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Abstract
Both the partition and the divisor function are known to admit finite closed-form
representations in terms of a sparse upper Hessenberg matrix. It is shown that
this matrix determines other arithmetical functions as well; in particular, finite
representations for the summatory divisor function, Ramanujan’s ⌧ -function, and
several related functions are established.

1. Introduction

1.1. Preliminaries and Notation

An explicit representation of a prescribed arithmetical function sheds light on the
nature of this function; however, it may be a di�cult task to establish a finite
representation such as a finite sum or product. As an illustration, consider the
problem of finding a finite representation of the partition function which assigns
the number of partitions p(n) to each nonnegative integer n. (As usual, a partition
of n is an additive decomposition of n into positive integers where the order of the
summands does not matter.) This problem has recently been solved by Bruinier
and Ono [2] who established the formula

p(n) =
1

24n� 1
·
X

Q2Qn

P (↵Q)

comprising a certain nonholomorphic weak Maass form P , a collection Qn of pre-
scribed positive definite quadratic forms, and complex CM points ↵Q.

A di↵erent approach to this problem may be based on pentagonal numbers in
conjunction with a specific upper Hessenberg matrix. The set of generalized pen-
tagonal numbers (without zero) is defined by the union P1 [ P2 where

P1 = {r 2 N : r =
1
2

(3k2 ± k) for an odd integer k 2 N},
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P2 = {r 2 N : r =
1
2

(3k2 ± k) for an even integer k 2 N},

and N denotes the set of positive integers.
In the sequel the following notation will be used: Ajk denotes the entry in the

jth row and kth column of a given matrix A, and tr(A) stands for the trace of
A; moreover, for each pentagonal number M 2 P1 [ P2 its successor M 0 is the
pentagonal number M 0 = min{r 2 P1 [ P2 : r > M}. IM always stands for the
unity matrix with M rows and columns. Setting

112(r) =

8><
>:

+1 if r 2 P1

�1 if r 2 P2

0 otherwise,

the companion matrix associated with the partition function is the infinite matrix
H with entries

Hjk =

8><
>:
112(k) if j = 1
+1 if j � 2 and k = j � 1
0 otherwise,

(1)

and for each positive integer m � 1 the truncated matrix Hm is the m⇥m matrix
being obtained from H by deleting the jth row and kth column for all j, k > m. The
companion matrix and its truncated versions are sparse upper Hessenberg matrices,
and it turns out that H completely determines the partition function.

By Theorem 2.3 in Weba [7], one obtains the finite matrix representations

p(n) = (Hn)11 for all integers n � 1, (2)

i.e., p(n) coincides with the entry in the first row and first column of the nth power
Hn. Likewise, if M is an arbitrary pentagonal number with successor M 0 then the
nth power Hn

M of the truncated matrix HM satisfies

p(n) = (Hn
M )11 for all 1  n  M 0 � 1. (3)

If, in addition, HM has M pairwise distinct eigenvalues �1,�2, . . . ,�M then p(n)
also admits the spectral representation

p(n) =
MX

j=1

↵j · �n
j for all integers 1  n  M 0 � 1, (4)

where coe�cients

↵j =

 
MX

r=1

112(r) · r · ��r
j

!�1

, 1  j  M, (5)
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have the sum
PM

j=1 ↵j = 1. For a proof, see again Theorem 2.3 in [7]. Hence the
partition function is determined by powers or eigenvalues of the Hessenberg matrix
HM . Moreover, this matrix also determines the divisor function

�(n) =
X
d|n

d, n 2 N,

via its trace or its eigenvectors. More precisely, let M be an arbitrary pentagonal
number with successor M 0; then the divisor function can be expressed by

�(n) = tr(Hn
M ) for all 1  n  M 0 � 1. (6)

In particular, the divisor function admits the spectral representation

�(n) =
MX

j=1

�n
j for all 1  n  M 0 � 1 (7)

where �1, . . . ,�M are the (not necessarily distinct) eigenvalues of HM ; see Theorem
3.2 in [7]. Therefore, the partition function and the divisor function are closely
related, and a comparison between their spectral representations shows that both
arithmetical functions can be viewed as superpositions of sinusoids with di↵erent
amplitudes and phase angles but with identical frequencies. This is an explanation
for the oscillating behaviour of these functions.

