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Abstract
A u ⇥ v matrix A with entries from Q is image partition regular provided that,
whenever N is finitely colored, there is some ~x 2 Nv with all entries of A~x lying in
one color. Image partition regular matrices are natural tools for representing some
classical theorems of Ramsey Theory, including theorems of Hilbert, Schur, and
van der Waerden. Several characterizations and consequences of image partition
regularity were investigated in the literature. Many natural analogues of known
characterizations of image partition regularity of finite matrices with rational entries
over the integers have been generalized for matrices with entries from reals over
the ring (R,+). In both the cases of reals and integers, usual ordering played an
important role. In the present work we shall prove that natural analogues of known
characterizations of image partition regularity of finite matrices with rational entries
over the integers are also valid for matrices with entries from Gaussian rationals
Q[i] over the ring of Gaussian integers Z[i]. The main hurdle for this generalization
is the absence of ordering, and to overcome this hurdle we need some modifications
of established techniques. We also prove that Milliken-Taylor Matrices with entries
from Z[i] are also image partition regular over Z[i].

1. Introduction

In 1933, R. Rado published [10] his famous theorem characterizing those finite
matrices A with rational entries that have the property that whenever N is finitely
colored, there must be some !x in the kernel of A all of whose entries have the same
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color (or are monochrome). This characterization was in terms of the columns
condition which we shall describe below.

In 1943, R. Rado [11] published a paper among whose results was the fact that
the same condition characterized those finite matrices with entries from any subring
R of C that have the property that whenever R is finitely colored, there is some !x
in the kernel of A whose entries are monochrome.

Definition 1.1. Let u, v 2 N, and let R be any subring of C and F be the field
generated by R. Let A be a u⇥ v matrix with entries from F .
(a) The matrix A is kernel partition regular over R if and only if whenever r 2 N

and R \{0} =
r[

i=1

Ei, there exist i 2 {1, 2, . . . , r} and !
x 2 (Ei)v such that A

!
x =

!
0 .

(b) The matrix A satisfies the columns condition over F if there exists some m 2
{1, 2, . . . , v} and a partition

⌦
It

↵m
t=1

of {1, 2, . . . , v} such that
(1)

P
i2I1

!
ci = 0;

(2) for each t 2 {2, 3, . . . ,m} (if any remains), then
P

i2It

!
ci is a linear combina-

tion with coe�cients from F (the field generated by R) of
�!
ci : i 2 [t�1

j=1Ij

 
.

The results of Rado referred to above are that if R is any subring of the set C of
complex numbers and the entries of A are from F , the field generated by R, then
the system of linear equations is kernel partition regular over R if and only if the
matrix A satisfies the columns condition over the field F .

Rado’s Theorem, in any of its forms, is quite powerful. For example, it gives van
der Waerden’s Theorem [13] as a corollary, which says that whenever N is finitely
colored, there must be arbitrarily long monochromatic arithmetic progressions.

The length four version of van der Waerden’s Theorem states that whenever N
is partitioned into finitely many cells then the matrix

0
BB@

1 0
1 1
1 2
1 3

1
CCA
✓

a
d

◆

has monochromatic image. Many other theorems such as Schur’s Theorem [12] are
naturally represented in terms of images of matrices.

Definition 1.2. Let A be a u ⇥ v matrix with entries from Q. Then A is image

partition regular over N if and only if whenever r 2 N and N =
r[

i=1

Ei, there exist

i 2 {1, 2, . . . , r} and !
x 2 Nv such that A

!
x 2 Eu

i .

While there are several partial results, nothing near a characterization of either
kernel or image partition regularity of infinite matrices has been obtained.
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In this paper we are concerned with the extent to which several known results
about image partition regularity over N can also be obtained over Z[i].

Definition 1.3. Let A be a u⇥ v matrix with entries from Q[i]. Then A is image

partition regular over Z[i] if whenever r 2 N and Z[i]\{0} =
r[

i=1

Ei, there exist

i 2 {1, 2, . . . , r} and !
x 2 (Z[i]\{0})v such that A

!
x 2 Eu

i .

To establish some characterizations of image partition regular matrices we need
the notion of kernel partition regularity as well. Here we shall deal with image
partition regularity over Z[i] and we shall extend the definition of image partition
regularity to allow entries from Q[i].

Definition 1.4. Let u, v 2 N and let A be a u⇥v matrix with entries from R = Z[i]
or Q[i]. Then A is called a first entries matrix if:

(a) no row of A is 0,
(b) the first nonzero entries of any two rows are equal if they occur in the same

column.
If A is a first entries matrix and d is the first nonzero entry of some row, then d is
called a first entry of A.

For characterizations of image partition regular matrices with entries from Q[i]
over Z[i] we need some basic facts about the algebra of the Stone-Čech compactifi-
cation �S of a discrete semigroup S.

Some of the characterizations of image partition regularity that we shall give
involve “central” sets. Central sets were introduced by Furstenberg [4] and defined in
terms of notions of topological dynamics. These sets enjoy very strong combinatorial
properties. They also have a nice characterization in terms of the algebraic structure
of �S. We shall present this characterization below, after introducing the necessary
background information.

We take the points of �Sd to be the ultrafilters on S, identifying the principal
ultrafilters with the points of S and thus supposing that S ✓ �Sd. Given A ✓ S,
we denote

c`A = A = {p 2 �Sd : A 2 p}.

The set {A : A ⇢ S} is a basis for the closed sets of �Sd. The operation · on S
can be extended to the Stone-Čech compactification �Sd of S so that (�Sd, ·) is a
compact right topological semigroup (meaning that for any p 2 �Sd, the function
⇢p : �Sd ! �Sd defined by ⇢p(q) = q · p is continuous) with S contained in its
topological center (meaning that for any x 2 S, the function �x : �Sd ! �Sd

defined by �x(q) = x · q is continuous). A nonempty subset I of a semigroup T is
called a left ideal of S if TI ⇢ I, a right ideal if IT ⇢ I, and a two sided ideal (or
simply an ideal) if it is both a left and a right ideal. A minimal left ideal is a left
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ideal that does not contain any proper left ideal. Similarly, we can define minimal
right ideal and smallest ideal.

Any compact Hausdor↵ right topological semigroup T has a smallest two-sided
ideal

K(T ) =
S
{L : L is a minimal left ideal of T}

=
S
{R : R is a minimal right ideal of T},

Given a minimal left ideal L and a minimal right ideal R, L\R is a group, and in
particular contains an idempotent. If p and q are idempotents in T we write p  q
if and only if pq = qp = p. An idempotent is minimal with respect to this relation
if and only if it is a member of the smallest ideal K(T ) of T .

Given p, q 2 �S and A ✓ S, A 2 p·q if and only if the set {x 2 S : x�1A 2 q} 2 p,
where x�1A = {y 2 S : x · y 2 A}. See [9] for an elementary introduction to the
algebra of �S and for any unfamiliar details.

