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Abstract
For any a1, a2, b 2 Z, with b 6= 0, we define

Wa1,a2 := U(a1, b) + U(a2, b),

where U(ai, b) is the Lucas sequence of the first kind defined by

u0 = 0, u1 = 1, and un = aiun�1 + bun�2 for all n � 2,

and the nth term of Wa1,a2 is the sum of the nth terms of U(a1, b) and U(a2, b).
In this article, we prove that there exist infinitely many integers b and a1, a2 > 0,
with b(a1 + a2) ⌘ 1 (mod 2), for which there exist infinitely many positive integers
k such that each term of both of the shifted sequences |Wa1,a2 ± k| is composite
and no single prime divides all terms of these sequences. We also show that when
b = 1, there exist infinitely many integers a 6= 0 for which there exist infinitely many
positive integers k such that both of the shifted sequences W1,a±k also possess this
primefree property.

1. Introduction

For a given sequence S = (sn)n�0, and k 2 Z, we let S + k denote the k-shifted
sequence (sn + k)n�0. We say that S+k is primefree if |sn + k| is not prime for all
n � 0 and, to rule out trivial situations, we also require that S+k is not a constant
sequence, and that no single prime divides all terms of S + k. Several authors have
investigated finding infinitely many values of k for various sequences S such that
the shifted sequences S + k and S � k are simultaneously primefree [8, 10, 7]. Such
values of k are also related to a generalization of a conjecture of Polignac [2, 9]. In
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this article, we investigate this primefree situation where the sequence to be shifted
is actually a sum of Lucas sequences. For nonzero a, b 2 Z, we let

U := U(a, b) = (un)1n=0

denote the Lucas sequence of the first kind defined by

u0 = 0, u1 = 1, and un = aun�1 + bun�2 for all n � 2. (1)

Definition 1. For a fixed nonzero integer b, and any pair (a1, a2) of integers, we
define

Wa1,a2 := U(a1, b) + U(a2, b),

where Wa1,a2 = (wn)1n=0, and wn is the sum of the nth term of U(a1, b) and the
nth term of U(a2, b).

One reason we have chosen to investigate shifted sums of these particular se-
quences is that the Lucas sequences have a long and rich history commencing in
1878 with the papers of Lucas [12, 13, 14]. Consequently, they are much better
understood than many other sequences. For example, the terms of the Lucas se-
quences that possess a primitive divisor (primes that divide a term but do not divide
any prior term) are completely known, thanks to the work of many mathematicians
beginning with Carmichael [3] in 1913 and culminating with the deep results of Bilu,
Hanrot and Voutier [1] in 2001. Another important aspect of the Lucas sequences
that is particularly useful in our investigations is the concept of periodicity modulo
a prime, which is explained in detail in Section 2.

Our main results are the following:

Theorem 2. Let b be a fixed odd integer. Then there exist infinitely many pairs
(a1, a2) of positive integers, with a1 + a2 odd, for which there exist infinitely many
positive integers k such that each of the shifted sequences Wa1,a2 ± k is primefree.

Theorem 3. Let b = 1 and let p 62 {2, 17, 19} be prime. If a ⌘ m (mod 646p),
where 0  m  646p� 1, and m satisfies one of the 16 systems of congruences

x ⌘ 0 (mod 2)
x ⌘ �1 (mod p)
x ⌘ r (mod 17), where r 2 {±1,±4,±5,±6}
x ⌘ ±4 (mod 19),

(2)

then there exist infinitely many positive integers k such that each of the sequences
W1,a ± k is primefree.

In particular, if p = 3 in Theorem 3, then there exist infinitely many positive
integers k such that each of the sequences W1,a ± k is primefree for every a ⌘ m
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(mod 1938), where

m 2 {80, 566, 650, 764, 794, 878, 992, 1106, 1220,
1364, 1478, 1592, 1706, 1790, 1820, 1934}.

2. Preliminaries

We let U be the Lucas sequence, as defined in (1). Although most often we write
un for the nth term of U := U(a, b), occasionally we write un(a, b), or un(a) when
b is fixed, for contextual clarity. We define the discriminant D(a, b) of U(a, b) as

D(a, b) := a2 + 4b.