1.2. Main Results

The Hessenberg matrix H and its truncated versions HM ,M 2 P1 [ P2, determine
not only �(n) and p(n) but also their respective summatory functions and other
arithmetical functions such as Ramanujan’s ⌧ -function and divisor functions

�k(n) =
X
d|n

dk, n 2 N,

for certain odd integers k � 1. In either case, it will be possible to derive matrix
representations as well as equivalent spectral representations in terms of eigenvalues.

2. Finite Representations of Summatory Functions

The summatory function
PN

n=1 �(n) associated with the divisor function �(n) sat-
isfies the well-known relation

NX
n=1

�(n) =
⇡2

12
·N2 +O(N · log N)
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which yields the simple but imprecise asymptotic approximation
NX

n=1

�(n) ⇡ ⇡2

12
·N2.

Theorem 2.1 establishes exact representations of this summatory function.

Theorem 2.1 Let M 2 P1 [P2 be a pentagonal number and N a prescribed integer
with 1  N  M 0 � 1. Then the following assertions hold:
(i) The summatory function of the divisor function �(n) satisfies

NX
n=1

�(n) =
NX

n=1

tr(Hn
M ). (8)

(ii) If M has the form M = (3m2 +m)/2 for some m 2 N, then +1 is not an eigen-
value of HM , and the summatory function admits both the matrix representation

NX
n=1

�(n) = tr
�
(HM � IM )�1 · (HN

M � IM ) ·HM

�
(9)

and the spectral representation
NX

n=1

�(n) = �M +
MX

j=1

�N+1
j � 1
�j � 1

. (10)

(iii) If M has the form M = (3m2�m)/2 for some m 2 N, then +1 is an eigenvalue
of HM with algebraic multiplicity one. Denoting this eigenvalue by �1 the spectral
representation

NX
n=1

�(n) = N + 1�M +
MX

j=2

�N+1
j � 1
�j � 1

(11)

is valid.

Proof. Identity (8) follows from (6). Laplace expansion along the first row yields
the characteristic function �M (�) = det(HM � � IM ) of HM due to

�M (�) = (112(1)��) · (��)M�1 +
M�1X
r=2

112(r) (�1)r�1 ·det(Wr)+112(M) · (�1)M�1

where the rth submatrix Wr is a block diagonal matrix comprising an upper trian-
gular matrix with diagonal entries +1 as well as a lower triangular matrix having
diagonal entries ��. The relation det(Wr) = (��)M�r then implies

�M (�) = (�1)M�M + (�1)M�1
MX

r=1

112(r)�M�r, � 2 C,
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hence +1 is an eigenvalue of HM if and only if
PM

r=1 112(r) = 1 holds. As the
sequence 1, 1,�1,�1, 1, 1,�1,�1, . . . generates the sequence 1, 2, 1, 0, 1, 2, 1, 0, . . . of
partial sums one finds

MX
r=1

112(r) =

(
2 or 0 if M = (3m2 + m)/2
1 if M = (3m2 �m)/2.

Suppose M = (3m2 + m)/2; then
PM

r=1 112(r) is equal to 2 or 0, +1 is not an
eigenvalue of HM , and matrix HM � IM is nonsingular. Setting

SN =
NX

n=1

Hn
M

one obtains
HN+1

M �HM = (HM � IM ) · SN

as well as
SN = (HM � IM )�1 · (HN

M � IM ) ·HM ,

which implies (9) in view of (8). The equation (10) is a consequence of (7) and

NX
n=1

�(n) =
MX

j=1

NX
n=1

�n
j =

MX
j=1

 
�N+1

j � 1
�j � 1

� 1

!
.

