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Abstract
Generalized pseudostandard words were introduced by de Luca and De Luca in
2006. In comparison to the palindromic and pseudopalindromic closure, only little
is known about the generalized pseudopalindromic closure and the associated gen-
eralized pseudostandard words. We present a counterexample to a conjecture by
Blondin Massé et al. from 2013 that estimated the complexity of binary generalized
pseudostandard words as C(n)  4n for all su�ciently large n. We conjecture that
C(n) < 6n for all n 2 N.

1. Introduction

This paper focuses on generalized pseudostandard words. Such words were defined
by de Luca and De Luca in 2006 [9] who studied a generalization of standard epis-
turmian words, called generalized pseudostandard words, by considering the pseu-
dopalindromic closure of an infinite sequence of involutory antimorphisms. While
standard episturmian and pseudostandard words have been studied intensively and
a lot of their properties are known (see for instance [3, 5, 8, 9]), only little has
been shown so far about the generalized pseudopalindromic closure that gives rise
to generalized pseudostandard words. In [9] the authors have defined the gener-
alized pseudostandard words and proved there that the famous Thue–Morse word
is an example of such words. Jajcayová et al. [6] characterize generalized pseudo-
standard words in the class of generalized Thue–Morse words. Jamet et al. [7] deal
with fixed points of the palindromic and pseudopalindromic closure and formulate
an open problem concerning fixed points of the generalized pseudopalindromic clo-
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sure. The authors of this paper provide a necessary and su�cient condition on
periodicity of binary and ternary generalized pseudostandard words in [1]. The
most detailed study of binary generalized pseudostandard words has been so far
provided by Blondin Massé et al. [2]:

• A so-called normalization is described that guarantees for generalized pseu-
dostandard words that no pseudopalindromic prefix is missed during the con-
struction,

• An e↵ective algorithm – the generalized Justin’s formula – for generation of
generalized pseudostandard words is presented,

• The standard Rote words are proven to be generalized pseudostandard words
and the infinite sequence of antimorphisms that generates such words is stud-
ied,

• A conjecture is stated saying that the complexity of an infinite binary gener-
alized pseudostandard word u, i.e., the map C : N! N where C(n) equals the
number of factors of length n of the infinite word u, satisfies:

C(n)  4n for su�ciently large n.

In this paper, we provide a counterexample to the above conjecture by construc-
tion of a generalized pseudostandard word satisfying C(n) > 4n for all n � 10. We
moreover show that C(n) > 4.5 n for infinitely many n 2 N.

The work is organized as follows. In Section 2 we introduce basics from combi-
natorics on words. Section 3 deals with the palindromic closure and summarizes
known results. Similarly, Section 4 is devoted to the pseudopalindromic closure and
its properties. In Section 5, the generalized pseudopalindromic closure is defined
and the normalization process is described. A counterexample to Conjecture 43
from [2] is constructed and its complexity is estimated in Section 6. In Section 7 we
summarize known facts about the complexity of binary generalized pseudostandard
words and state a new conjecture: C(n) < 6n for all n 2 N.

2. Basics From Combinatorics on Words

We restrict ourselves to the binary alphabet {0, 1}; we call 0 and 1 letters. A (finite)
word w over {0, 1} is any finite binary sequence. Its length |w| is the number of
letters w contains. The empty word – the neutral element for concatenation of
words – is denoted by " and its length is set |"| = 0. The set of all finite binary
words is denoted by {0, 1}⇤. An infinite word u over {0, 1} is any binary infinite
sequence. The set of all infinite words is denoted {0, 1}N. A finite word w is a factor
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of the infinite word u = u0u1u2 . . . with ui 2 {0, 1} if there exists an index i � 0
such that w = uiui+1 . . . ui+|w|�1. Such an index is called an occurrence of w in u.
The symbol L(u) is used for the set of factors of u and is called the language of u;
similarly Ln(u) stands for the set of factors of u of length n. A left special factor of
a binary infinite word u is any factor v such that both 0v and 1v are factors of u.
A right special factor is defined analogously. Finally, a factor of u that is both right
and left special is called a bispecial. We distinguish the following types of bispecials
over {0, 1}:

• A weak bispecial w satisfies the property that only 0w1 and 1w0, or only 0w0
and 1w1 are factors of u,

• A strong bispecial w satisfies the property that all 0w0, 0w1, 1w0 and 1w1
are factors of u,

• We do not use a special name for bispecials that are neither weak nor strong.

Let w 2 L(u). A left extension of w is any word aw 2 L(u), where a 2 {0, 1},
and a right extension is defined analogously. A bilateral extension of w is then
awb 2 L(u), where a, b 2 {0, 1}. The set of left (resp. right) extensions of w
is denoted Lext(w) (resp. Rext(w)). The (factor) complexity of u is the map
Cu : N! N defined as

Cu(n) = the number of factors of u of length n.

In order to determine the complexity of an infinite word u, the well-known formula
for the second di↵erence of complexity [4] may be useful:

�2Cu(n) = �Cu(n + 1)��Cu(n) =
X

w2Ln(u)

B(w), (1)

where

B(w) = #{awb | a, b 2 {0, 1}, awb 2 L(u)}�#Rext(w)�#Lext(w) + 1

and the first di↵erence of complexity is defined as �Cu(n) = Cu(n + 1)� Cu(n).
It is readily seen that for any factor of a binary infinite word u the following

hold:

