#A59 INTEGERS 17 (2017)

IMAGE PARTITION REGULARITY OVER THE GAUSSIAN
INTEGERS

Dibyendu De!
Department of Mathematics, University of Kalyani, Kalyani, West Bengal, India
dibyendude@klyuniv.ac.in

Subhajit Jana?
Department of Mathematics, University of Kalyani, Kalyani, West Bengal, India
sujal2345@gmail.com

Received: 7/10/16, Accepted: 11/25/17, Published: 12/1/17

Abstract

A u x v matrix A with entries from Q is image partition regular provided that,
whenever N is finitely colored, there is some Z € NY with all entries of AZ lying in
one color. Image partition regular matrices are natural tools for representing some
classical theorems of Ramsey Theory, including theorems of Hilbert, Schur, and
van der Waerden. Several characterizations and consequences of image partition
regularity were investigated in the literature. Many natural analogues of known
characterizations of image partition regularity of finite matrices with rational entries
over the integers have been generalized for matrices with entries from reals over
the ring (R,+). In both the cases of reals and integers, usual ordering played an
important role. In the present work we shall prove that natural analogues of known
characterizations of image partition regularity of finite matrices with rational entries
over the integers are also valid for matrices with entries from Gaussian rationals
Q[i] over the ring of Gaussian integers Z[¢]. The main hurdle for this generalization
is the absence of ordering, and to overcome this hurdle we need some modifications
of established techniques. We also prove that Milliken-Taylor Matrices with entries
from Z[i] are also image partition regular over Z[i].

1. Introduction

In 1933, R. Rado published [10] his famous theorem characterizing those finite
matrices A with rational entries that have the property that whenever N is finitely
colored, there must be some 7 in the kernel of A all of whose entries have the same
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color (or are monochrome). This characterization was in terms of the columns
condition which we shall describe below.

In 1943, R. Rado [11] published a paper among whose results was the fact that
the same condition characterized those finite matrices with entries from any subring
R of C that have the property that whenever R is finitely colored, there is some 7
in the kernel of A whose entries are monochrome.

Definition 1.1. Let u,v € N, and let R be any subring of C and F' be the field
generated by R. Let A be a u X v matrix with entries from F'.
(a) The matrix A is kernel partition reqular over R if and only if whenever r € N

and R\ {0} = U E;, there exist i € {1,2,...,r} and = € (E;)" such that Az = 0.
i=1

(b) The matrix A satisfies the columns condition over F' if there exists some m €

{1,2,...,v} and a partition <It>:;1 of {1,2,...,v} such that

(1) Xier, & = 0;
(2) for each t € {2,3,...,m} (if any remains), then » ;. ¢i is a linear combina-
tion with coefficients from F' (the field generated by R) of {a KRS U;;lllj}.

The results of Rado referred to above are that if R is any subring of the set C of
complex numbers and the entries of A are from F', the field generated by R, then
the system of linear equations is kernel partition regular over R if and only if the
matrix A satisfies the columns condition over the field F'.

Rado’s Theorem, in any of its forms, is quite powerful. For example, it gives van
der Waerden’s Theorem [13] as a corollary, which says that whenever N is finitely
colored, there must be arbitrarily long monochromatic arithmetic progressions.

The length four version of van der Waerden’s Theorem states that whenever N
is partitioned into finitely many cells then the matrix

10

11 a

o | (0)

1 3
has monochromatic image. Many other theorems such as Schur’s Theorem [12] are
naturally represented in terms of images of matrices.

Definition 1.2. Let A be a u X v matrix with entries from Q. Then A is image

T
partition regular over N if and only if whenever r € N and N = U E;, there exist
i=1
ie{l,2,...,r} and z € N” such that Az € E".

While there are several partial results, nothing near a characterization of either
kernel or image partition regularity of infinite matrices has been obtained.
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In this paper we are concerned with the extent to which several known results
about image partition regularity over N can also be obtained over Z[i].

Definition 1.3. Let A be a u X v matrix with entries from Q[i]. Then A is image

partition regular over Z[i] if whenever r € N and Z[i|\{0} = U E;, there exist
i=1
i€{1,2,...,r} and = € (Z[i]\{0})" such that Az € E¥.

To establish some characterizations of image partition regular matrices we need
the notion of kernel partition regularity as well. Here we shall deal with image
partition regularity over Z[i] and we shall extend the definition of image partition
regularity to allow entries from Q[].

Definition 1.4. Let u,v € N and let A be a u x v matrix with entries from R = Z][i]
or Q[i]. Then A is called a first entries matriz if:

(a) no row of A is 0,

(b) the first nonzero entries of any two rows are equal if they occur in the same
column.
If A is a first entries matrix and d is the first nonzero entry of some row, then d is
called a first entry of A.

For characterizations of image partition regular matrices with entries from Q[i]
over Z[i] we need some basic facts about the algebra of the Stone-Cech compactifi-
cation 35 of a discrete semigroup S.

Some of the characterizations of image partition regularity that we shall give
involve “central” sets. Central sets were introduced by Furstenberg [4] and defined in
terms of notions of topological dynamics. These sets enjoy very strong combinatorial
properties. They also have a nice characterization in terms of the algebraic structure
of 8S. We shall present this characterization below, after introducing the necessary
background information.

We take the points of 55, to be the ultrafilters on S, identifying the principal
ultrafilters with the points of S and thus supposing that S C 3Sy. Given A C S,
we denote

clA=A={pecpBSy: Acp}

The set {A: A C S} is a basis for the closed sets of 3S,. The operation - on S
can be extended to the Stone-Cech compactification 85, of S so that (3Sg,-) is a
compact right topological semigroup (meaning that for any p € 35Sy, the function
pp 1 BSqa — BSq defined by p,(¢) = g - p is continuous) with S contained in its
topological center (meaning that for any = € S, the function A, : Sy — BSq
defined by A;(¢q) = x - ¢ is continuous). A nonempty subset I of a semigroup 7' is
called a left ideal of S if TI C I, a right ideal if IT C I, and a two sided ideal (or
simply an ideal) if it is both a left and a right ideal. A minimal left ideal is a left
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ideal that does not contain any proper left ideal. Similarly, we can define minimal
right ideal and smallest ideal.