On the other hand, suppose M = (3m2�m)/2; then
PM

r=1 112(r) is equal to 1, and
+1 is an eigenvalue of HM . Denoting this eigenvalue by �1 di↵erentiation of the
characteristic function �M shows that the condition

PM
r=1 r 112(r) = 0 is necessary

for �1 = 1 to have an algebraic multiplicity of at least two. However, this condition
is violated because of

MX
r=1

r 112(r) =
mX

k=1

1
2
(3k2 � k)(�1)k�1 +

m�1X
k=1

1
2
(3k2 + k)(�1)k�1 = m(�1)m�1

which implies that the eigenvalues �2, . . . ,�M are di↵erent from 1. This yields (11)
according to

NX
n=1

�(n) =
MX

j=1

NX
n=1

�n
j = N +

MX
j=2

 
�N+1

j � 1
�j � 1

� 1

!
.

Analogous representations for the summatory function associated with the par-
tition function are formulated in Theorem 2.2.
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Theorem 2.2 Let M 2 P1[P2 be a pentagonal number and N a given integer with
1  N  M 0 � 1. Then the following identities hold:
(i) The summatory function of the partition function p(n) satisfies

NX
n=1

p(n) =
NX

n=1

(Hn
M )11. (12)

In case N  M one also has

NX
n=1

p(n) =
NX

n=1

(HN
M )n1, (13)

i.e., the summatory function can also be expressed as the sum of the first N entries
of the first column of HN

M .
(ii) If M has the form M = (3m2 + m)/2 for some m 2 N and the eigenvalues of
HM are pairwise distinct (and necessarily di↵erent from +1), then the summatory
function admits the spectral representation

NX
n=1

p(n) = �1 +
MX

j=1

↵j

�N+1
j � 1
�j � 1

. (14)

(iii) Assume that M has the form M = (3m2 � m)/2 for some m 2 N. On the
condition that the eigenvalues of HM are pairwise distinct the spectral representation

NX
n=1

p(n) =
N + 1

m
(�1)m�1 � 1 +

MX
j=2

↵j

�N+1
j � 1
�j � 1

(15)

is valid where HM has the eigenvalue �1 = 1 and the eigenvalues �2, . . . ,�M which
are di↵erent from +1.

Proof. Identity (3) implies (12), and (13) follows from (12) and the fact that the rows
of a matrix are shifted downwards if the matrix is multiplied by HM . Formulae (14),
(15) can be derived by analogy with (10), (11); recall that ↵1+↵2+. . .+↵M = 1.

Let k,m be nonnegative integers. Results akin to Theorem 2.1 and Theorem 2.2
can be established for summatory functions such as

NX
n=1

�k(n),
NX

n=1

pm(n), or
NX

n=1

�k(n) · pm(n)

involving powers of �(n) and p(n).
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3. Finite Representations of Ramanujan’s ⌧ -Function

Ramanujan’s ⌧ -function ⌧(n), n 2 N, may be defined via the Fourier expansion of
the discriminant modular form �(z) due to

�(z) = (2⇡)12
1X

n=1

⌧(n) e2⇡inz,

where the complex arguments z are assumed to have positive imaginary parts, (see,
e.g., [1], page 20). The ⌧ -function obeys a recurrence relation and satisfies numerous
identities expressing ⌧(n) in terms of other arithmetical functions such as divisor
functions of higher order; a typical formula reads

⌧(n) =
65
756

�11(n) +
691
756

�5(n)� 691
3

n�1X
k=1

�5(k) · �5(n� k)

([1], page 140). More identities can be found, e.g., in Lehmer [4] or Ewell [3].
Identities of this type cannot be regarded as closed-form representations because

the ⌧ -function is only formulated in terms of another arithmetical function, and
functions such as divisor functions of higher order and their convolutions would
require knowledge of the respective divisors of n, or must itself be computed by
means of recursive relations. (Actually, the literature seems to be silent on finite
explicit formulae for ⌧(n).) However, if ⌧(n) could be expressed solely in terms of
the ’ordinary’ divisor function �(n) - alternatively, in terms of the partition func-
tion p(n) - then closed-form representations would be available upon inserting the
corresponding matrix or spectral representations of �(n) or p(n). In this vein, a
formula due to Niebur [5] is applicable.