Definition 1.5. Let S be a discrete semigroup. A set C ⇢ S is said to be a central
set in S if there is an idempotent p in the smallest ideal K(�S) of �S with C 2 p.

The basic fact that we need about central sets is given by the Central Sets
Theorem, which is due to Furstenberg [4, Proposition 8.21] for the case S = Z.

Theorem 1.6 (Central Sets Theorem). Let S be a semigroup. Let T be the
set of sequences hyni1n=1 in S. Let C be a subset of S which is central and let
F 2 Pf (T ). Then there exist a sequence hani1n=1 in S and a sequence hHni1n=1 in
Pf (N) such that for each n 2 N, maxHn < minHn+1 and for each L 2 Pf (N) and
each f 2 F ,

P
n2L(an +

P
t2Hn

f(t)) 2 C.

However, the most general version of Central Sets Theorem is available in [1,
Theorem 2.2]. Central sets are interesting combinatorial objects because of the
fact that they contain images of any image partition regular matrix, and any finite
partition of any infinite commutative semigroup (S,+) is guaranteed to have one
cell which is central.

Definition 1.7. Let S be a semigroup and let A ✓ S. Then A is called a central⇤

set in S if A \ C 6= ; for every central set C in S.

The following obvious lemma will be useful for us.

Lemma 1.8. Let S be a semigroup and let A ✓ S. Then the following statements
are equivalent.

(a) A is a central⇤ set.
(b) A is a member of every minimal idempotent in �S.
(c) A \ C is a central set for every central set C of S.
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The paper is been organized as follows: In Section 2 we have discussed about
some basic characterizations of image partition regular matrices over Z[i]. In Section
3 we establish several characterizations of image partition regular matrices over Z[i].
The results in this section are already established over N with entries of matrices
from Q by N. Hindman, I. Leader, D. Strauss [7]. N. Hindman obtained similar
results with entries from R over (R,+) [5]. In both cases the usual ordering of
N and R played important roles. But we can not adopt the same techniques and
constructions as was used earlier in case of Z[i]. The ideas are quite similar but we
have to develop some stronger techniques and some new constructions. Finally in
Section 4 we prove that Milliken Taylor matrices are the main sources of infinite
image partition regular matrices.

2. Characterizations of Image Partition Regular Matrices

We now turn to some results about central subsets of Z[i].

Lemma 2.1. Let p be an idempotent in (�Z[i],+). Then for every a 2 Z[i] \ {0},
aZ[i] 2 p.

Proof. Let A be an IP set in Z[i]. By division algorithm any element z can be
expressed as z = a · w + r, where w and r belong to Z[i] with 0 | r || a |, and
there will be at most | a |2 number of distinct remainders r for di↵erent z. Let us
suppose that a = ↵+ i�, and denote all possible remainders when any z is divided
by a as r1, r2, . . . , r↵2+�2 . Since A is infinite there must be infinitely many elements
congruent to rl(mod a) for some l 2 {1, 2, . . . , (↵2 + �2)}. Choose (↵2 + �2) many
of them as zl1 , zl2 , . . . , zl↵2+�2 in A. Since A is an IP set the sum

P↵2+�2

k=1 zlk is also
there, but this sum is congruent to (↵2 +�2) · rl(mod a) ⌘ 0(mod a). This trivially
implies that aZ[i] is IP⇤ as A is an arbitrary IP set.

The lemma above simply implies that aZ[i] is IP⇤ for any a 2 Z[i] \ {0}, and so
in particular central⇤. However, we need the following fact.

Lemma 2.2. Let p be a minimal idempotent in (�Z[i],+) and let ↵ 2 Q[i] \ {0}.
Then ↵ · p is also a minimal idempotent in �Z[i]. Consequently, if C is central in
(Z[i],+), then so is (↵C) \ Z[i].

Proof. The function l↵ : Z[i] ! Q[i] defined by l↵(x) = ↵ · x is a homomorphism,
and hence so is its continuous extension l̃↵ : �Z[i] ! �Qd[i] by [9, Corollary 4.22].
Furthermore, ↵ · p = l̃↵ (p). Thus ↵ · p is an idempotent and ↵ · p 2 l̃↵[K(�Z[i])] =
K(↵Z[i]) (the latter equality holds by [9, Exercise 1.7.3]). Assume that ↵ = a

b with
a, b 2 Z[i]. Then bZ[i] ✓ ↵�1aZ[i] and thus aZ[i] 2 ↵·p because bZ[i] 2 p by Lemma
2.1 here. In particular, ↵ · p 2 �Z[i]. Also ↵ · p 2 K(↵Z[i])\aZ[i] and aZ[i] ✓ ↵Z[i]
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and consequently, K(aZ[i]) = K(↵Z[i]) \ aZ[i] by [9, Theorem 1.65]. Since every
idempotent in �Z[i] is in aZ[i] by Lemma 2.1, we have that aZ[i] \K(�Z[i]) 6= ;
and consequently, K(aZ[i]) = aZ[i] \K(�Z[i]). Again by [9, Theorem 1.65]. Thus
(↵ ·p) 2 K(�Z[i]) as required. For the second assertion, let C be central in (Z[i],+)
and pick a minimal idempotent p containing C. Then ↵C \ Z[i] 2 ↵ · p.

Theorem 2.3. Let A be a u⇥ v matrix with entries from Z[i], define ' : Z[i]v !
Z[i]u by '( ~x) = A~x and let '̃ : �(Z[i]v) ! (�Z[i])u be its continuous extension. Let
p be a minimal idempotent in �Z[i] with the property that for every C 2 p there
exists ~x 2 Z[i]v such that A~x 2 Cu. Let ~p = (p, p, . . . , p)T . Then there is a minimal
idempotent q 2 �(Z[i]v) such that '̃(q) = ~p.

Proof. Since p 2 K(�Z[i]) by [9, Theorem 2.23], ~p 2 K(�(Z[i])u). Also by [9,
Corollary 4.22], '̃ : �(Z[i]v) ! �(Z[i])u is a homomorphism.

We claim that ~p 2 '̃[�(Z[i]v)]. Suppose instead that ~p 62 '̃[�(Z[i]v)]. Since
'̃[�(Z[i]v)] is closed, we can pick a neighborhood U of ~p such that U\'̃[�(Z[i]v)] = ;.
Pick D 2 p such that D

u ⇢ U and pick ~x 2 Z[i]v such that A~x 2 Du. Then
'̃( ~x) 2 U \ '̃[�(Z[i]v)], a contradiction.

Let M = {q 2 �(Z[i]v) : '̃(q) = ~p}. Then M is a compact subsemigroup of
�(Z[i]v). By [9, Theorem 2.5] pick an idempotent w 2 M . By [9, Theorem 1.60],
pick a minimal idempotent q 2 �(Z[i]v) with q  w. Since '̃ is a homomorphism,
'̃(q)  '̃(w) = ~p. Since ~p is minimal in (�Z[i])u, we have that '̃(q) = ~p.