For a fixed b, when the context is clear, we simply write D(a) instead of D(a, b), as
in the proof of Theorem 3.

Next, we present some basic nomenclature and facts concerning the periodicity
of U modulo a prime p, most of which can be found in [5]. We say that U is purely
periodic modulo p if there exists t 2 N such that

un+t ⌘ un (mod p) (3)

for all n � 0. The minimal value of t (if it exists) such that (3) holds, is called
the least period, or simply the period, of U modulo p, and we denote it as Pp :=
Pp(U(a, b)). It is well–known that U is purely periodic modulo p if b 6⌘ 0 (mod p)
(see, for example, [4]), and we assume throughout this article that this condi-
tion holds. The restricted period of U modulo a prime p, which we denote Rp :=
Rp(U(a, b)), is the least positive integer r such that

ur ⌘ 0 (mod p) and un+r ⌘Mpun (mod p)

for all n � 0, and some nonzero residue Mp := Mp(U(a, b)) modulo p, called the
multiplier of U modulo p. In addition, Pp ⌘ 0 (mod Rp), and Ep := Ep(U(a, b)) =
Pp/Rp is the order of Mp modulo p [4]. Furthermore, if j � 0 is a fixed integer,
then it is easy to see that

un+jRp ⌘ (Mp)
j un (mod p),

for all n � 0. We also define �p := �p (U(a, b)) to be the cycle of U modulo p. The
previously-discussed ideas can be extended easily to the sequence Wa1,a2 and we do
so in the sequel. For brevity of notation, we occasionally write simply D, P , R, M ,
E and � for the previously defined quantities when the context is clear.

The following lemma gives some facts concerning the symmetry appearing in �.
A proof can be found in [15].
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Lemma 1. Let p be an odd prime and let j � 0 be a fixed integer. Then

uRj�n ⌘ (�1)n+1M junb�n (mod p) for 0  n  Rj

uPj�n ⌘ (�1)n+1unb�n (mod p) for 0  n  Pj

For an odd prime p, we recall the Legendre symbol

✓
x

p

◆
=

8><
>:

1 if x is a quadratic residue modulo p

�1 if x is a quadratic nonresidue modulo p

0 if x ⌘ 0 (mod p).

Lemma 2. Let U(a, b) be a Lucas sequence as defined in (1), and let p be an odd
prime. Then

1. R > 1

2. un ⌘ 0 (mod p) if and only if n ⌘ 0 (mod R)

3. p�
⇣

D
p

⌘
⌘ 0 (mod R)

4. if D 6⌘ 0 (mod p), then
p�(D

p )
2 ⌘ 0 (mod R) if and only if

⇣
�b
p

⌘
= 1

5. if
⇣

D
p

⌘
= 1, then p ⌘ 1 (mod P ).

Proof. Note that R > 1 since u1 = 1. A proof of parts (2) and (4) can be found in
[11], while a proof of parts (3) and (5) can be found in [3].

The following lemma follows from Lemma 3 in [6].

Lemma 3. Let b 6= 0 be a fixed integer, and let a > 0 be an integer such that
D(a, b) > 0. Then the sequence U(a, b) is nondecreasing for n � 0 and strictly
increasing for n � 2.

Lemma 4. Let b 6= 0 be a fixed integer. Let un(a, b) denote the nth term of U(a, b).
Then

un(�a, b) = (�1)n+1un(a, b).

