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Abstract

Two one-parameter families of maps are described which give a generalization of the
a/b-expansion which are considered in the paper Continued fraction expansions with
variable numerators by K. Dajani, C. Kraaikamp, and N. D. S. Langeveld. These
families are chosen in a way such that the invariant densities can be given explicitly.

1. Introduction

In [1], so-called a/b-expansions were considered. This expansion and some related

continued fractions can be seen as a composition of the continued fraction map

1
Ta+1

1 1
Tr=——a <zr<-—a>1
x a

and a second map S : [0,1] — [0, 1]. Take a fixed integer N > 2. The map

j j+1
SNx:Nx—j,%§x<%,O§j<N

describes expansions to base N. Then the composition

(SNoTn:%—(NaH):g— L%J

gives the proper N-expansions. We note that for Sy o T" the invariant density

is known.
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If we replace N by a = a(z) = L%J and consider
S.x = ax — j,

the composition
a a a
S,oTax=——(a®+j)=——|—
(SwoT)r =2 —(@+5) =2~

is exactly the a/b-expansion of the paper [1].

It is almost obvious that the map S, 0T is ergodic and admits an invariant density.
However, an explicit form of the density is unknown. Therefore one may ask if a
change of the map S gives a better result. A standard method is to try to find a
dual algorithm. The dual algorithm has been used implicitly in Lévy’s approach to
the invariant measure for regular continued fractions (see [2]). Its definition is as
follows.

Let (B,T) be a continued fraction with matrices {a(k) : k € I}, I = N or
I = Ny. These matrices describe the continued fraction as piecewise fractional
linear maps. The continued fraction (B#,T#) is called a dual algorithm if the
following conditions hold:

(a) The block (ki,ks,...,k,) is an admissible sequence of digits for (B,T) if
and only if the block (ky,kn—1,...,k1) is an admissible sequence of digits for
(B#,T#).

(b) There is a partition B#(k), k € I of B¥ such that the associated matrices
a? (k) of T# restricted B# (k) are the transposed matrices of a(k).

Then we use the function

1

K(z,y): = .
(@) (1+ 2191 + @2y2)?

Let B(k) be the set of all numbers € B whose first digit in the given continued
fraction expansion is k. If V(k) denotes the inverse map of 7' restricted to the set
B(k) and w(k;-) its Jacobian then a straightforward calculation shows

K(V(k)a,y)w(k;x) = K (2, VF (k)y)w™ (k5 y).
The easiest way to obtain an invariant density is to show that the dual algorithm
T# is isomorphic to T by a fractional linear map

_ B+ Dt

() = A+ Bt

which means
YoT =T# oy
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If we suppose that TB(k) = B for all digits k then it is easy to show that
hz)= | K(z,y)dy
B#

is an invariant density for T (see [4]).
The Kuzmin equation

h(z) = Z h(V (k)z)w(k; z)

kel
is verified as follows,

S h(Vk)z)w(k;z) =Y | KV #e),g)w(k; 2)dy

kel kel

=> | K@ V*#(kyw*(ky)
kel Y B*

->/ ) ey = | Ky =)

kel

In our case we apply this device to S oT. If the map S oT is given piecewise by

matrices
_ a; B
M= ( Vi O )

then this amounts to the equation

(C) A B a; B _ Qi i A B
B D Yi (5z o ﬁi (57; B D )
In this case in [3] the dual algorithm was called a natural dual. More information
on the dual algorithm can be found in [2] and [4]. If S o T]0,1] = [v,d] then the
invariant density is given as
d Y
hz) = —F7— 7——.
(@) 14+dz 14z
J j+1

In this note we restrict to piecewise linear maps S with time-1-partition [, 3= ,

0 < j < k, and show that there are only two types of maps S such that S o7 has a
natural dual.