In the following theorem we get a conclusion far stronger than the assertion
that matrices satisfying the first entries condition are image partition regular. The
stronger conclusion is of some interest in its won right. The technique of the proof
is taken verbatim from [9, Theorem 15.5]. The first author of the present article
also used this technique in several papers.

Theorem 2.4. Let u, v 2 N, and let M be a u ⇥ v matrix with entries from Z[i]
which satisfies the first entry condition. Let C be central set in Z[i]. If for every
first entry c of M , cZ[i] is a central⇤set, then there exist sequences hx1,ni1n=1,
hx2,ni1n=1,. . . , hxv,ni1n=1 in Z[i] such that for every F 2 Pf (N) A

!
xF 2 Cu, where

!
xF =

0
BBBBBB@

P
n2F x1,nP
n2F x2,n

.

.

.P
n2F xv,n

1
CCCCCCA

.

Proof. Let C be a central set in Z[i]. We proceed by induction on v. Assume first
that v = 1. We can assume that M has no repeated rows, so in this case we have
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M = (c) for some c 2 Z[i] \ {0}. Pick a sequence hyni1n=1 with FS(hyni1n=1) ✓
C \ Z[i]. For each n 2 N, let x1,n = yn

c . The sequencehx1,ni1n=1 is as required.
Now let v 2 N and assume that the theorem is true for v. Let M be a u⇥ (v +1)

first entries matrix with entries from Z[i]. By rearranging the rows of M and
adding additional rows to M if needed, we may assume that we have some r 2
{1, 2, · · · , u� 1} and some d 2 Z[i] \ {0} such that

ai,1 =
⇢

0 if i 2 {1, 2, . . . , r},
d if i 2 {r + 1, r + 2, . . . , u}.

Let B be the r ⇥ v matrix with entries bi,j = ai,j+1. Pick sequences hz1,ni1n=1,
hz2,ni1n=1, . . .,hzv,ni1n=1 in Z[i] \ {0} as guaranteed by the induction hypothesis for
the matrix B. For each i 2 {r + 1, r + 2, ..., u} and each n 2 N, let

yi,n =
v+1X
j=2

ai,jzj�1,n.

We take yr,n = 0 for all n 2 N.
Now C being a central set in Z[i], by Theorem 1.6 we can pick a sequence hkni1n=1

in Z[i] and a sequence hHni1n=1 of finite nonempty subsets of N such that maxHn <
minHn+1 for each n and for each i 2 {r, r+1, ..., u}, FS(hkn+

P
t2Hn

yi,ti1n=1) ✓ C.
For each n 2 N, let x1,n = kn

c and note that kn = kn +
P

t2Hn
yr,t 2 C ✓ S. For

j 2 {2, 3, ..., v +1}, let xj,n =
P

t2Hn
zj�1,t. We claim that the sequences hxj,ni1n=1

are as required. To see this, let F be a finite nonempty subset of N. We need to show
that for each i 2 {1, 2, · · · , u},

Pv+1
j=1 ai,j

P
n2F xj,n 2 C. So let i 2 {1, 2, · · · , u} be

given.
Case 1. i  r. Then

Pv+1
j=1 ai,j .

P
n2F xj,n =

Pv+1
j=2 ai,j .

P
n2F

P
t2Hn

zj�1,t

=
Pv

j=1 bi,j .
P

t2G zj,t 2 C.

where G = [n2F Hn

Case 2. i > r. Then

Pv+1
j=1 ai,j .

P
n2F xj,n = c.

P
n2F x1,n +

Pv+1
j=2 ai,j .

P
n2F xj,n

=
P

n2F cx1,n +
P

n2F

P
t2Hn

Pv+1
j=2 ai,jzj�1,t

=
P

n2F (kn +
P

t2Hn
yi,t) 2 C.

Corollary 2.5. Any finite matrix with entries from Z[i] which satisfies the first
entries condition is image partition regular over Z[i].
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3. Image Partition Regularity Over Z[i]

In this section we provide several characterizations of image partition regularity
over Z[i].

Theorem 3.1. Let u, v 2 N and let A be a u ⇥ v matrix with entries from Q[i].
The following statements are equivalent.

(a) A is image partition regular over Z[i].
(b) Let !c1,

!
c2, . . . ,

!
cv be the columns of A. There exist s1, s2, . . . , sv 2 Q[i]\{0}

such that the matrix

M =

0
BBBBBB@

s1 · !c1 s2 · !c2 . . . sv · !cv

�1 0 . . . 0
0 �1 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . �1

1
CCCCCCA

is kernel partition regular over Z[i].
(c) There exist m 2 N, and a v⇥m matrix G with entries from Q[i] and no row

equal to
!
0 , and a u⇥m first entries matrix B, with all its first entries equal to 1,

such that AG = B.
(d) There exist m 2 N, and a v ⇥ m matrix H with entries from Z[i] and no

row equal to
!
0 , and a u ⇥ m first entries matrix C with entries from Z[i], and

c 2 Z[i]\{0} as the only the first entries of C, such that AH = C.
(e) There exist m 2 N, and a u ⇥ m first entries matrix B with entries from

Q[i] and the first entries all are equal Gaussian integers such that given any !
y 2

(Z[i]\{0})m there is some !
x 2 (Z[i]\{0})v, with A

!
x = B

!
y .

(f) There exist m 2 N, and a u ⇥ m first entries matrix C with entries from
Z[i] and the first entries all are equal Gaussian integers such that given any !

y 2
(Z[i]\{0})m there is some !

x 2 (Z[i]\{0})v with A
!
x = C

!
y .

(g) There exist m 2 N, and a u ⇥ m matrix B with entries from Z[i] which
satisfies first entries condition such that given any !

y 2 (Z[i]\{0})m there is some
!
x 2 (Z[i]\{0})v with A

!
x = B

!
y .

(h) For every central set C in Z[i], there exists !x 2
�
Z[i]\{0}

�v such that A
!
x 2

Cu.
(i) For every central set C in Z[i], the set

�!
x 2

�
Z[i]\{0}

�v : A
!
x 2 Cu

 
is

central in
�
Z[i]
�v.

(j) There exist s1, s2, . . . , sv 2 Q[i]\{0} such that the matrix
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P =

0
BBBBBBBBBBBBBBBBBBBBBB@

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . .0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . 1

s1a1,1 s2a1,2 s3a1,3 . . . sva1,v

s1a2,1 s2a2,2 s3a2,3 . . . sva2,v

s1a3,1 s2a3,2 s3a3,3 . . . sva3,v

. . . . . . .

. . . . . . .