Proof. This follows from the Binet formulas for U(a, b) and U(�a, b).
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3. The Proof of Theorem 2

Proof of Theorem 2. Let b be a fixed odd integer. Let p be an odd prime such that⇣
�b
p

⌘
= 1 and let A1 2 Z, with 1  A1  p� 1 be a solution to

x2 ⌘ �b (mod p). (4)

Note that A2 = p�A1 is also a solution to (4). Without loss of generality, assume
that A1 ⌘ 0 mod 2, so that A2 ⌘ 1 (mod 2). Let

a1 ⌘ A1 (mod 2p) and a2 ⌘ A2 (mod 2p)

be positive integers with (a1, a2) 6= (A1, A2), such that

D(a1, b) > 0 and D(a2, b) > 0. (5)

Then a1 = A1 + z1p and a2 = A2 + z2p, for some even integers z1, z2 > 0. Since

U(a1, b) ⌘ (0, 1, 0, 1, 0, 1, . . .) (mod 2) and
U(a2, b) ⌘ (0, 1, 1, 0, 1, 1, . . .) (mod 2),

we see that
P2 (U(a1, b)) = 2 and P2 (U(a2, b)) = 3.

Thus,
P2(Wa1,a2) = 6 and �2(Wa1,a2) = [0, 0, 1, 1, 1, 0]. (6)

Since a2
1 + b ⌘ 0 (mod p) and a2 ⌘ �a1 (mod p), we have by Lemma 4 that

U(a1, b) (mod p) =
�
0, 1, a1, 0,M, a1M, 0,M2, a1M

2, 0,
M3, a1M

3, 0,M4, a1M
4, 0, . . .

�
(7)

and

U(a2, b) (mod p) =
�
0, 1,�a1, 0,�M,a1M, 0,M2,�a1M

2, 0,
�M3, a1M

3, 0,M4,�a1M
4, 0, . . .

�
, (8)

where M ⌘ a1b 6⌘ 0 (mod p) is the multiplier of U(a1, b) modulo p. Then both
U(a1, b) and U(a2, b) have restricted period modulo p equal to 3. Let wn be the nth
term of Wa1,a2 . From (7) and (8), we see for j � 0 that

w6j ⌘ w6j+2 ⌘ w6j+3 ⌘ w6j+4 ⌘ 0 (mod p),
w6j+1 ⌘ 2M2j (mod p) and w6j+5 ⌘ 2a1M

2j+1 (mod p).
(9)
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It now follows from (6) and (9) that

wn ⌘
(

0 (mod 2) when n ⌘ 0, 1, 5 (mod 6)
0 (mod p) when n ⌘ 0, 2, 3, 4 (mod 6).

(10)

For any

k 2 A =
⇢

2pz

���� z � 1
�

,

we conclude from (10) that each term of Wa1,a2 + k is divisible by at least one
prime in {2, p}. By (5) and Lemma 3, we deduce that Wa1,a2 is strictly increasing
for n � 0. Thus, for any su�ciently large choice of k 2 A, it follows thatWa1,a2+k is
primefree. Observe that the gap between consecutive terms of Wa1,a2 is increasing,
while the gap between consecutive terms in the arithmetic progression A is fixed.
This phenomenon allows us to choose k 2 A su�ciently large so that for some N ,
we have

wN < k < wN+1, k � wN > p and wN+1 � k > p.

Consequently, no term of either sequence Wa1,a2 ± k is zero or prime.

We give an example to illustrate Theorem 2.

Example 1. Let b = 3 and p = 13. Note that
��3

13

�
= 1. Let A1 = 6 and A2 = 7.

Then
A2

1 ⌘ A2
2 ⌘ �3 (mod 13) and A2 = 13�A1.

Let
a1 = 32 ⌘ A1 (mod 26) and a2 = 33 ⌘ A2 (mod 26).

Observe that

(32, 33) 6= (6, 7) , D(32, 3) > 0 and D(33, 3) > 0.

Then, some simple calculations reveal:

�2(W32,33) = [0, 0, 1, 1, 1, 0], (11)

U(32, 3) (mod 13) = (0, 1, 6, 0, 5, 4, 0, 12, 7, 0, 8, 9, 0, 1, 6, 0, 5, . . .) , (12)

U(33, 3) (mod 13) = (0, 1, 7, 0, 8, 4, 0, 12, 6, 0, 5, 9, 0, 1, 7, 0, 8, . . .) . (13)

Adding (12) and (13) we see that

�13(W32,33) = [0, 2, 0, 0, 0, 8, 0, 11, 0, 0, 0, 5]. (14)

Then, by layering two juxtaposed copies of (11) on top of one copy of (14), we have
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n 0 1 2 3 4 5 6 7 8 9 10 11
�2 (W32,33) 0 0 1 1 1 0 0 0 1 1 1 0
�13 (W32,33) 0 2 0 0 0 8 0 11 0 0 0 5

from which we can deduce (10). Finally, choosing

k 2 A =
⇢

26z
���� z � 1

�
,

with k su�ciently large, we see from (10) that each term of each sequence |W32,33 ± k|
is divisible by, but not equal to, at least one prime in {2, 13}.