Any compact Hausdorff right topological semigroup T has a smallest two-sided
ideal

K(T) = U{L: L is a minimal left ideal of T}
= |J{R: R is a minimal right ideal of T},

Given a minimal left ideal L and a minimal right ideal R, LN R is a group, and in
particular contains an idempotent. If p and ¢ are idempotents in T" we write p < q
if and only if pg = gp = p. An idempotent is minimal with respect to this relation
if and only if it is a member of the smallest ideal K (T') of T

Given p,q € 3Sand A C S, A € p-qifand only if theset {x € S: 2 1A € ¢} € p,
where 271A = {y € S:z-y € A}. See [9] for an elementary introduction to the
algebra of 55 and for any unfamiliar details.

Definition 1.5. Let S be a discrete semigroup. A set C' C S is said to be a central
set in S if there is an idempotent p in the smallest ideal K(8S) of 84S with C € p.

The basic fact that we need about central sets is given by the Central Sets
Theorem, which is due to Furstenberg [4, Proposition 8.21] for the case S = Z.

Theorem 1.6 (Central Sets Theorem). Let S be a semigroup. Let T be the
set of sequences (yn)>2, in S. Let C be a subset of S which is central and let
F € P;(T). Then there exist a sequence (an)orq in S and a sequence (Hy,)S2, in
Py (N) such that for each n € N, max H,, < min H,41 and for each L € P¢(N) and

each f € F, 37 cplan+>cny. f(t) €C.

However, the most general version of Central Sets Theorem is available in [1,
Theorem 2.2]. Central sets are interesting combinatorial objects because of the
fact that they contain images of any image partition regular matrix, and any finite
partition of any infinite commutative semigroup (.5, +) is guaranteed to have one
cell which is central.

Definition 1.7. Let S be a semigroup and let A C S. Then A is called a central*
setin S if ANC # () for every central set C in S.

The following obvious lemma will be useful for us.

Lemma 1.8. Let S be a semigroup and let A C S. Then the following statements
are equivalent.

(a) A is a central® set.

(b) A is a member of every minimal idempotent in 3S.

(¢) ANC is a central set for every central set C' of S.
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The paper is been organized as follows: In Section 2 we have discussed about
some basic characterizations of image partition regular matrices over Z[i]. In Section
3 we establish several characterizations of image partition regular matrices over Z[i].
The results in this section are already established over N with entries of matrices
from Q by N. Hindman, I. Leader, D. Strauss [7]. N. Hindman obtained similar
results with entries from R over (R,+) [5]. In both cases the usual ordering of
N and R played important roles. But we can not adopt the same techniques and
constructions as was used earlier in case of Z[i]. The ideas are quite similar but we
have to develop some stronger techniques and some new constructions. Finally in
Section 4 we prove that Milliken Taylor matrices are the main sources of infinite
image partition regular matrices.

2. Characterizations of Image Partition Regular Matrices

We now turn to some results about central subsets of Z[i].

Lemma 2.1. Let p be an idempotent in (BZ[i],+). Then for every a € Z[i] \ {0},
aZli] € p.

Proof. Let A be an IP set in Z[i]. By division algorithm any element z can be
expressed as z = a - w + r, where w and r belong to Z[i] with 0 <| r |[<| a |, and
there will be at most | a |> number of distinct remainders r for different z. Let us
suppose that a = « + i3, and denote all possible remainders when any z is divided

by a as r1,72,...,74242. Since A is infinite there must be infinitely many elements
congruent to r;(mod a) for some [ € {1, 2,...,(a?® + $%)}. Choose (a? + (3?) many
of them as 2, 21,,...,21_,, ,in A. Since A is an IP set the sum Zzztﬁ z1, 1is also

there, but this sum is congruent to (o + $2) - 7;(mod a) = 0(mod a). This trivially
implies that aZ[i] is IP* as A is an arbitrary IP set. O

The lemma above simply implies that aZ[i] is IP* for any a € Z[i] \ {0}, and so
in particular central®. However, we need the following fact.

Lemma 2.2. Let p be a minimal idempotent in (BZ[i],+) and let a € Q[d] \ {0}.
Then « - p is also a minimal idempotent in BZ[i]. Consequently, if C is central in
(Z[i],+), then so is (aC) N Z]i].

Proof. The function [, : Z[i] — Q[i] defined by l,(z) = « -z is a homomorphism,
and hence so is its continuous extension I, : 8Z[i] — BQq[i] by [9, Corollary 4.22].
Furthermore, o - p = I, (p). Thus a - p is an idempotent and « - p € Io[K (BZ[i])] =
K(aZ[i]) (the latter equality holds by [9, Exercise 1.7.3]). Assume that o = £ with
a,b € Z[i]. Then bZ[i] C a~'aZ[i] and thus aZ[i] € ap because bZ[i] € p by Lemma

2.1 here. In particular, a.-p € fZ[i]. Also a-p € K(aZ[i]) NaZ[i] and aZ[i] C oZ][i]
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and consequently, K(aZ[i]) = K(oaZ[i]) N aZ[i] by [9, Theorem 1.65]. Since every

idempotent in BZ[i] is in aZ[i] by Lemma 2.1, we have that aZ[i] N K(BZ[i]) # 0
and consequently, K (aZl[i]) = aZ[i] N K(BZ[i]). Again by [9, Theorem 1.65]. Thus
(a-p) € K(POZ]i]) as required. For the second assertion, let C be central in (Z[3], +)

and pick a minimal idempotent p containing C. Then aC NZ[i] € a - p. O

Theorem 2.3. Let A be a u X v matriz with entries from Z[i], define ¢ : Z[i]* —
Z[i]"™ by go(x3 = AZ and let $ : B(Z[i]") — (BZ[i])* be its continuous extension. Let
p be a minimal idempotent in BZ[i] with the property that for every C € p there
exists & € Z[i]" such that A% € C*. Letp = (p,p,...,p)T. Then there is a minimal

idempotent q € B(Z[i]") such that $(q) = p.