. . . . . . .
s1au,1 s2au,2 s3au,3 . . . svau,v

1
CCCCCCCCCCCCCCCCCCCCCCA

is image partition regular.
(k) There exist b1, b2, . . . , bv 2 Q[i]\{0} such that the matrix

Q =

0
BBBBBBBBBB@

b1 0 0 . . . 0
0 b2 0 . . . 0
0 0 b3 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . bv

A

1
CCCCCCCCCCA

is image partition regular.

(l) For each !
r 2 (Q[i])v \{

!
0} there exists b 2 Q[i]\{0} such that

✓
b
!
r

A

◆
is

image partition regular.
(m) Whenever m 2 N, �1,�2, . . . ,�m are nonzero linear mappings from (Q[i])v

to Q[i], there exists
!
b 2 (Q[i])m such that, whenever C is central in Z[i], there exists

!
x 2 (Z[i]\{0})v for which A

!
x 2 Cu, and for each i 2 {1, 2, . . . ,m}, bi�i(

!
x) 2 C,

in particular �i(
!
x) 6= 0.

(n) For every central set C in Z[i], there exists !x 2 (Z[i]\{0})v such that !y =
A
!
x 2 Cu, all entries of !x are distinct, and for all i, j 2 {1, 2, . . . , u}, if rows i and

j of A are unequal, then yi 6= yj.

Proof. (a) implies (b). Given any p 2 N\{1}, let the start base p coloring of Z[i] be
the function

�p : Z[i]\{0}! X ⇥ Y ⇥ {0, 1}

where Y = {a+ib : a, b 2 {�(p�1),�(p�2), . . . , 0, 1, . . . , p�1}} and X = Y \{0},
defined as follows: given any y 2 Z[i]\{0}, write y =

Pn
t=0 atpt, where each at 2 Y

for t = 0, 1, . . . , n�1 and an 6= 0 (idea to construct at directly comes from the start
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base p coloring of N componentwise without changing the sign, i.e., take y = y1+iy2

and write | y1 |=
Pn1

t=0 a1,tpt & | y2 |=
Pn2

t=0 a2,tpt, where for i 2 {1, 2} each
ai,t 2 {0, 1, . . . , p � 1} for 0  t < ni and ai,ni 6= 0; now take n = max{n1, n2},
n0 = min{n1, n2} and then define ai,t = 0 for ni < t  n where i 2 {1, 2} with
ni = n0. Now we can write yi =

Pn
t=0 sgn(yi)ai,tpt for i = 1, 2 and so clearly our

at = sgn(y1)a1,t+i sgn(y2)a2,t for t = 0, 1, . . . , n.); if n > 0, �p(y) = (an, an�1, i)
where i ⌘ n(mod 2); if n = 0, �p(y) = (a0, 0, 0) and �p(0) = (0, 0, 0).

Let !c1,
!
c2, . . . ,

!
cv be the columns of A and let

!
d1,

!
d2, . . . ,

!
du denote the columns

of the u⇥ u identity matrix. Let B be the matrix
⇣

s1 · !c1 s2 · !c2 . . . sv · !cv �
!
d1 �

!
d2 . . . �

!
du

⌘
,

where s1, s2, . . . , sv are yet unspecified nonzero Gaussian rationals. Denote the
columns of B by

!
b1,

!
b2, . . . ,

!
bu+v. Then

!
bt =

⇢
st ·

!
ct if t  v

�
!

dt�v if t > v.

Given any p 2 N\{1} and any x 2 Z[i]\{0}, let �(p, x) = max
�
n 2 ! :

pn  max{| Re(x) |, | Im(x) |}
 
. Now temporarily fix some p 2 N\{1}. We obtain

m = m(p) and an ordered partition
�
D1(p), D2(p), . . . , Dm(p)

�
of {1, 2, . . . , u} as

follows. Pick !
x 2

�
Z[i]\{0}

�v such that A
!
x is monochrome with respect to the

start base p coloring and let !y = A
!
x . Now divide up {1, 2, . . . , u} according to

which of the yi’s start furthest to the left in their base p representation. That is,
we get D1(p), D2(p), . . . ,Dm(p) so that

(1) if k 2 {1, 2, . . . , m} and i, j 2 Dk(p), then �(p, yi) = �(p, yj), and
(2) if k 2 {2, 3, . . . , m}, i 2 Dk(p), and j 2 Dk�1(p), then �(p, yj) > �(p, yi).

We also observe that as �p(yi) = �p(yj), we have that �(p, yi) ⌘ �(p, yj)(mod 2)
and hence �(p, yj) � �(p, yi) + 2.

There are only finitely many ordered partitions of {1, 2, . . . , u}. Therefore
we may pick an infinite subset P of N\{1}, m 2 N, and an odered partition
(D1, D2, . . . , Dm) of {1, 2, . . . , u} so that for all p 2 P, m(p) = m and

�
D1(p), D2(p), . . . , Dm(p)

�
= (D1, D2, . . . , Dm).

We shall utilize (D1, D2, . . . , Dm) to find s1, s2, . . . , sv and to get a partition of
{1, 2, . . . , u + v} as required for the columns condition.

We proceed by induction. First we shall find E1 ✓ {1, 2, . . . , v}, specify si 2
Q[i]\{0} for each i 2 E1, let I1 = E1 [ (v + D1), and show that

P
i2 I1

!
bi = 0.

That is, we shall show that
P

i2E1
si · !ci =

P
i2D1

!
di. In order to do this, we

show that
P

i2D1

!
di is in the span of (!c1,

!
c2, . . . ,

!
cv). For then one has

P
i2D1

!
di =
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Pv
i=1 ↵i ·!ci, where ↵i 2 Q[i] (which is true because one is solving linear equations

with rational coe�cients) and not all ↵i’s be zero. Let E1 =
�
i 2 {1, 2, . . . , v} :

↵i 6= 0
 

and for i 2 E1, let si = ↵i.

Let S be the linear span of (!c1,
!
c2, . . . ,

!
cv). In order to show that

P
i2D1

!
di is in

S, it su�ces to show that
P

i2D1

!
di is in cl S. To this end, let ✏ > 0 be given and pick

p 2 P with p >
p

2u
�
✏. Pick !

x 2
�
Z[i]\{0}

�v and !
y 2

�
Z[i]
�u that we used to get�

D1(p), D2(p), . . . , Dm(p)
�
. That is, A

!
x = !

y , !y is monochrome with respect to
the the start base p coloring, and (D1, D2, . . . , Dm) =

�
D1(p), D2(p), . . . ,Dm(p)

�
is the ordered partition of {1, 2, . . . , u} induced by the starting positions of yi’s.
Pick � so that for all i 2 D1, �(p, yi) = �. Pick (a, b, c) 2 X ⇥ Y ⇥ {0, 1} such
that �p(yi) = (a, b, c) for all i 2 {1, 2, . . . , u}. Let ` = a + b

�
p and observe that

1 | ` |
p

2p. For i 2 D1, yi = a · p� + b · p�-1 + zi · p�-2 where 0  |zi| <
p

2p,
and hence yi

�
p� = ` + zi

�
p2; let �i = zi

�
p2 and note that 0  |�i| <

p
2
�
p. For

i 2 [m
j=2Dj , we have �(p, yi)  ��2; let �i = yi

�
p� and note that 0 <| �i |<

p
2
�
p.