Theorem 3.1 Let M be an arbitrary pentagonal number with successor M 0. Then
Ramanujan’s ⌧ -function obeys the following matrix representations for all 1  n 
M 0 � 1:

⌧(n) = n4 · tr(Hn
M )� 24

n�1X
k=1

(35k4 � 60n2k2 + 13n4) · tr(Hk
M ) · tr(Hn�k

M ). (16)

In terms of the quantities

⇤(n)
j,l (r) =

n�1X
k=1

kr �k
j �n�k

l , r = 0, 1, 2, 3, 4, (17)

depending upon n and the (not necessarily distinct) eigenvalues �1, . . . ,�M of HM

the ⌧ -function admits the spectral representations

⌧(n) = n4 ·
MX

j=1

�n
j � 24

MX
j,l=1

⇣
35⇤(n)

j,l (4)� 60n2⇤(n)
j,l (2) + 13n4⇤(n)

j,l (0)
⌘

(18)
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and

⌧(n) = (13n4 � 40n3 + 28n) ·
MX

j=1

�n
j

� 24 ·
MX

j,l=1
j<l

⇣
70⇤(n)

j,l (4)� 140n⇤(n)
j,l (3)

+90n2 ⇤(n)
j,l (2)� 20n3 ⇤(n)

j,l (1) + n4 ⇤(n)
j,l (0)

⌘
. (19)

Proof. (i) ⌧(n) can be expressed solely in terms of the divisor function �(n) accord-
ing to

⌧(n) = n4 · �(n)� 24

 
35

n�1X
k=1

k4�(k)�(n� k)

�52n
n�1X
k=1

k3�(k)�(n� k) + 18n2
n�1X
k=1

k2�(k)�(n� k)

!

(see [5]). Upon replacing the summation index k by n� k the simplification
n�1X
k=1

k3�(k)�(n� k) =
3
2
n

n�1X
k=1

k2�(k)�(n� k)� 1
4
n3

n�1X
k=1

�(k)�(n� k)

implies

⌧(n) = n4 · �(n)� 24

 
35

n�1X
k=1

k4�(k)�(n� k)

�60n2
n�1X
k=1

k2�(k)�(n� k) + 13n4
n�1X
k=1

�(k)�(n� k)

!
, (20)

and (16) follows from the matrix representation (6).
(ii) Combining the spectral representation (7) of �(n) with (20) one obtains (18)
because of

n�1X
k=1

kr�(k)�(n� k) =
MX

j,l=1

⇤(n)
j,l (r) for r = 0, 2, 4.

(iii) Setting
s(n)

j,l = 35⇤(n)
j,l (4)� 60n2⇤(n)

j,l (2) + 13n4⇤(n)
j,l (0),

equation (18) becomes

⌧(n) = n4 ·
MX

j=1

�n
j � 24

0
BB@

MX
j=1

s(n)
j,j +

MX
j,l=1
j<l

( s(n)
j,l + s(n)

l,j )

1
CCA .
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Using well-known formulae for the sums
Pn�1

k=1 kr the expression s(n)
j,j is found to

be
s(n)

j,j =
1
6
n(n� 1)(�3n2 + 7n + 7) · �n

j .

On the other hand, for indexes j < l the relations

⇤(n)
j,l (4) + ⇤(n)

l,j (4) = 2⇤(n)
j,l (4)� 4n⇤(n)

j,l (3) + 6n2⇤(n)
j,l (2)� 4n3⇤(n)

j,l (1) + n4⇤(n)
j,l (0),

⇤(n)
j,l (2) + ⇤(n)

l,j (2) = 2⇤(n)
j,l (2)� 2n⇤(n)

j,l (1) + n2⇤(n)
j,l (0),

⇤(n)
j,l (0) + ⇤(n)

l,j (0) = 2⇤(n)
j,l (0)

yield (19) in view of

s(n)
j,l + s(n)

l,j = 70⇤(n)
j,l (4)� 140n⇤(n)

j,l (3) + 90n2 ⇤(n)
j,l (2)� 20n3 ⇤(n)

j,l (1) + n4 ⇤(n)
j,l (0).

