

✓
h

u

◆✓
|S|� pn � jpm + u

ipm

◆
Npn+jpm�u(S) ⌘ 0 (mod p).

(2.2)

Proof. This lemma is implicitly proved in Lemma 3.1 (3.3) of [8]. In order to get
(2.2), we take a subsequence T of S such that |T | = |S|� ipm for a given integer i
with 0  i  k � 1. We can get

1 +
hX

u=0

✓
h

u

◆ kX
j=1

(�1)j�1Npn+jpm�u(T ) ⌘ 0 (mod p).

Now we sum over all the subsequences T with |T | = |S|� ipm and we get

X
T,|T |=|S|�ipm

0
@1 +

hX
u=0

✓
h

u

◆ kX
j=1

(�1)j�1Npn+jpm�u(T )

1
A ⌘ 0 (mod p). (2.3)

Since each subsequence W of S with |W |  |S|� ipm can be extended to a subse-
quence T of length |T | = |S|� ipm in

✓
|S|� |W |
|T |� |W |

◆
=
✓
|S|� |W |
|S|� |T |

◆
=
✓
|S|� |W |

ipm

◆

ways, by starting with 0 length subsequence W of S, we see that the number of

ways to get subsequences T of S with |T | = |S|� ipm is
✓

|S|
ipm

◆
. Then, using this

and expanding the sum in (2.3), we arrive at (2.2).

Corollary 2.2.1. Let S be a sequence over G as defined in Lemma 2.2. For all
integers i with 0  i  k � 1, we have

✓
|S|
ipm

◆
+

kX
j=1

(�1)j�1

✓
|S|� pn � jpm

ipm

◆
Npn+jpm

(S) ⌘ 0 (mod p). (2.4)

Proof. Put h = 0 in Lemma 2.2 to get the result.
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Theorem 2.3. ([12]) Let p be a prime number. Let a and b be positive integers
with a = anpn + an�1pn�1 + · · · + a0 with ai 2 {0, 1, . . . , p � 1} and b = bnpn +
bn�1pn�1 + · · · + b0 with bi 2 {0, 1, . . . , p� 1}. Then✓

a

b

◆
⌘
✓

an

bn

◆✓
an�1

bn�1

◆
· · ·
✓

a0

b0

◆
(mod p).

Theorem 2.4. ([8]) Let n and k be positive integers with 1  2k  n. Let A be the
following (k + 1)⇥ (k + 1) matrix with positive integers

A =

0
BBBB@

1 1 · · · 1�n
1

� �n�1
1

�
· · ·

�n�k
1

�
�n
2

� �n�1
2

�
· · ·

�n�k
2

�
· · · · · ·�n
k

� �n�1
k

�
· · ·

�n�k
k

�

1
CCCCA .

Then, the determinant of A is

det(A) =

 
kY

t=1

t!

!�1 Y
1i<jk

(j � i).

3. Proof of Theorem 1

Proof of Theorem 1. Let S be a sequence over G of length |S| = pn + 2(D(H)� 1).
By the assumption, for some integer j0 with 0  j0  k, we have Npn+j0pm

(S) = 0.
Without loss of generality, we assume that j0 = k and hence Npn+kpm

(S) = 0, as
the proofs of the other cases are similar. We need to prove that S contains a short
zero-sum subsequence. On the contrary, we assume that S contains no short zero-
sum subsequences. Hence, by Corollary 2.2.1, for all integers i with 0  i  k � 1
and by the assumption with j0 = k, we get

✓
|S|
ipm

◆
+

k�1X
j=1

(�1)j�1

✓
|S|� pn � jpm

ipm

◆
Npn+jpm

(S) ⌘ 0 (mod p). (3.1)

Note that for all integers j with 1  j  k � 1, we have

|S|� pn � jpm = pn + 2(kpm + t)� pn � jpm = (2k � j)pm + 2t.

Since D(H)�1 = kpm+t for some integer t with 0  t  (pm�1)/2 and p > 2r(H),
we see that

D(H)� 1  r(H) exp(H)� r(H) < r(H)pm 
⇣p

2
� 1
⌘

pm =) k  p

2
� 1.
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Therefore, for all integers j with 1  j  k � 1, we see that 2k � j < 2k < p and
every integer i < k < p. Since 2t  pm � 1 < pm, by Theorem 2.3, we get

✓
|S|� pn � jpm

ipm

◆
⌘
✓

2k � j

i

◆✓
2t
0

◆
⌘
✓

2k � j

i

◆
(mod p) (3.2)

for all integers j with 1  j  k � 1 and for all integers i with 0  i  k � 1. Also,
since |S| = pn + 2kpm + 2t and 2t < pm < pn, by Theorem 2.3, we get