4. The Proof of Theorem 3

The Proof of Theorem 3. Let p 62 {2, 17, 19} be prime, let b = 1, and suppose that
a is an integer such that a ⌘ m (mod 646p), where 0  m  646p � 1, and m
satisfies one of the 16 systems of congruences in (2). Recall that

W1,a := U(1, 1) + U(a, 1),

where U(1, 1) is the Fibonacci sequence. Let un(1) denote the nth term of U(1, 1),
and let un(a) denote the nth term of U(a, 1).

Since a ⌘ 0 (mod 2), it follows that wn ⌘ 0 (mod 2) exactly when n ⌘ 0, 1, 5
(mod 6). Since a ⌘ �1 (mod p), we have from Lemma 4 that wn ⌘ 0 (mod p) if
n ⌘ 0 (mod 2). By inspection,✓

D(a)
17

◆
= �1() a ⌘ m (mod 17), where m 2 {±1,±4,±5,±6}.

Then, by Lemma 2, we have that u9n(a) ⌘ 0 (mod 17) for all n � 0, if
⇣

D(a)
17

⌘
= �1.

Consequently,
w9n ⌘ 0 (mod 17) for all n � 0,

if a ⌘ m (mod 17), where m 2 {±1,±4,±5,±6}. Again by inspection, u3(1) = 2,
u3(±4) = 17 and ✓

D(1)
19

◆
=

✓
5
19

◆
= 1 =

✓
D(±4)

19

◆
=

✓
1
19

◆
.

It now follows from Lemma 2 that if a ⌘ m (mod 19), where m 2 {1,±4}, then

R19 ⌘ 2 (mod 4), 18 ⌘ 0 (mod P19) and M ⌘ 1 (mod 19).

Thus, from Lemma 1, if n ⌘ m (mod 18), where m 2 {3, 15}, we see that

un (1) ⌘ 2 (mod 19) and un (±4) ⌘ 17 (mod 19).
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Hence, wn ⌘ 2 + 17 ⌘ 0 (mod 19). In summary, we have shown

wn ⌘

8>>>><
>>>>:

0 (mod 2) when n ⌘ 0, 1, 5 (mod 6)
0 (mod p) when n ⌘ 0 (mod 2)
0 (mod 17) when n ⌘ 0 (mod 9)
0 (mod 19) when n ⌘ 3, 15 (mod 18),

(15)

which implies that wn is divisible by at least one prime in the set {2, p, 17, 19}, for
all n � 0. Then, using an argument similar to the one used in the proof of Theorem
2, it can be shown that for any su�ciently large value of z, no term of each of the
sequences |W1,a ± k| is zero or prime, where

k = 2 · p · 17 · 19 · z = 646pz.

Consequently, each of the sequences W1,a ± k is primefree provided

a ⌘ m (mod 646p), with 0  m  646p� 1,

and m satisfies one of the 16 systems of congruences in (2).

We give an example to illustrate Theorem 3.

Example 2. Let p = 3. Then by Theorem 3, there exist infinitely many positive
integers k = 1938z such that each of the sequences W1,a ± k is primefree for every
a ⌘ m (mod 1938), where

m 2 {80, 566, 650, 764, 794, 878, 992, 1106, 1220,
1364, 1478, 1592, 1706, 1790, 1820, 1934}.

Remark 1. The smallest nonnegative value of m that satisfies all the congruences
in a particular system in (2) for any prime p 62 {2, 17, 19} is m = 4, when p = 5.
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