Quantities ⇤(n)
j,l (r), cf. equation (17), satisfy the recursion

⇤(n+1)
j,l (r) = �l · ⇤(n)

j,l (r) + nr�n
j �l, n � 1

provided r and j, l are fixed. Being modified geometric series, ⇤(n)
j,l (r) can also be

expressed directly in terms of the eigenvalues without recourse to summation (see
the Appendix).

According to (6) the divisor function can be viewed as the trace of a matrix. This
is also true for Ramanujan’s ⌧ -function; if E denotes the square M⇥M matrix with
entry E11 = 1 and zero entries otherwise, then (16) implies

⌧(n) = tr

 
n4 ·Hn

M ⌦E � 24
n�1X
k=1

(35k4 � 60n2k2 + 13n4) ·Hk
M ⌦Hn�k

M

!
,

i.e., ⌧(n) is the trace of a linear combination of appropriate Kronecker products.
As mentioned above, the spectral representations of both the partition and divisor

function show that these oscillating functions are just superpositions of sinusoids.
The erratic behaviour of Ramanujan’s ⌧ -function may now be explained by the cor-
responding spectral representations of Theorem 3.1. The first term in (18) is an
inflated divisor function with ordinary sinusoids �n

j but the second term comprises
inflated ’cross sinusoids’ �k

j �n�k
l , k = 1, 2, . . . , n�1. This illustrates that the nature

of ⌧(n) is much more complicated than the nature of �(n) and p(n).
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4. Spectral Representations of Certain Divisor Functions of Higher Order

Matrix or spectral representations for certain other arithmetical functions can be
derived by analogy with Theorem 3.1. In this subsection, M is always a fixed
pentagonal number, and n is an integer with 1  n  M 0 � 1. For example,
combining the well-known identity

5�3(n) = (6n� 1)�(n) + 12
n�1X
k=1

�(k)�(n� k),

which goes back to Ramanujan [6], with the spectral representation (7), one obtains
the corresponding spectral version

5�3(n) = (6n� 1)
MX

j=1

�n
j + 12

MX
j,l=1

⇤(n)
j,l (0) (21)

of the divisor function �3(n) where

⇤(n)
j,l (0) =

8<
:

(n� 1) · �n
j if �j = �l

�j�l

(�j � �l)
(�n�1

j � �n�1
l ) if �j 6= �l

(see formula (29) in the appendix). Likewise, identity

21
10

�5(n) = (3n� 1)�3(n) + �(n) + 24
n�1X
k=1

�3(k)�(n� k),

see again Ramanujan [6], in conjunction with (7) and the spectral representation
(21) of �3(n) gives

7�5(n) = (12n2 � 6n + 1)
MX

j=1

�n
j + 24(n� 1)

MX
j,l=1

⇤(n)
j,l (0)

+ 96
MX

j,l=1

⇤(n)
j,l (1) + 192

MX
j,l,m=1

⇤(n)
j,l,m(0) (22)

with

⇤(n)
j,l,m(0) =

8<
:

⇤(n)
j,m(1)� ⇤(n)

j,m(0) if �j = �l

�l

(�j � �l)
⇤(n)

j,m(0)� �j

(�j � �l)
⇤(n)

l,m(0) if �j 6= �l.