Now A
!
x = !

y and so

vX
i=1

xi ·!ci = !
y =

vX
i=1

yi ·
!
di =

X
i2D1

yi ·
!
di +

mX
j=2

X
i2Dj

yi ·
!
di.

Thus
Pv

i=1(xi

�
p�)·!ci =

P
i2D1

` ·
!
di+

Pu
i=1 �i ·

!
di and consequently k

P
i2D1

!
di�Pv

i=1

�
xi

�
(`p�)

�
· !ci k=k

Pu
i=1(�i

�
`) ·

!
di k

Pu
i=1 | �i

�
` |<

p
2u
�
p < ✏. SincePv

i=1

�
xi

�
(`p�)

�
·!ci is in S,

P
i2D1

!
di 2 c`S as required.

Now let k 2 {2, 3, . . . ,m} and assume that we have chosen E1, E2, . . . , Ek�1 ✓
{1, 2, . . . , v}, si 2 Q[i]\{0} for i 2 [k�1

j=1Ej , and Ij = Ej [ (v + Dj) as required for
the columns condition. Let Lk = [k�1

j=1Ej and let Mk = [k�1
j=1Dj and enumerate

Mk in order as q(1), q(2), . . . , q(r). We claim that it su�ces to show that
P

i2Dk

!
di

is in the span of
�!
c1,

!
c2, . . . ,

!
cv,

!
dq(1),

!
dq(2), . . . ,

!
dq(r)

�
, which we will again denote

by S. Indeed, assume that we have done this and can pick ↵1, ↵2, . . . ,↵v 2 Q[i],

not all zero and �q(1), �q(2), . . . , �q(r) in Q[i] such that
P

i2Dk

!
di =

Pv
i=1 ↵i · !ci +Pr

i=1 �q(i) ·
!

dq(i). Let Ek =
�
i 2 {1, 2, . . . , v}\Lk : ↵i 6= 0

 
and for i 2 Ek, let

si = ↵i. Let Ik = Ek [ (v + Dk).
Then

X
i2Ik

!
bi =

X
i2Ek

↵i ·!ci +
X

i2Dk

�
!
di =

X
i2Ek

↵i ·!ci +
vX

i=1

�↵i ·!ci +
rX

i=1

��q(i) ·
!

dq(i).
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Now, if i 2 {1, 2, . . . , v} and ↵i 6= 0, then i 2 Lk [Ek so

X
i2Ek

↵i ·!ci +
vX

i=1

�↵i ·!ci +
rX

i=1

��q(i) ·
!

dq(i) =
X
i2Lk

�↵i ·!ci +
rX

i=1

��q(i) ·
!

dq(i)

and
X
i2Lk

�↵i ·!ci +
rX

i=1

��q(i) ·
!

dq(i) =
X
i2Lk

�↵i ·!ci +
X

i2Mk

��i ·
!
di

=
X
i2Lk

(�↵i

�
si) ·

!
bi +

X
i2Mk

�i ·
!

bv+i.

Let �i = �↵i

�
si if i 2 Lk and let �v+i = �i if i 2 Mk. Then we have
X

i2[k�1
j=1 Ij

�i ·
!
bi =

X
i2Lk

(�↵i

�
si) ·

!
bi +

X
i2Mk

�i ·
!

bv+i =
X
i2Ik

!
bi

as required for the columns condition.

In order to show that
P

i2Dk

!
di is in S, it su�ces to show that

P
i2Dk

!
di is

in c`S as S is closed in Cu. To this end, let ✏ > 0 be given and pick p 2 P
with p >

p
2u
�
✏. Pick !

x 2
�
Z[i]\{0}

�v and !
y 2

�
Z[i]
�u that we used to get�

D1(p), D2(p), . . . , Dm(p)
�
. Pick � so that for all i 2 Dk, �(p, yi) = �. Pick

(a, b, c) 2 X⇥Y ⇥{0, 1} such that �p(yi) = (a, b, c) for all i 2 {1, 2, . . . , u}. Let ` =
a +b

�
p and observe that 1 | ` |

p
2p. For i 2 Dk, yi = a · p� +b · p��1 +zi · p��2

where 0 | zi |<
p

2p, and hence yi

�
p� = ` + zi

�
p2; let �i = zi

�
p2 and note that

0 | �i |<
p

2
�
p. For i 2 [m

j=k+1Dj , we have �(p, yi)  � � 2; let �i = yi

�
p� and

note that 0 <| �i |<
p

2
�
p. (Of course we have no control on the size of yi

�
p� for

i 2 Mk.)
Now A

!
x = !

y and so
vX

i=1

xi ·!ci =
uX

i=1

yi ·
!
di =

X
i2Mk

yi ·
!
di +

X
i2Dk

yi ·
!
di +

mX
j=k+1

X
i2Dj

yi ·
!
di,

where
Pm

j=k+1

P
i2Dj

yi ·
!
di = 0 if k = m.

Thus
Pv

i=1(xi

�
p�) ·!ci =

P
i2Mk

(yi

�
p�) ·

!
di +

P
i2Dk

` ·
!
di +

Pm
j=k

P
i2Dj

�i ·
!
di.

Consequently,

k
X

i2Dk

!
di �

✓ vX
i=1

�
xi

�
(`p�) ·!ci

�
+
X

i2Mk

�
� yi

�
(`p�)

�
·
!
di

◆
k

=k
mX

j=k

X
i2Dj

(�i

�
`) ·

!
di k

mX
j=k

X
i2Dj

| �i

�
` |< u

p
2
�
p < ✏,
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which su�ces, since xi

�
(`p�) 6= 0 for i 2 {1, 2, . . . , v}.