Proof. Since p € K(BZ[i]) by [9, Theorem 2.23], p € K(G(Z[i))*). Also by [9,
Corollary 4.22], ¢ : B(Z[i]") — B(Z][i])" is a homomorphism.

We claim that 7 € Q[B(Z[i]")]. Suppose instead that p' & @[B(Z[i]”)]. Since
P[B(Z[i]")] is closed, we can pick a neighborhood U of p'such that UN@[3(Z[i]")] = 0.
Pick D € p such that D" C U and pick & € Z[i]" such that AZ € D“. Then
gé(x_j € U N@[B(Z[i]")], a contradiction.

Let M = {q € B(Z[:]") : ¢(¢) = p}. Then M is a compact subsemigroup of
B(Z[i]"). By [9, Theorem 2.5] pick an idempotent w € M. By [9, Theorem 1.60],
pick a minimal idempotent ¢ € B(Z[i]") with ¢ < w. Since ¢ is a homomorphism,
?(q) < ¢(w) = p. Since p'is minimal in (GZ[])*, we have that @(q) = p. O

In the following theorem we get a conclusion far stronger than the assertion
that matrices satisfying the first entries condition are image partition regular. The
stronger conclusion is of some interest in its won right. The technique of the proof
is taken verbatim from [9, Theorem 15.5]. The first author of the present article
also used this technique in several papers.

Theorem 2.4. Let u,v € N, and let M be a u X v matriz with entries from Zl[i]
which satisfies the first entry condition. Let C' be central set in Z[i]. If for every
first entry ¢ of M, cZ[i] is a central*set, then there exist sequences (r1 )22,

T2m) S 1y ey {Tyn)S%y tn Zli] such that for every F € Pr(N Azrp € C", where
sn/n=1 sn/n=1 Y f
ZnEF {171’”
ZnGF va’ﬂ
{L'—I:—‘ =
Zneva,n

Proof. Let C be a central set in Z[i]. We proceed by induction on v. Assume first
that v = 1. We can assume that M has no repeated rows, so in this case we have
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M = (¢) for some ¢ € Z[i] \ {0}. Pick a sequence (y,)52; with FS((y,)32,) C
C N Z[i]. For each n € N, let x1, = ¥*. The sequence(z; )52, is as required.
Now let v € N and assume that the theorem is true for v. Let M be a u x (v+1)
first entries matrix with entries from Z[i]. By rearranging the rows of M and
adding additional rows to M if needed, we may assume that we have some r €

{1,2,-- ,u — 1} and some d € Z[i] \ {0} such that

{ 0 ifie{1,2,...,7r},

4i1=9 4 ifie{r+1,r+2,...,u}.

Let B be the r x v matrix with entries b, ; = a;;4+1. Pick sequences (z1.,)0%,
(2o.m)5% 1, o (2un)22 in Z[i] \ {0} as guaranteed by the induction hypothesis for
the matrix B. For each i € {r+1,r +2,...,u} and each n € N, let

v+1
Yin = g Q3,525 —1,n-
Jj=2

We take y,, =0 for all n € N.

Now C being a central set in Z[i], by Theorem 1.6 we can pick a sequence (k, )52,
in Z[i] and a sequence (H,,)22; of finite nonempty subsets of N such that maxH,, <
minH,,; for each n and for each i € {r,r+1,...,u}, FS((kn+> ,cqy Yit)ne1) € C.

For eachn € N, let 21 ,, = kT and note that k, = k,, + ZteH” yrt € C C S. For
JEA2,3, vt} let @y =)y 2j—14. We claim that the sequences (z;,)p%
are as required. To see this, let F' be a finite nonempty subset of N. We need to show
that for each i € {1,2,-+- ,u}, Z;’ii @i Y onep Tin € C. Solet i€ {1,2,--- ,u} be
given.

Case 1. 1 <r. Then

v+1 _ v+1
D1 GG Doner Tin = Doilo QgD oner DteH, Fi-1t
v
= Yic1bij-Dieqzit €C.
where G = Upcp Hy,
Case 2. 1 > r. Then

v+1 _ v+1 . )
Zj:l Wi Domer Tim = CDpepTin+ =2 Qi D mer Timn

+1
D oneF C¥Ln + Yoner Dotem, Dojon GigZi-1t
= Yner(bn + ZteHn i) € C.

O

Corollary 2.5. Any finite matriz with entries from Z[i] which satisfies the first
entries condition is image partition regular over Z[i].
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3. Image Partition Regularity Over Z[i]

In this section we provide several characterizations of image partition regularity
over Z[i].

Theorem 3.1. Let u,v € N and let A be a u x v matriz with entries from QJi].
The following statements are equivalent.

(a) A is image partition regular over Z[i].

(b) Let c1,ca,...,cy be the columns of A. There exist 51,52, ...,5, € Q[i]\{0}
such that the matriz

— —
M=\ s1-¢1 Sy-ca . . . Sy-cCp

o o . . . -1
is kernel partition regular over Z[i].
(¢) There exist m € N, and a v x m matriz G with entries from Q[i] and no row

equal to 0, and a u X m first entries matriz B, with all its first entries equal to 1,
such that AG = B.
(d) There exist m € N, and a v X m matrizc H with entries from Z[i] and no

row equal to 6, and a u x m first entries matriz C with entries from Zl[i], and
¢ € Z[i]\{0} as the only the first entries of C, such that AH = C.