✓
|S|
ipm

◆
⌘
✓

2k
i

◆
(mod p) (3.3)

for all integers i with 0  i  k � 1. Therefore, by (3.1), (3.2) and (3.3), we get

✓
2k
i

◆
+

k�1X
j=1

✓
2k � j

i

◆
(�1)j�1Npn+jpm

(S) ⌘ 0 (mod p) (3.4)

for all i = 0, 1, . . . , k � 1. Now, put

Xj = (�1)j�1Npn+jpm

(S)

for all j = 1, 2, . . . , k � 1 and X0 = 1 as variables modulo p. Then, by putting
i = 0, 1, 2, . . . , k � 1 in (3.4), we get a system of k linear equations in k variables
modulo p as follows.

X0 + X1 + X2 + · · · + Xk�1 = 0;✓
2k
1

◆
X0 +

✓
2k � 1

1

◆
X1 +

✓
2k � 2

1

◆
X2 + · · · +

✓
k + 1

1

◆
Xk�1 = 0;

· · · · · · · · ·

· · · · · · · · ·✓
2k

k � 1

◆
X0 +

✓
2k � 1
k � 1

◆
X1 +

✓
2k � 2
k � 1

◆
X2 + · · · +

✓
k + 1
k � 1

◆
Xk�1 = 0.

Note that the coe�cient matrix of the above system of linear equations is nothing
but A in Theorem 2.4 with n = 2k and k = k � 1. Therefore, by Theorem 2.4, the
determinant of the coe�cient matrix is non-zero modulo p which forces the system
to have only the trivial solution modulo p. That is,

X0 ⌘ X1 ⌘ · · · ⌘ Xk�1 ⌘ 0 (mod p),

which is a contradiction to X0 = 1 6⌘ 0 (mod p). This proves the result.
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4. Proof of Theorem 2

To prove Theorem 2, first we need to extend Lemma 2.2 so that it holds true for
all i 2 [0, k] and for all h 2 [0, v), when |S| = pn + 2(D(H)� 1) + pm � t for some
integer t satisfying 0  t  (pm � 1)/2 (notation is as in Section 2). Recall that H
is an abelian p-group of rank r(H) and exponent pm. Let n be a positive integer
such that pn � 2(D(H)� 1) + pm and G = Cpn �H.

Lemma 4.1. Let S be a given sequence over G of length |S| = pn +2(D(H)� 1)+
pm� t where t is an integer satisfying D(H)�1 = kpm + t with 0  t  (pm�1)/2.
Let v = (k+1)pm�D(H) = pm�t�1. If S contains no short zero-sum subsequences,
then for all integers h and i satisfying 0  h < v and 0  i  k, we have

✓
|S|
ipm

◆
+

kX
j=1

(�1)j�1
hX

u=0

✓
h

u

◆✓
|S|� pn � jpm + u

ipm

◆
Npn+jpm�u(S) ⌘ 0 (mod p).

(4.1)

Proof. The proof of this lemma is similar to the proof of Lemma 3.1 of [8]. Let S
be the given sequence over G of length |S| = pn + 2(D(H) � 1) + pm � t and S
contains no short zero-sum subsequences.

Claim 1. Na(S) = 0 for all integers a satisfying 1  a  pn or pn+D(H)  a  |S|.
Since S contains no short zero-sum subsequences, we see that Na(S) = 0 for all

integers a satisfying 1  a  pn. By the argument of Lemma 3.1 of [8], we see
that Na(S) = 0 for all integers a satisfying pn + D(H)  a  |S| � pm + t. Thus,
to prove Claim 1, we need to prove that Na(S) = 0 for all integers a satisfying
|S|� pm + t + 1  a  |S|.

Let W be a zero-sum subsequence of S of length |W | = a for some integer a
satisfying |S| � pm + t + 1  a  |S|. Since D(G) = pn + D(H) � 1 (by [13]) and
|W | = a � |S| � pm + t + 1 = pn + 2(D(H) � 1) + 1, we see that W contains at
least two disjoint zero-sum subsequences W1 and W2 such that W = W1W2. Since
N b(S) = 0 for all integers 1  b  pn, we see that |W1| � pn + 1 and |W2| � pn + 1
and hence |W | � 2pn + 2, which is a contradiction because |S| < 2pn + 2 (as by
hypothesis, pn � 2(D(H)� 1) + pm). This proves Claim 1.