Having chosen I1, I2, . . . , Im, if {1, 2, . . . , u + v} =
Sm

j=1 Ij , we are done. So
assume {1, 2, . . . , u + v} 6=

Sm
j=1 Ij . Let Im+1 = {1, 2, . . . , u + v}\

Sm
j=1 Ij . Now

{1, 2, . . . , u} =
Sm

j=1 Dj , so {�
!
d1, �

!
d2, . . . , �

!
du} ✓ {

!
bi : i 2 [m

j=1Ij} and hence

we can write
P

i2Im+1

!
bi as a linear combination of {

!
bi : i 2 [m

j=1Ij}.
(b) =) (c). By Rado’s extended result, M satisfies the columns condition

over Q[i]. Pick m 2 N,
⌦
It

↵m
t=1

,
⌦
Jt

↵m
t=2

, and
⌧⌦
�t,i
↵

i2Jt

�m

t=2

as guaranteed by the

columns condition for M . Let B0 be the (u+ v)⇥m matrix whose entry in i’th row
and t’th column is given by

b0i,t =

8><
>:
��t,i if i 2 Jt

1 if i 2 It

0 if i /2 [t
j=1Ij

We observe that B0 satisfies the first entries condition, with the first non-zero
entry in each row being 1. We also observe that MB0 = 0, the u ⇥ m matrix
whose entries are all zero (Indeed, let j 2 {1, 2, . . . , u} and t 2 {1, 2, . . . , m}. If
t = 1, then

Pu+v
i=1 cj,i · b0i,t =

P
i2I1

cj,i = 0 and if t > 1, then
Pu+v

i=1 cj,i · b0i,t =P
i2Jt

��t,i · cj,i +
P

i2It
cj,i = 0). Let S denote the v ⇥ v diagonal matrix whose

diagonal entries are s1, s2, . . . , sv. Then M can be written in the block form as�
AS �Iu

�
and B0 can be written in the block form as

✓
C
B

◆
, where Iu denotes

the u ⇥ u identity matrix and C and B denote the v ⇥ m and u ⇥ m matrices
respectively. We observe that C and B both are first entries matrices with the first
non-zero entry in each row is 1, and that ASC = B, because MB0 = 0. So take
G = SC, which is a v ⇥ m matrix with coe�cients from Q[i] and having no row
equals to

!
0 . Hence we have AG = B, as required.

(c) =) (d). We can choose c 2 Z[i]\{0} in such a way, so that all entries of
cG and cAG are in Z[i]. In fact it can be achieved by multiplying suitable positive
integers, which is trivially a common multiple of the denominators of each entry of
the corresponding matrices . Let C = cB, then C is again a first entry matrix with
all the first non-zero entries in each row equal to c (clearly, the entries of C are from
Z[i]). Take H = cG, and we have AH = C, as required.

(c) =) (e). Assume that (c) holds. We can choose a d 2 Z[i]\{0} such that
all the entries of dG are in Z[i]. Since B is a given u ⇥ m first entries matrix,
then B0 = dB is also a first entries matrix with all the first entries equal to d. Let
!
y 2

�
Z[i]\{0}

�m be given and let us set !x = dG
!
y . Then A

!
x = B0!y . Replacing

B0 by B, we have A
!
x = B

!
y .

(e) =) (f). Let B be a given first entries matrix as in (e). We choose
c 2 Z[i]\{0} to be a common multiple of the denominators in the entries of B and
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set C = cB. Given !
y , let !z = c

!
y and pick !

x such that A
!
x = B

!
z = C

!
y . Clearly

the first entries in each row of C are equal Gaussian integers.
(d) =) (f). Given !

y , set !x = H
!
y , and the result follows immediately.

(f) =) (g). Trivial.
(g) =) (f). Let B be given as in (g), and for each j 2 {1, 2, . . . , m}, pick

wj 2 Z[i]\{0} such that for any i 2 {1, 2, . . . , v}, if j = min{t 2 {1, 2, . . . , m} :
bi,t 6= 0} then bi,j = wj . ( That is, wj is the first entry associated with the column
j.) Let c be the common multiple of {w1, w2, . . . , wm}. Define the u ⇥m matrix
C as follows: for (i, j) 2 {1, 2, . . . , u}⇥ {1, 2, . . . , m}, ci,j = (c

�
wj)bi,j . Clearly C

is a first entries matrix with entries from Z[i] and all the first entries are equal to c,
a fixed Gaussian integer. Now, given !

y 2
�
Z[i]\{0}

�m, we define !z 2
�
Z[i]\{0}

�m
by the rule: for j 2 {1, 2, . . . , m}, zj = (c

�
wj)yj . Then B

!
z = C

!
y . Now again

applying (g) there exists !x 2
�
Z[i]\{0}

�v such that B
!
z = A

!
x . Therefore we have

A
!
x = C

!
y .

(f) =) (a). By Lemma 2.1 for each a 2 Z[i]\{0}, aZ[i] is an IP ⇤-set, and
therefore a central⇤ set. Thus by Corollary 2.5, C being a first entries matrix is
image partition regular over Z[i]. To see that A is image partition regular over Z[i],
let r 2 N and let Z[i] =

Sr
i=1 Ei. Pick i 2 {1, 2, . . . , r} and !

y 2
�
Z[i]\{0}

�m such
that C

!
y 2 Eu

i . Then pick !
x 2

�
Z[i]\{0}

�v such that A
!
x = C

!
y .

(g) =) (h). Let B be as guaranteed by (g) and let C be a central set in Z[i].
Pick by Theorem 2.4, some !y 2

�
Z[i]\{0}

�m such that B
!
y 2 Cu, and pick !

x such
that A

!
x = B

!
y . Therefore A

!
x 2 Cu.

(h) =) (a). This is obvious because for any finite partition of Z[i], at least one
of the cells must be central.

(h) =) (i). Pick d 2 Z[i]\{0} such that all entries of dA are in Z[i]. We
claim that for every central set C in Z[i], there exists !

x 2 (Z[i]\{0})v such that
dA

!
x 2 Cu. By Lemma 2.2,

�
1
dC \ Z[i]

�
is central, so pick !

x 2 (Z[i]\{0})v such
that A

!
x 2

�
1
dC \ Z[i]

�u. Then dA
!
x 2 Cu.

Let C be a central subset of Z[i] and pick a minimal idempotent p 2 �Z[i] such
that C 2 p. Define ' : (Z[i])v ! (Z[i])u by '

⇣!
x
⌘

= dA
!
x and let '̃ : � (Z[i]v) !

(�Z[i])u be its continuous extension. Now dp is a minimal idempotent by Lemma
2.2. Define dp = (dp, dp, . . . , dp)T and pick by Lemma 2.3, a minimal idempotent
q 2 � (Z[i]v) such that '̃ (q) = dp. Now ⇥u

i=1dC is a neighborhood of dp and pick
B 2 q such that '̃[B] ✓ ⇥u

i=1dC. Then B ✓
n!

x 2 (Z[i]\{0})v : A
!
x 2 Cu

o
, son!

x 2 (Z[i]\{0})v : A
!
x 2 Cu

o
is central in (Z[i])v.

(i) =) (a). This is immediate because for any finite partition of Z[i], at least
one of the cells must be central.
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(b) =) (j). Let

B =

0
BBBBBBBB@

s1a1,1 s2a1,2 s3a1,3 . . . sva1,v

s1a2,1 s2a2,2 s3a2,3 . . . sva2,v

s1a3,1 s2a3,2 s3a3,3 . . . sva3,v

. . . . . . .

. . . . . . .