(e) There exist m € N, and a u x m first entries matrix B with entries from
Q[i] and the first entries all are equal Gaussian integers such that given any Z €
(Z[\{O})™ there is some = € (Z[i]\{0})", with Az = By .

f) There exist m € N, and a u x m first entries matriz C' with entries from
Z[i] and the first entries all are equal Gaussian integers such that given any Z €
(Z[i\{O})™ there is some = € (Z[i]\{0})” with Az = CYy.

(9) There exist m € N, and a u X m matriz B with entries from Z[i] which
satisfies first entries condition such that given any y € (Z[i)\{0})™ there is some
z € (Z[i)\{0})" with Az = By .

(k) For every central set C' in Z[i], there exists = € (Z[z]\{()})v such that Az €
cv.

(i) For every central set C in Z[i], the set {g € (Z[z]\{O})v . Az € cu}ois
central in (Z[i])".

(j) There exist s1, 52, ...,y € Q[i]\{0} such that the matric
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 Lo 1

P =

$1G1,1  S201,2  S3G1,3 - . . Syl
S10a2,1  S2022 S3A23 . . . SyQ2y
$143,1 S2a32 S3A33 . . . SyQ3y
810y,1  S2Qqy,2 53043 - . . SypQuu

s image partition regular.

(k) There exist by, ba,...,b, € Q[i]\{0} such that the matriz
br 0 0 . . . O
0 b O 0
0 0 b3 0
Q =
0 0 0 . . . b
A

is image partition regular.

(1) For each T e (Q[4])* \{6} there exists b € Q[i]\{0} such that ( bj ) is

1mmage partition reqular.
(m) Whenever m € N, ¢1,¢a, ..., ¢m are nonzero linear mappings from (Qli])

to Q[i], there exists b € (Q[i])™ such that, whenever C is central in Z]i], there exists
z € (Z[i)\{0})" for which Az € C*, and for each i € {1,2,...,m}, bipi(x) € C,
in particular ¢;(z) # 0.

(n) For every central set C in Z[i], there exists © € (Z[i]\{0})" such that y =
A7 € C%, all entries of & are distinct, and for all i,j € {1,2,...,u}, if rows i and
J of A are unequal, then y; # y;.

v

Proof. (a) implies (b). Given any p € N\{1}, let the start base p coloring of Z[i] be
the function

oy Z[\{0} — X x Y x {0,1}

where Y = {a+ib : a,b € {—(p—1),—(p—2),...,0,1,..., p—1}} and X = Y \{0},
defined as follows: given any y € Z[i]\{0}, write y = >";", a;p", where each a; € Y
fort=0,1,..., n—1and a, # 0 (idea to construct a; directly comes from the start
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base p coloring of N componentwise without changing the sign, i.e., take y = y1 +iys
and write | y1 |= Y loap' & | y2 |= D12, az,p", where for i € {1,2} each
a;; € {0,1,...,p—1} for 0 <t < n; and a;,, # 0; now take n = max{ni, na},
n’ = min{ni, no} and then define a;; = 0 for n; < t < n where i € {1, 2} with
n; = n’. Now we can write y; = >, sgn(y;)a;p’ for i =1, 2 and so clearly our
ar = sgn(yi)ar+isgn(yz)as fort =0, 1,...,n.);ifn > 0, 0,(y) = (an, an-1, %)
where i = n(mod 2); if n =0, 0,(y) = (ao,0,0) and ¢,(0) = (0,0,0).

—  —

Let c_{, c_é, e ¢, be the columns of A and let dyi, ds, ..., d, denote the columns
of the u X u identity matrix. Let B be the matrix

_ _ N — — —
§1-C1 83:Cy . . . Sy-Cy —di —do . . . —=d, |
where s1, So,..., S, are yet unspecified nonzero Gaussian rationals. Denote the
—  — —

columns of B by by, ba,..., byt,. Then

— { St - c_t) ift <w
bt = —
*dt_v if t > .

Given any p € N\{1} and any = € Z[i]\{0}, let v(p, z) = max{n € w :
p" < max{| Re(z) |,| Im(z) |}}. Now temporarily fix some p € N\{1}. We obtain
m = m(p) and an ordered partition (Dl(p), Dy (p), ..., Dm(p)) of {1, 2,..., u} as
follows. Pick = € (Z[i]\{0})" such that Az is monochrome with respect to the
start base p coloring and let 5 = A7. Now divide up {1, 2,..., u} according to
which of the y;’s start furthest to the left in their base p representation. That is,
we get D1(p), D2(p), ..., Dp(p) so that

(1)ifk € {1,2,..., m} and i, j € Dy(p), then v(p, v;) =v(p, y;), and

(2)ifk € {2,3,..., m}, i € Dg(p), and j € Dy_1(p), then v(p, y;) > v(p, ¥:)-
We also observe that as 0,(y;) = op(y;), we have that v(p,vy;) = v(p, y;)(mod 2)
and hence (p,y;) > v(p, yi) + 2.

There are only finitely many ordered partitions of {1, 2,..., u}. Therefore
we may pick an infinite subset P of N\{1}, m € N, and an odered partition
(D1, Do, ..., D) of {1, 2,..., u} so that for all p € P, m(p) =m and

(l)l(p)7 Dg(p), ey Dm(p)) = (Dl, DQ, ey Dm)

We shall utilize (Dy, Da,..., D) to find sy, sa,..., s, and to get a partition of
{1, 2,..., u + v} as required for the columns condition.
We proceed by induction. First we shall find E; C {1, 2,..., v}, specify s; €

Q[i]\{0} for each i € Ey, let I = Ey U (v+ D), and show that 7, ., b; = 0.
That is, we shall show that ZieEl s - c = ZieDl cz In order to do this, we

—

show that ZieDl d; is in the span of (a, c;, ce, CT,) For then one has ZieDl d; =
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S @i - ¢, where o; € Q[i] (which is true because one is solving linear equations
with rational coefficients) and not all o;’s be zero. Let By = {i € {1,2,...,v} :
o; # O} and for i € Eq, let s; = ay.