Using Claim 1, the proof of Lemma 3.1 (3.1) of [8] yields Lemma 2.1 in Section
2 for the sequence S which in turn produces the congruence (4.1) for all integers i
and h satisfying 0  i  k � 1 and 0  h < v. Hence, it is enough to prove the
congruence (4.1) for i = k and for all integers h with 0  h < v. Let T be any
subsequence of S of length |T | = |S|� kpm. Then consider the sequence T0h for a
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given integer h with 0  h < v. Note that

|T0h| = |T | + h = |S|� kpm + h

= pn + 2(D(H)� 1) + pm � t� kpm + h

= pn + D(H)� 1 + pm + D(H)� 1� kpm � t + h

� D(G) + pm � 1.

Then the rest of the proof is just the same as that of Lemma 3.1 in [8].

Proof of Theorem 2. Let H be a finite abelian p-group of rank r = r(H) and the
exponent pm. Let D(H) � 1 = kpm + t for some positive integer k and for some
integer t with 0  t  (pm � 1)/2. Let n be an integer such that pn � 2(D(H) �
1) + pm and let G = Cpn �H.

To prove ⌘(G)  pn + 2(D(H) � 1) + pm � t, we let S be a sequence over G
of length |S| = pn + 2(D(H) � 1) + pm � t and we prove that S contains a short
zero-sum subsequence.

Suppose S contains no short zero-sum subsequences. Hence, by Lemma 4.1 with
h = 0, we get

✓
|S|
ipm

◆
+

kX
j=1

(�1)j�1

✓
|S|� pn � jpm

ipm

◆
Npn+jpm

(S) ⌘ 0 (mod p), (4.2)

for all integers i with 0  i  k. Note that for all integers j satisfying 0  j  k,
we have

|S|� pn � jpm = pn + 2(kpm + t) + pm � t� pn � jpm = (2k + 1� j)pm + t.

Since D(H)�1 = kpm+t for some integer t with 0  t  (pm�1)/2 and p > 2r(H),
we see that

D(H)� 1  r(H) exp(H)� r(H) < r(H)pm 
⇣p

2
� 1
⌘

pm implies k  p

2
� 1.

Therefore, for all integers j with 1  j  k, we see that 2k + 1 � j < 2k + 1 < p
and every integer i  k < p/2. Also, since |S| = pn + 2(D(H) � 1) + pm � t =
pn +2(kpm + t)+ pm� t = pn +(2k +1)pm + t, and 2t  pm� 1 < pm, by Theorem
2.3, we get✓

|S|� pn � jpm

ipm

◆
⌘
✓

2k + 1� j

i

◆✓
t

0

◆
⌘
✓

2k + 1� j

i

◆
(mod p)

for all integers j satisfying 1  j  k. Also, since |S| = pn + (2k + 1)pm + t and
2t < pm < pn, by Theorem 2.3, we get✓

|S|
ipm

◆
⌘
✓

2k + 1
i

◆
(mod p)
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for all integers i with 0  i  k. Therefore, by (4.2), we get

✓
2k + 1

i

◆
+

kX
j=1

✓
2k + 1� j

i

◆
(�1)j�1Npn+jpm

(S) ⌘ 0 (mod p) (4.3)

for all integers i satisfying i = 0, 1, . . . , k.

Now, put
Xj = (�1)j�1Npn+jpm

(S)

for all j = 1, 2, . . . , k and X0 = 1 as variables modulo p. By (4.3), we have the
following system of linear equations in k + 1 variables modulo p.

X0 + X1 + X2 + · · · + Xk = 0;
✓

2k + 1
1

◆
X0 +

✓
2k + 1� 1

1

◆
X1 +

✓
2k + 1� 2

1

◆
X2 + · · · +

✓
2k + 1� k

1

◆
Xk = 0;

· · · · · · · · ·

· · · · · · · · ·✓
2k + 1

k

◆
X0 +

✓
2k + 1� 1

k

◆
X1 +

✓
2k + 1� 2

k

◆
X2 + · · · +

✓
2k + 1� k

k

◆
Xk = 0.

Note that the coe�cient matrix of the above system of linear equations is nothing
but A in Theorem 2.4 with n = 2k + 1 and k = k. Therefore, by Theorem 2.4, the
determinant of the coe�cient matrix is non-zero modulo p which forces the system
to have only the trivial solution modulo p. That is,

X0 ⌘ X1 ⌘ · · · ⌘ Xk ⌘ 0 (mod p),

which is a contradiction as X0 = 1 6⌘ 0 (mod p). This proves the theorem.

Acknowledgement. We thank the referee for carefully going through the earlier
version of the manuscript and gave useful suggestions to improve the presentation.
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