2. The Main Result

As a kind of easy exercise we first consider the map

S e —jk + je + (k* — ke)z
e = k + je — kex
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with a fixed parameter 0 < ¢ < k. The equation (C) is satisfied with
( k—e—-1 ¢ )
M= > ).
€ k—e

—k? + ke + (ak® — ake + jk — je)w
S 5 T - N 3
(Ske o T ke — (ake + k + je)z

For the composed map

equation (C) is also solvable with

M= k—c¢ €
o € 1Jr,f_2E ’

For ¢ = 0 (and k = N) we obtain the known density for N-expansions. However, if
we replace k by a = a(z) = | 1] and form

—a? + ag + (a® — a’e + ja — je)w
ae — (a2e + a + je)x

(SgeoT)x =

i

we see that equation (C) has no solution.

Equation (C) leads to

—A(a’e + a + je) + B(a® — a*c + ja — je) = Bas + D(—a® + ag).
We compare the terms containing j and we get
—Ase+ B(a—¢)=0.

Since a —e # 0 we get A = a—¢ and B = ¢, and hence A+ B = a, a contradiction.

The main theorem of this note is as follows.
Theorem 1. (a) There is a family of maps which depend on a parameter p > —1

_Jitme J

i+ 1
=t S I 0cj<a
a+ex a a
2 2 :
pa‘ —a a® +ap) +ap .
E= 57—, = — = e+e
ey a?+j+1 M=atetel

such that R, oT has a natural dual.
(b) There is a family of maps which depend on a parameter p > —1:

i+1+ Xz j i+ 1
Qp:wﬁSJKL,OSKG
a+ Kkx a a
pa’ +a —a? + apj
K= —, A= .
a’+j a? +j
such that QQ, o T has a natural dual.
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Proof. (a) The map R, o T is given piecewise as

—a+ (a® +j)x

(RyoT)x = Py e

Here a = a(z) = |1]. We try to satisfy condition (C). This leads to
—A(ag +n) + B(a®> 4+ j) = B — aD.

When we first put B = 0 we see A(ae +n) = aD. Then we put A=1and D =p
which explains the origin of the parameter p. Then ae + 1 = pa. Then an easy
calculation gives our values for € and 7. The required matrix is given as

v=(34)

The (non-normalized) invariant measure has density

1
14 pz

h(x)

Note that for p = 0 the map Ry o T is piecewise linear. When we put B = 1 then
we get —A(ae+n)+a®+j = e —aD. We multiply this equation by a and substitute
an = a + ¢ + €. This leads to

Aa*e + A(a+e+¢j) +as =a® +aj +a*D.
Then Ae = a, hence € = §. But the equation

Aa+a+ % =a’D
has no solution.
(b) The proof runs along the same lines. One finds ak+ A = ap. In this case p = —1
leads to the density h(z) = ﬁ This result corresponds to the fixed point £ = 1
for (Q—1oT)x =2 — 1 near z = 1. O

Remarks.
(1) Only for p =1 is there a natural dual for the maps R, and @,. The equation

a 1 n  —€\ _ n  —j a 1
10 —j a T\ —¢ a 10
shows that I, has, for a fixed value of a > 2, the invariant density

h(z) = 1 _ 1

at+zr a+1l+2a
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A similar calculation holds for ;.
(2) If one fixes the parameter a = k then the composed maps have no natural dual.
(3) The following example shows that it is not obvious that a suitable choice of
parameters will lead to a natural dual:
2z

Pr=—"__ 0<z<
pt(2=2p)” T T

DN | =

2 -2z 1 <
= -——— — x
“A+ (24202 2 ~
No natural dual can be found for the allowed range of parameters. However, one

can find ezxceptional duals (see [3]). An example is given by the piecewise linear
map g =1and A = —1. Then

Px <1.

2 2 < <1
s r< =
20+’ 2a+1 a

2
, <z< .
2at+2—2 a+1 " 241

(PoT)x =

(PoT)x =

The dual is defined on [—1 + §7 @] which gives the invariant density as

[
C1pz (L4 ay)?

One could produce a lot of new examples in this way, but the aim of this note is
to raise the hope on more research about the connection between a given map and
its invariant density.
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