Let S be the linear span of (0_1)7 Coyers c_;,) In order to show that ZiGDl d; is in

S, it suffices to show that } _, ., (7 isin ¢l S. To this end, let € > 0 be given and pick
p € P with p > v2u/e. Pick z € (2]i ]\{0}) and y € (Z[i))" that we used to get
(D1(p), D2(p), - .., Dy(p)). That is, Az = y, y is monochrome with respect to
the the start base p coloring, and (D1, D, ..., Dyp,) = (D1(p), D2(p), ..., Din(p))
is the ordered partition of {1, 2,..., u} induced by the starting positions of y;’s.
Pick v so that for all i@ € Dy, y(p, y;) = v. Pick (a, b, ¢) € X xY x {0, 1} such
that op(yi) = (a, b, ¢) forallt € {1,2,...,u}. Let £ =a + b/p and observe that
1<|0|<V2p. Fori € Dy,y; =a-pY +b-p! +2 - p72 where 0 < |z| < v/2p,
and hence yi/zﬂ = E—i—zi/pQ; let A\; = zi/p2 and note that 0 < |)\;| < \/§/p For
i € ULy Dj, we have y(p,yi) <v—2;let \; = yi/p'y and note that 0 <| \; |< \/i/p
Now Az = y and so

sz Cz—y_zyz d—zyz d"‘zzyz i

€D Jj=21i€eD;

—

Thus Z:zl(xi/zﬂ)a = ZzeDl 0 d +ZZ 1N d and consequently || ZzeDl
Zle (xl/(ﬁp’y)) e 1=l Zi:l /\i/ﬁ d; |I< Zi:l | )\i/ﬂ |< \/_u/p < €. Since
Soiy (wi/(Ep7)) ~ciisin S, 3,0 p, di € el S as required.

Now let k € {2,3,...,m} and assume that we have chosen Ey, Es,...,Ep_1 C
{1,2,...,v}, s; € Q[i]\{0} for i € Uf;llEj, and I; = E; U (v+ D,) as required for
the columns condition. Let L = UI?:IE» and let M = U’tlD» and enumerate

M, in order as ¢(1), ¢(2),..., q(r). We clalm that it suffices to show that 3, ., d
is in the span of (c_l), c_)g, A c_q;7 dg(1), d a(2)5 - - - dq(r)) which we will again denote
by S. Indeed, assume that we have done this and can pick oy, ag,...,a, € QJi,

not all zero and 5q(1), 5q(2), RN 5q(r) in Q[é] such that ZieDk d; = Zle o - (37 +

Sy q(i) -dq_(;-). Let E, = {z e{l,2,...,v\Lg : o; # 0} and for i € Ey, let
S; = . Let Ik = Ek U (’U + Dk)
Then

Zb—Zal C7’+Z d—za; Cz+z —Qy Cz+z 5q(7,' (i)

i€l i€Ey 1€Dy, 1€Ey
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Now, if i € {1, 2,..., v} and o; #0, then i € Ly U E}, so

Z Qg - Cz + Z —Qy Cl + Z 5q(z) q(z) = Z —Qy Cl + Z 5(1(1) Q(l)

i€Ey, i€Ly

and

Z —Q - Cz+z 5q(z ey = Z_aza""z_(sli

i€Ly, i€Ly i€ M),
— —
= E (—ai/si) - b + g ;i + by
i€Ly, i€ My,

Let 5; = —ai/si ifi € Ly and let 8,4, = 9; if i € M}. Then we have

> 6 by = > (—aifs) b+ > 6 b;zzzbj

ieUl 2l i€Ly i€ My, iely

as required for the columns condition.

In order to show that ., CZ is in S, it suffices to show that »_, CZ is
in ¢/S as S is closed in C*. To this end, let ¢ > 0 be given and pick p € P
with p > v2u/e. Pick oa= (Z[z]\{O})U and y € (Z[z])u that we used to get
(Dl(p), Ds(p), ..., Dm(p)). Pick v so that for all ¢ € Dy, v(p,y;) = . Pick
(a,b,c) € XxY x{0, 1} such that o,,(y;) = (a,b,c) foralli € {1, 2,..., u}. Let ¢ =
a+b/p and observe that 1 <| £ |< V2p. Fori € Dy, y; =a-pY +b-p?~ 1t 4z -pr—2
where 0 <[ z; |< v2p, and hence y; /p” = € + z; /p?; let A; = z;/p* and note that
0<| A< \/E/p Fori € UTL, . D;, we have A(p,y;) <~ —2;let \; = y;/p" and
note that 0 <| A; |< \/i/p (Of course we have no control on the size of y; /p” for
1€ Mk)

Now Az = y and so

in’cz Zyz d—zyz d+zyz d+zzyz‘za
i=1

i€ M, i€Dy, j=k+1i€D;

where 3570, 1 Y iep, ¥i - di =0if k=m.
Thus Z::l(xi/pv) e = ZieMk (yi/pv) -d; JrZieDk t-d; +Z;n:k ZieDj A -
Consequently,

I3 - (/@) + 3 (/) )

i€ Dy, i=1 i€M,,

1

&

IS0 - d 13 S I < uvzp < e

j=ki€D;, j=ki€D;
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which suffices, since z; /(fp?) #0 fori € {1,2,..., v}.