. . . . . . .
s1au,1 s2au,2 s3au,3 . . . svau,v

1
CCCCCCCCA

and let Iu and Iv be the identity matrices of order u and v respectively. Then

P =
✓

Iv

B

◆
and M =

�
B �Iu

�
. To see that P is image partition regular, let

Z[i] \ {0} be finitely colored and pick !
z 2

�
Z[i]\{0}

�u+v such that M
!
z = 0 and !

z

is monochrome. Let !x 2
�
Z[i]\{0}

�v and !
y 2

�
Z[i]\{0}

�u such that !z =

 !
x
!
y

!
.

Then
!
0 = M

!
z = B

!
x �!

y and so P
!
x = !

z .
(j) =) (k). For each i 2 {1, 2, . . . , v}, let bi = 1

si
and let

S =

0
BBBBBB@

s1 0 . . . 0
0 s2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . sv

1
CCCCCCA

.

Then P = QS. Pick d 2 Z[i]\{0} such that {ds1, ds2, . . . , dsv} ✓ Z[i]\{0}. We
show that statement (h) holds for the matrix Q. Let C be central in Z[i] and pick
a minimal idempotent p 2 �Z[i] such that C 2 p. By Lemma 2.1, dZ[i] 2 p and so
C \ dZ[i] is central. We have already shown that statement (a) implies statement
(h), so the statement (h) holds for the matrix P . Pick !

x 2
�
Z[i]\{0}

�v such that
P
!
x 2

�
C \dZ[i]

�u+v. Then the entries of !x are the first v entries of P
!
x , hence are

multiples of d. Therefore !y = S
!
x 2

�
Z[i]\{0}

�v and Q
!
y = P

!
x 2 Cu+v.

(k) =) (a). Follows directly.

(c) =) (l). If !r G 6=
!
0 , we can choose b so that the first entry of b

!
r G is 1.

If !r G =
!
0 , we can choose !

c 2
�
Z[i]\{0}

�u such that !r · !c 6= 0 and add !
c to G

as a new final column. In this case we choose b so that b
!
r ·!c = 1. In either case,✓

b
!
r

A

◆
G is a first entries matrix with all its first entries equal to 1 and so the

statement (c) holds for
✓

b
!
r

A

◆
.

(l) =) (m). For each i 2 {1, 2, . . . , m}, there exists !ri 2 Q[i]v\{0} such that
�i(

!
x) = !

ri ·
!
x for all !x 2 Q[i]v. By applying statement (l) m times in succession
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(using the fact that at each stage the new matrix satisfies (l) because (a) implies
(l) as (c) implies (l)), we can choose b1, b2, . . . , bm 2 Q[i]\{0} for which the matrix

T =

0
BBBBBBBB@

b1
!
r1

b2
!
r2

.

.

.

bm
!
rm

A

1
CCCCCCCCA

is image partition regular. Since we know from (h) that every image partition
regular matrix has an image in any central set, for any central set C in Z[i], there
exists !x 2

�
Z[i]\{0}

�v for which T
!
x 2 Cm+u. This implies A

!
x 2 Cu. Also, for

i 2 {1, 2, . . . , m}, bi
!
ri ·

!
x 2 C and so bi�i(

!
x) 2 C. In particular we have �i(

!
x) 6= 0.

(m) =) (n). We may presume that A has no repeated rows so that the
conclusion regarding !

y becomes the statement that all entries of !y are distinct.
For i 6= j in {1, 2, . . . , v}, let

!
�i,j be the linear mapping from Q[i]v to Q[i] taking

!
x to xi � xj . For i 6= j in {1, 2, . . . , u}, let

!
 i,j be the linear mapping from

Q[i]v to Q[i] taking !
x to

Pv
t=1(ai,t � aj,t) · xt. Applying statement (m) to the set

{�i,j : i, j 2 {1, 2, . . . , v}, i 6= j} [ { i,j : i, j 2 {1, 2, . . . , u}, i 6= j}, we reach the
desired conclusion.

(n) =) (h). This follows immediately.

4. Infinite Matrices

We now prove that certain infinite matrices with entries from Gaussian integers are
also image partition regular over Z[i]\{0}. K. Milliken and A.Taylor independently
proved a theorem from which it can be derived that certain infinite matrices, called
Milliken-Taylor Matrices, are image partition regular over N. Some generalizations
of this celebrated theorem are also available in [8, Corollary 3.6], [?, Theorem 5.7],
[2, Theorem 2.6].

Definition 4.1. Let m 2 !, and ~a = haiimi=0 be a sequence in Z[i] \ {0}, and let
~z = hzni1n=0 be a sequence in Z[i]. The Milliken-Taylor system determined by ~a
and ~z is MT (~a,~z) = {

Pm
i=0 ai ·

P
t2Fi

zt : each Fi 2 Pf (!) and if i < m, then
maxFi < minFi+1}.

If ~c is obtained from ~a by deleting repetitions, then for any infinite sequence ~z,
one has MT (~a,~z) ✓ MT (~c,~z), so it su�ces to consider sequences ~c without adjacent
repeated entries.
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Definition 4.2. Let ~a be a finite or infinite sequence in Z[i] with only finitely many
nonzero entries. Then c(~a) is the sequence obtained from ~a by deleting all zeros
and then deleting all adjacent repeated entries. The sequence c(~a) is the compressed
form of ~a. If ~a = c(~a), then ~a is called a compressed sequence.

Definition 4.3. Let ~a be a compressed sequence in Z[i] \ {0}. A Milliken-Taylor
matrix determined by ~a is an ! ⇥ ! matrix M such that the rows of M are all
possible rows with finitely many nonzero entries and compressed form equal to ~a.

Theorem 4.4. Let m 2 ! and ~a = haiimi=0 be a compressed sequence in Z[i] \ {0}
with a0 6= 0, and let M be a Milliken-Taylor matrix determined by ~a. Then M is
image partition regular over Z[i]. In fact, given any sequence hwni1n=0 in Z[i] \ {0}
such that whenever r 2 N, Z[i] \ {0} =

Sr
i=1 Ci, there exist i 2 {1, 2, . . . , r} and a

sum subsystem hxni1n=0 of hwni1n=0 such that MT (~a, ~x) ✓ Ci.

Proof. By [9, Lemma 5.11], choose an idempotent p 2
T1

k=0 c`�Z[i]FS(hwni1n=k).
Let q = a0 · p + a1 · p + . . . + am · p. So it su�ces to show that whenever Q 2 q,
there is a sum subsystem hxni1n=0 of hwni1n=0 such that MT (~a, ~x) ✓ Q. Let Q 2 q
be given. Assume first that m = 0. Then (a0)�1Q 2 p, where (a0)�1Q = {z 2 Z[i] :
a0 · z 2 Q}, so by [9, Theorem 5.14] there is a sum subsystemhxni1n=0 of hwni1n=0

such that FS(hxni1n=0) ✓ (a0)�1Q. Then MT (~a, ~x) ✓ Q. Now assume that m > 0.
Define

P (;) = {z 2 Z[i] : �(a0 · z) + Q 2 a1 · p + a2 · p + . . . + am · p} .