This procedure can be extended to odd indexes k � 7: if spectral representations
have already been established for �(n),�3(n), . . . ,�k�2(n) then identities such as
the formulae 3. - 9. given in table IV of Ramanujan [6] would yield the spectral
representation of �k(n).
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5. A Numerical Example

The pentagonal number M = 15 has successor M 0 = 22, and the associated trun-
cated companion matrix HM = H15 has pairwise distinct eigenvalues �1, . . . ,�15

with maxj |�j | = 1.2769 and minj |�j | = 0.8475; three eigenvalues are real. By the
results discussed in the preceding sections, matrix H15 determines the values of the
partition function, the divisor function, their corresponding summatory functions,
Ramanujan’s ⌧ -function, and several other arithmetical functions for arguments less
than M 0 � 1 = 21. As an illustration, consider the argument 20. The matrix H20

15

has main diagonal

(627, 137,�248,�248,�248,�72,�72, 29, 29, 29, 29, 29, 7, 7, 7).

By (3), (6) one finds

p(20) = 627 and �(20) = 627 + 137⌥ . . . + 7 = 42,

and the same result is obtained using (4), (7). Regarding the summatory functions,
the main diagonal of (H15 � I15)�1 · (H20

15 � I15) ·H15 is given by

(2713, 626,�971,�971,�971,�287,�287, 86, 86, 86, 86, 86, 19, 19, 19).

Note that the inverse matrix exists because M has the form M = (3m2 +m)/2 with
m = 3. Therefore, Theorems 2.1 and 2.2 guarantee

20X
n=1

p(n) = 2713 and
20X

n=1

�(n) = 2713 + 626⌥ . . . + 19 = 339.

Of course, formulae (10), (14) yield the same values. In order to determine ⌧(20),
an application of relation (16) of Theorem 3.1 gives

⌧(20) = �7, 109, 760.

If ⌧(20) is calculated via eigenvalues one may insert

15X
j=1

�20
j = 42,

15X
j,l=1

⇤(20)
j,l (0) = 3, 416,

15X
j,l=1

⇤(20)
j,l (2) = 404, 600,

15X
j,l=1

⇤(20)
j,l (4) = 74, 448, 464

into equation (18) of Theorem 3.1 to arrive at the same result for ⌧(20).

Acknowledgement. The author is very grateful to an anonymous referee for
numerous suggestions which considerably improved the presentation of this article.
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Appendix: Formulae for the Quantities ⇤(n)
j,l (r)

The quantities ⇤(n)
j,l (r) in (19) admit the closed-form representations

⇤(n)
j,l (r) =

8<
:

A(n)(r) · �n
j if �j = �l

B(n)
j,l (r) · �j�l

(�j � �l)r+1
if �j 6= �l

(23)

for r = 0, 1, 2, 3, 4 where

A(n)(0) = n� 1, A(n)(1) =
1
2
(n� 1)n, A(n)(2) =

1
6
(n� 1)n(2n� 1),

A(n)(3) =
1
4
(n� 1)2n2, A(n)(4) =

1
30

(n� 1)n(2n� 1)(3n2 � 3n� 1);

and
B(n)

j,l (0) = �n�1
j � �n�1

l , B(n)
j,l (1) = (n� 1)�n

j � n�n�1
j + �n

l ,

B(n)
j,l (2) = (n� 1)2�n+1

j � (2n2 � 2n� 1)�n
j �l + n2�n�1

j �2
l � �j�

n
l � �n+1

l ,

B(n)
j,l (3) = (n� 1)3�n+2

j � (3n3 � 6n2 + 4)�n+1
j �l + (3n3 � 3n2 � 3n� 1)�n

j �2
l

� n3�n�1
j �3

l + �2
j�

n
l + 4�j�

n+1
l + �n+2

l ,

B(n)
j,l (4) = (n� 1)4�n+3

j � (4n4 � 12n3 + 6n2 + 12n� 11)�n+2
j �l

+ (6n4 � 12n3 � 6n2 + 12n + 11)�n+1
j �2

l

� (4n4 � 4n3 � 6n2 � 4n� 1)�n
j �3

l

+ n4�n�1
j �4

l � �3
j�

n
l � 11�2

j�
n+1
l � 11�j�

n+2
l � �n+3

l .