Having chosen Iy, Io,..., I, if {1,2,..., u 4+ v} = Uj”_l I;, we are done. So
assume {1, 2,..., u+v} # Jj_ 1] Let Im+1 ={1,2,..., u+v\UjL, I;. Now
{1, 2,.. u}_U] 1DJ,so{ dl, dg,... —d}C{b 4 € UJLy1;} and hence

we can write Zzel b as a linear combination of {b RS szlfj}.
b = (o). By Rado’s extended result, M satisfies the columns condition

m

over Q[i]. Pick m € N, <It>zn:1, <Jt>£2, and <<6t’i>i€-]t> as guaranteed by the

columns condition for M. Let B’ be the (u+v) X m matrix whose entry in i’th row
and t’th column is given by

—61571‘ ifi € Jy
b;7t - 1 lf'l € It
0 ifi¢ U I

We observe that B’ satisfies the first entries condition, with the first non-zero
entry in each row being 1. We also observe that M B’ = 0, the v x m matrix
whose entries are all zero (Indeed, let j € {1,2,..., u} and t € {1, 2,..., m}. If
t =1, then > cji - b, = 3,7 ¢ = 0 and if ¢ > 1, then zu_i cji- b, =
Zie}t —04 - Cji F ZZEL, ¢j; = 0). Let S denote the v x v diagonal matrix whose
diagonal entries are si, So, ..., Sy,. Then M can be written in the block form as

( AS -1, ) and B’ can be written in the block form as g , where I,, denotes

the v x u identity matrix and C' and B denote the v x m and u X m matrices
respectively. We observe that C' and B both are first entries matrices with the first
non-zero entry in each row is 1, and that ASC = B, because M B’ = 0. So take
G = SC, which is a v x m matrix with coefficients from Q[i] and having no row

equals to 6 Hence we have AG = B, as required.

(¢) = (d). We can choose ¢ € Z[i]\{0} in such a way, so that all entries of
¢G and cAG are in Z[i]. In fact it can be achieved by multiplying suitable positive
integers, which is trivially a common multiple of the denominators of each entry of
the corresponding matrices . Let C' = ¢B, then C' is again a first entry matrix with
all the first non-zero entries in each row equal to ¢ (clearly, the entries of C' are from
Zl[i]). Take H = ¢G, and we have AH = C, as required.

(¢) = (e). Assume that (c¢) holds. We can choose a d € Z[i]\{0} such that
all the entries of dG are in Z[i]. Since B is a given u X m first entries matrix,
then B’ = dB is also a first entries matrix with all the first entries equal to d. Let

€ (Z[i)\{0})™ be given and let us set Z = dGy. Then Az = B'y. Replacing
B’ by B, we have Az = BYy.

(e) = (f). Let B be a given first entries matrix as in (e). We choose
¢ € Z[i]\{0} to be a common multiple of the denominators in the entries of B and
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set C = ¢B. Given vy, let z = ¢y and pick z such that A7 = Bz = Cy. Clearly
the first entries in each row of C' are equal Gaussian integers.

(d) = (f). Given vy, set z = Hy, and the result follows immediately.

(f) = (g). Trivial.

(99 = (f). Let B be given as in (g), and for each j € {1, 2,..., m}, pick
w; € Z[i]\{0} such that for any ¢ € {1, 2,..., v}, if j = min{t € {1, 2,..., m} :
b;+ # 0} then b; ; = w;. ( That is, w; is the first entry associated with the column
j.) Let ¢ be the common multiple of {wj, wa, ..., wy}. Define the u x m matrix
C as follows: for (i,5) € {1,2,...,u} x {1,2,..., m}, ci,j = (c/w;)b; ;. Clearly C
is a first entries matrix with entries from Z[i] and all the first entries are equal to ¢,
a fixed Gaussian integer. Now, given y € (Z[i]\{0})™, we define z € (Z[i]\{0})"
by the rule: for j € {1,2,..., m}, z; = (¢/w;)y;. Then BZ = Cy. Now again
applying (g) there exists z € (Z[i]\{0})" such that BZ = Az. Therefore we have
Az =CYy.

(f) = (a). By Lemma 2.1 for each a € Z[i]\{0}, aZ[i] is an IP*-set, and
therefore a central* set. Thus by Corollary 2.5, C' being a first entries matrix is
image partition regular over Z[i]. To see that A is image partition regular over Z[i],
let r € N and let Z[i] = {JI_, E;. Picki € {1,2,...,r} and y € (Z[i]\{0})" such
that Cy € E*. Then pick z € (Z[i)\{0})" such that Az =CYy.

(99 = (h). Let B be as guaranteed by (g) and let C' be a central set in Z[i].
Pick by Theorem 2.4, some y € (Z[i]\{0})™ such that By € C*, and pick = such
that Az = By. Therefore Az € C".

(h) = (a). This is obvious because for any finite partition of Z[i], at least one
of the cells must be central.

(h) = (i). Pick d € Z[i]\{0} such that all entries of dA are in Z[i]. We
claim that for every central set C' in Z[i], there exists = € (Z[i]\{0})" such that
dAz € C*. By Lemma 2.2, (3C'NZ[i]) is central, so pick z € (Z[i]\{0})" such
that Az € (3CNZ[i])". Then dAz € C*.

Let C be a central subset of Z[i] and pick a minimal idempotent p € Z[i] such
that C € p. Define ¢ : (Z[i])" — (Z[i])" by ¢ (E) — dAZ and let @ : B (Z[i]") —
(BZ]i])" be its continuous extension. Now dp is a minimal idempotent by Lemma
2.2. Define dp = (dp,dp, ..., dp)T and pick by Lemma 2.3, a minimal idempotent
q € B(Z][i]*) such that ¢ (¢) = dp. Now x_,dC is a neighborhood of dp and pick
B € g such that ¢[B] C x*,dC. Then B C {; e (Z[\{0})" : AT € cu}, 50
{5’ € (Z[\{0})" : AZ € cu} is central in (Z[i])".