Since Q 2 q we have

a�1
0 · {z 2 Z[i] : �z + Q 2 a1 · p + a2 · p + . . . + am · p} 2 p

which shows that

P (;) = {z 2 Z[i] : �(a0 · z) + Q 2 a1 · p + a2 · p + . . . + am · p} 2 p.

Given z0 define

P (z0) = {u 2 Z[i] : �(a0 · z0 + a1 · u) + Q 2 a2 · p + a3 · p + . . . + am · p}.

If z0 2 P (;), then

�(a0 · z0) + Q 2 a1 · p + a2 · p + . . . + am · p

and so

{u 2 Z[i] : �(a1 · u) + (�(a0 · z0) + Q) 2 a2 · p + a3 · p + . . . + am · p} 2 p

and thus P (z0) 2 p.
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Given n 2 {1, 2, . . . ,m� 1} and z0, z1, . . . , zn�1, let P (z0, z1, . . . , zn�1) =

{u 2 Z[i] : �(a0 · z0 + . . . + an�1zn�1 + an · u + Q 2 an+1 · p + . . . + am · p}.

If z0 2 P (;) and for each i 2 {1, 2, . . . , n � 1}, zi 2 P (z0, z1, . . . , zi�1), then
P (z0, z1, . . . , zn�1) 2 p.

Now given z0, z1, . . . , zm�1, let

P (z0, z1, . . . , zm�1) = {u 2 Z[i] : a0 · z0 + a1 · z1 + . . . + am�1 · zm�1 + am · u 2 Q}.

If z0 2 P (;) and for each i 2 {1, 2, . . . ,m � 1}, zi 2 P (z0, z1, . . . , zi�1), then
P (z0, z1, . . . , zm�1) 2 p. Given any B 2 p, let B? = {z 2 B : �z + B 2 p}. Then
B? 2 p and by [9, Lemma 4.14], for each z 2 B?, �z + B? 2 p.

Choose z0 2 P (;)? \ FS(hwni1n=0) and choose H0 2 Pf (N) such that z0 =P
t2H0

wt. Let n 2 !. We further assume that we have chosen z0, z1, . . . , zn and
H0,H1, . . . ,Hn such that

1. if k 2 {0, 1, . . . , n}, then Hk 2 Pf (!) and zk =
P

t2Hk
wt,

2. if k 2 {0, 1, . . . , n� 1}, then maxHk < minHk+1,
3. if ; 6= F ✓ {0, 1, . . . , n}, then

P
t2F zt 2 P (;)?, and

4. if k 2 {1, 2, . . . ,min{m,n}}, F0, F1, . . . , Fk 2 Pf ({0, 1, . . . , n}), and for each
j 2 {0, 1, . . . , k � 1}, maxFj < minFj+1, then

X
t2Fk

zt 2 P (
X
t2F0

zt,
X
t2F1

zt . . . ,
X

t2Fk�1

zt)?.

All hypotheses hold at n = 0, with (2) and (4) holding vacuously. Let v = maxHn.
For r 2 {0, 1, . . . , n}, let

Er = {
P

t2F zt : ; 6= F ✓ {r, r + 1, . . . , n}} .

For k 2 {0, 1, . . . ,m� 1} and r 2 {0, 1, . . . , n}, let

Wk,r = { (
P

t2F0
zt, . . . ,

P
t2Fk

zt) : F0, F1, . . . , Fk 2 Pf ({0, 1, . . . , r})
and for each i 2 {0, 1, . . . , k � 1} , maxFi < minFi+1}

Note that Wk,r 6= ; if and only if k  r. If u 2 E0, then u 2 P (;)?, so�u+P (;)? 2 p
and P (u) 2 p. If k 2 {1, 2, . . . ,m � 1} and (u0, u1, . . . , uk) 2 Wk,m, then uk 2
P (u0, u1, . . . , uk�1), and so P (u0, u1, . . . , uk) 2 p and thus P (u0, u1, . . . , uk)? 2 p.
If r 2 {0, 1, . . . , n � 1}, k 2 {0, 1, . . . ,min{m � 1, r}}, (u0, u1, . . . , uk) 2 Wk,r, and
z 2 Er+1, then z 2 P (u0, u1, . . . , uk)? and so �z + P (u0, u1, . . . , uk)? 2 p. If n = 0,
let

z1 2 FS(hwti1t=v+1) \ P (;)? \ {�z0 + P (;)?} \ P (z0)?
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and pick H1 2 Pf (N) such that minH1 > v and z1 =
P

t2H1
wt. The hypotheses

are satisfied. Now assume that n � 1 and pick

zn+1 2 FS(hwti1t=v+1) \ P (;)? \
T

u2E0
{�u + P (;)?}

\
Tmin{m�1,n}

k=0

T
(u0,u1,...,uk)2Wk,m

P (u0, u1, . . . , uk)?

\
Tn�1

r=0

Tmin{m�1,r}
k=0

T
(u0,u1,...,uk)2Wk,rT

z2Er+1
(�z + P (u0, u1, . . . , uk)?) .

Pick Hn+1 2 Pf (N) such that minHn+1 > v and zn+1 =
P

t2Hn+1
wt. Hypotheses

(1) and (2) hold directly. For hypothesis (3) assume that ; 6= F ✓ {0, 1, . . . , n + 1}
and n + 1 2 F . If F = {n + 1} we have directly that zn+1 2 P (;)?, so assume that
{n + 1} ( F and let G = F \ {n + 1}. Let u =

P
t2G zt. Then u 2 E0 and so

zn+1 2 �u + P (;)? and thus
P

t2F zt 2 P (;)?.
To verify hypothesis (4), let k 2 {1, 2, . . . ,min{m,n + 1}} and assume that

F0, F1, . . . , Fk 2 Pf ({0, 1, . . . , n + 1}) and for each j 2 {0, 1, . . . , k � 1}, maxFj <
minFj+1. We can assume that n+1 2 Fk. For l 2 {0, 1, . . . , k�1} let ul =

P
t2Fl

zt.
Then k � 1  min{m � 1, n} and (u0, u1, . . . , uk�1) 2 Wk�1,m. If Fk = {n + 1},
then

P
t2Fk

zt = zn+1 2 P (u0, u1, . . . , uk�1)?. So assume that {n + 1} ( Fk and
let F 0k = Fk \ {n + 1}. Let r = maxFk�1. Then r < minF 0k and so r  n � 1,
k � 1  min{m � 1, r}, and (y0, y1, . . . , yk�1) 2 Wk�1,r. Let z =

P
t2F 0

k
zt. Then

z 2 Er+1 and so
zn+1 2 �z + P (u0, u1, . . . , uk�1)?.

Hence we have X
t2Fk

zt 2 P (
X
t2F0

zt,
X
t2F1

zt, . . . ,
X

t2Fk�1

zt)?.
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