(i) = (a). This is immediate because for any finite partition of Z[i], at least
one of the cells must be central.
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(b) = (j). Let

S1a1,1  S2@1,2  S3G1,3 - . . SpQlw

S1Q2,1  S2022 S3G23 . . . SypQ2y

s1a3,1  S2G32 S3G33 . . . SypQA3y
B =

$10y,1  S20y,2 S30y,3 - - . Sylypw

and let I, and I, be the identity matrices of order u and v respectively. Then

P = ( g ) and M = ( B —I, ). To see that P is image partition regular, let

Z[i] \ {0} be finitely colored and pick z € (Z[i]\{O})u+v such that M2 =0 and z
is monochrome. Let 7 € (Z[z]\{O})v and y € (Z[z]\{()})u such that z = < z )
Y
ThenazMZ:Bz—yandson:Z.
(j) = (k). Foreachie{l,2,...,v}, let b; = q% and let

S1 0 e 0

0 So . . . 0
S =

0O 0 . . . s

Then P = QS. Pick d € Z[i]\{0} such that {ds1,dss,...,ds,} C Z[i]\{0}. We
show that statement (h) holds for the matrix Q. Let C be central in Z[i] and pick
a minimal idempotent p € 8Z[i] such that C' € p. By Lemma 2.1, dZ[i] € p and so
C N dZ[i] is central. We have already shown that statement (a) implies statement
(h), so the statement (k) holds for the matrix P. Pick = € (z[i]\{0})" such that

P7 € (CNdz[i])""". Then the entries of @ are the first v entries of P, hence are
multiples of d. Therefore y = Sz € (Z[i]\{0})" and Qy = Pz € C*+".

(k) = (a). Follows directly.

() = (). f rG # 6, we can choose b so that the first entry of b7 G is 1.
If G = 67 we can choose ¢ € (Z[i)\{0})" such that 7.¢ #0andadd ¢ to G

as a new final column. In this case we choose b so that br - ¢ = 1. In either case,

( blzln ) G is a first entries matrix with all its first entries equal to 1 and so the

statement (c¢) holds for ( b£ )

() = (m). For each i € {1, 2,..., m}, there exists r; € Q[i]*\{0} such that
¢i(x) =r; -« for all ¥ € Q[i]". By applying statement (I) m times in succession
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(using the fact that at each stage the new matrix satisfies (I) because (a) implies

(1) as (c¢) implies (1)), we can choose by, ba, ..., by, € Q[i]\{0} for which the matrix
biry
bar>
T =
bt
A

is image partition regular. Since we know from (h) that every image partition
regular matrix has an image in any central set, for any central set C' in Z[i], there
exists 7 € (Z[i]\{0})" for which T# € C"+*. This implies Az € C*. Also, for
ie{l,2,...,m}, biri-z € C and so b;¢;(x) € C. In particular we have ¢; () # 0.

(m) == (n). We may presume that A has no repeated rows so that the
conclusion regarding y becomes the statement that all entries of y are distinct.
Fori # jin {1, 2,..., v}, let gb:j be the linear mapping from Q[i]” to Q[i] taking
T to x; — xzj. For i # jin {1,2,...,u}, let zp:ij be the linear mapping from
Qli]” to Q[4] taking = to Siqi(air —aj¢) - x. Applying statement (m) to the set
{bij i, je{l,2,...,v}, i #jYU{t; 4,5 € {1,2,..., u},i # j}, we reach the
desired conclusion.

(n) = (h). This follows immediately. O

4. Infinite Matrices

We now prove that certain infinite matrices with entries from Gaussian integers are
also image partition regular over Z[i]\ {0}. K. Milliken and A.Taylor independently
proved a theorem from which it can be derived that certain infinite matrices, called
Milliken-Taylor Matrices, are image partition regular over N. Some generalizations
of this celebrated theorem are also available in [8, Corollary 3.6], [?, Theorem 5.7],
[2, Theorem 2.6].

Definition 4.1. Let m € w, and @ = (a;)%, be a sequence in Z[i] \ {0}, and let
Z = (2n)5%, be a sequence in Z[i]. The Milliken-Taylor system determined by @
and 2 is MT(a,2) = {d"ai - Y jep, 2 : each Fj € Py(w) and if i < m, then
max F; < min Fj 1}

If ¢ is obtained from @ by deleting repetitions, then for any infinite sequence Z,
one has MT'(a@,Z) C MT(C, Z), so it suffices to consider sequences ¢ without adjacent
repeated entries.
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Definition 4.2. Let @ be a finite or infinite sequence in Z[i] with only finitely many
nonzero entries. Then ¢(@) is the sequence obtained from @ by deleting all zeros
and then deleting all adjacent repeated entries. The sequence ¢(@) is the compressed
form of @. If @ = ¢(d@), then @ is called a compressed sequence.

Definition 4.3. Let @ be a compressed sequence in Z[i] \ {0}. A Milliken-Taylor
matriz determined by @ is an w X w matrix M such that the rows of M are all
possible rows with finitely many nonzero entries and compressed form equal to a.

Theorem 4.4. Let m € w and d@ = (a;)}~, be a compressed sequence in Z[i] \ {0}
with ag # 0, and let M be a Milliken- Taylor matriz determined by a. Then M is
image partition regular over Z[i|. In fact, given any sequence (wn)S>, in Z[i] \ {0}
such that whenever r € N, Z[i] \ {0} = U;_, C;, there exist i € {1,2,...,r} and a
sum subsystem ()22 of (wn)22, such that MT(a, %) C C;.

Proof. By [9, Lemma 5.11], choose an idempotent p € (;2 clgzi FS((wn)o2})-
Let q=ag-p+a1-p+ ...+ ap -p. So it suffices to show that whenever @ € g,
there is a sum subsystem (z,,)5%, of (w,)22, such that MT(d,Z) C Q. Let Q € ¢
be given. Assume first that m = 0. Then (ag) 'Q € p, where (ag) ~'Q = {2z € Z[i] :
ap - z € Q}, so by [9, Theorem 5.14] there is a sum subsystem(x, )22, of (w,)>2,
such that FS({(x,)% ) C (ap)~1Q. Then MT(a@,¥) C Q. Now assume that m > 0.
Define

PO)={z€Z[i]: —(ap-2)+Q€ar-pt+az-p+...+am p}.
Since @ € g we have
agt {2 €Zi]:—2+Q€ar-pras-pt...+am-ptED
which shows that
P0)=4{z€Z[i]: —(ap-2) +Q E€a1-p+az-p+...+am p} €D

Given zy define

P(z) ={u€Zli]: —(ap-20+a1-u)+Q €ag-p+az-p+...+ am - p}.
If zo € P(0), then

—(ap-z0)+Q€ar-ptaz-p+...+ay p

and so

{u € Zli]: —(a1-u)+(—(ao-20) + Q) €Eaz-p+az-p+...+an ptEP

and thus P(zg) € p.
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Given n € {1,2,...,m — 1} and 29, 21, ..., 2n—1, let P(20,21,...,2n-1) =
{ueZli]: —(ap- 20+ ...+ an-12n-1+an -u+Q €any1 P+ ...+ am - p}.

If 2o € P(@) and for each ¢ € {1,2,...,n — 1}, 2; € P(20,21,.-.,2i—1), then
P(z0,21,-+-,2n-1) € D.
Now given zg, 21, - -, Zm—1, let

P(zp,21,- oy 2m—1) ={u€Zli]:ap-z0+a1 21+ ...+ Qm-1 - 2m-1+am-u € Q}.

If 29 € P(0) and for each i € {1,2,...,m — 1}, 2; € P(z0,21,...,%i—1), then
P(z9,21,-.+,2m—1) € p. Given any B € p, let B* ={z € B: —z+ B € p}. Then
B* € p and by [9, Lemma 4.14], for each z € B*, —z + B* € p.

Choose zg € P(0)* N FS((wn)2,) and choose Hy € Ps(N) such that zy =
D oie m, wt- Let n € w. We further assume that we have chosen zo, 21, ..., 2, and
Hy,Hq,...,H, such that

L if k€ {0,1,...,n}, then Hy € Py(w) and 21, = Y,y Wi,

2. if k€ {0,1,...,n — 1}, then max Hy < min Hy41,

3.if 0 # F C{0,1,...,n}, then 3, . 2 € P(0)*, and

4. if k € {1,2,...,min{m,n}}, Fy, F1,..., F € P¢({0,1,...,n}), and for each
j€{0,1,...,k—1}, max F; < min F;4, then

Z ztGP(Z zt,z Zi e, Z zt)*.

teFy, teFy teF; teF,_1

All hypotheses hold at n = 0, with (2) and (4) holding vacuously. Let v = max H,,.
For r € {0,1,...,n}, let

E’":{ZteF 2:0#FC{r,r+1,...,n}}.
For k € {0,1,...,m — 1} and r € {0,1,...,n}, let

Wi = { (Ztng Zt""’ZtEFk z): Fo, Fu, ..., Fp, € Py({0,1,...,7})
and for each i € {0,1,...,k — 1}, max F; < min F; 1}

Note that Wy, . # 0 if and only if k < r. If u € Ep, thenu € P(0)*, so —u+P(0)* € p
and P(u) € p. If k € {1,2,...,m — 1} and (ug,u1,...,ux) € Wi, then uy €

P(ug,u,...,uk—1), and so P(ug,uy,...,u;) € p and thus P(ug,uy,...,us)* € p.
Ifre{0,1,...,n—1}, k€ {0,1,...,min{m — 1,7}}, (uo,u1,...,ux) € Wi, and
z € Epy1, then z € P(ug,u1,...,ux)* and so —z + P(ug, u1,...,u;)* € p. If n =0,
let

21 € FS((we)iZ,11) N P@)" N {=20 + P(0)"} N P(z)"
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and pick H; € Py(N) such that min H; > v and 21 = >, .y, wi. The hypotheses
are satisfied. Now assume that n > 1 and pick

Zn+1 € FS(<wt>?iv+1) n P(@)* n ﬂuEEo{_u + P(@)*}
min{m—1,n *
n ﬂk:o{ ’ Meuo,ur,sun)eWi (o U1, .- ug)

n—1 ~min{m—1,r}
ﬁr\r:O k=0 m(ug,ul,.”,uk)ewk)r

mZ€E7»+1(_Z + P(“Oa ULy .- ,Uk)*) .

Pick H, 41 € P¢(N) such that min Hp,41 > v and 2,41 = ZteHﬂ,H wy. Hypotheses
(1) and (2) hold directly. For hypothesis (3) assume that § # F C {0,1,...,n+ 1}
and n+ 1€ F. If F = {n+ 1} we have directly that 2,11 € P(0)*, so assume that
{n+1} C Fandlet G = F\{n+1}. Let u =}, 2. Then u € Ey and so
Zng1 € —u+ P(0)* and thus Y, p 2z € P(0)*.

To verify hypothesis (4), let k& € {1,2,...,min{m,n + 1}} and assume that
Fo,Fi,...,F, € P#({0,1,...,n+1}) and for each j € {0,1,...,k — 1}, max F; <
min Fj ;. We can assume that n+1 € Fy,. Forl € {0,1,...,k—1}let u; = ZtEFl 2.
Then k£ — 1 < min{m — 1,n} and (ug,u1,...,uUx—1) € Wg_1,m. If Fx = {n+ 1},
then 37, cp 2z = 2znt1 € Plug,up, ..., ug—1)*. So assume that {n+1} C F} and
let F| = Fy, \ {n +1}. Let r = maxFj_;. Then r < minF} and so r < n — 1,
k—1<min{m— 1,7}, and (yo,y1,.--,Yk—1) € Wi_1,,. Let z = ZteF,; z¢. Then
z € Ery1 and so

*
Znt1 € =2+ Plug, w1, ..., up—1)".
Hence we have
*
E ztEP(E zt,g Ziyenrs E zt)”.
tEF), teFy teF tEFL_1
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