• B(w) = 1 if and only if w is a strong bispecial,

• B(w) = �1 if and only if w is a weak bispecial,

• B(w) = 0 otherwise.
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An infinite word u is called recurrent if each of its factors occurs infinitely many
times in u. It is said to be uniformly recurrent if for every n 2 N there exists a length
r(n) such that every factor of length r(n) of u contains all factors of length n of u.
We say that an infinite word u is eventually periodic if there exists v, w 2 {0, 1}⇤
such that u = wv!, where ! denotes an infinite repetition. If w = ", we call u
(purely) periodic. If u is not eventually periodic, u is said to be aperiodic. It is
not di�cult to see that if an infinite word is recurrent and eventually periodic, then
it is necessarily purely periodic. A fundamental result of Morse and Hedlund [10]
states that a word u is eventually periodic if and only if for some n its complexity
is less than or equal to n. Infinite words of complexity n + 1 for all n are called
Sturmian words, and hence they are aperiodic words of the smallest complexity.
Among Sturmian words we distinguish the class of standard (or characteristic)
Sturmian words satisfying that their left special factors are their prefixes at the
same time. The Fibonacci word from Example 1 is a standard Sturmian word. The
first systematic study of Sturmian words was by Morse and Hedlund in [11].

A morphism is a map ' : {0, 1}⇤ ! {0, 1}⇤ such that for every v, w 2 {0, 1}⇤ we
have '(vw) = '(v)'(w). It is clear that in order to define a morphism, it su�ces to
provide letter images. A morphism is prolongable on a 2 {0, 1} if |'(a)| � 2 and a
is a prefix of '(a). If ' is prolongable on a, then 'n(a) is a proper prefix of 'n+1(a)
for all n 2 N. Therefore, the sequence ('n(a))n�0 of words defines an infinite word
u that is a fixed point of '. Such a word u is a (pure) morphic word.

Example 1. The most studied Sturmian word is the so-called Fibonacci word

uF = 01001010010010100101001001010010 . . .

fixed by the morphism 'F (0) = 01 and 'F (1) = 0.

Example 2. Another well-known morphic word that however does not belong to
Sturmian words is the Thue-Morse word

uTM = 01101001100101101001011001101001 . . .

fixed by the morphism 'TM (0) = 01 and 'TM (1) = 10 (we start with the letter 0
when generating uTM ).

An involutory antimorphism is a map # : {0, 1}⇤ ! {0, 1}⇤ such that for every
v, w 2 {0, 1}⇤ we have #(vw) = #(w)#(v) and moreover #2 equals the identity.
There are only two involutory antimorphisms over the alphabet {0, 1}: the reversal
(mirror) map R satisfying R(0) = 0, R(1) = 1, and the exchange antimorphism E
given by E(0) = 1, E(1) = 0. We use the notation 0 = 1 and 1 = 0; similarly E = R
and R = E. A finite word w is a palindrome if w = R(w), and w is an E-palindrome
(pseudopalindrome) if w = E(w).
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3. Palindromic Closure

In this section we describe the construction of binary infinite words generated by the
palindromic closure. Further on, we recall some properties of such infinite words.
We use the papers [5, 8] as our source.

Definition 1. Let w 2 {0, 1}⇤. The palindromic closure wR of a word w is the
shortest palindrome having w as prefix.

Consider for instance the word w = 0100. Its palindromic closure wR equals
010010. It is readily seen that |w|  |wR|  2|w| � 1. For w = 010 we have
wR = 010 and for w = 0001 we obtain wR = 0001000. It is worth noticing that
the palindromic closure can be constructed in the following way: Find the longest
palindromic su�x s of w. Let w = ps. Then wR = psR(p). For instance, for
w = 0100 we have s = 00 and p = 01. Thus wR = 010010.

Definition 2. Let � = �1�2 . . ., where �i 2 {0, 1} for all i 2 N. The infinite word
u(�) generated by the palindromic closure (or R-standard word) is the word whose
prefixes wn are obtained from the recurrence relation

wn+1 = (wn�n+1)R,

w0 = ".

The sequence � is called the directive sequence of the word u(�).

Below are several properties of the R-standard word u = u(�) 2 {0, 1}N:

1. The sequence of prefixes (wk)k�0 of u contains every palindromic prefix of u.

2. The language of u is closed under reversal, i.e., w is a factor of u if and only
if R(w) is a factor of u.

3. The word u is uniformly recurrent.

4. Every left special factor of u is a prefix of u.

5. If w is a bispecial factor of u, then w = wk for some k.

6. Since u is (uniformly) recurrent, it is either aperiodic or purely periodic.

7. The word u is standard Sturmian if and only if both 0 and 1 occur in the
directive sequence � infinitely many times.

8. The word u is periodic if and only if � is of the form v0! or v1! for some
v 2 {0, 1}⇤.
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Example 3. The Fibonacci word uF defined in Example 1 is the most famous
example of an infinite word generated by the palindromic closure. It is left as an
exercise for the reader to show that uF = u((01)!). Let us form the first few prefixes
wk:

w1 = 0,
w2 = 010,
w3 = 010010,
w4 = 01001010010.

4. Pseudopalindromic Closure

Let us recall here the definition of the pseudopalindromic closure and the construc-
tion of binary infinite words generated by the pseudopalindromic closure. Some of
their properties are similar as for the palindromic closure, but in particular their
complexity is already slightly more complicated. Pseudopalindromes and the pseu-
dopalindromic closure have been studied for instance in [3, 9].

Definition 3. Let w 2 {0, 1}⇤. The pseudopalindromic closure wE of a word w is
the shortest E-palindrome having w as prefix.

Consider w = 0010 which has pseudopalindromic closure wE = 001011. The
following inequalities hold: |w|  |wE |  2|w|. For instance for w = 0101 we
have wE = 0101, while for w = 000 we get wE = 000111. Let us point out that
the pseudopalindromic closure may be constructed in the following way: Find the
longest pseudopalindromic su�x of w. Denote it by s and denote the remaining
prefix by p, i.e., w = ps. Then wE = psE(p). For w = 0010, we obtain p = 00 and
s = 10, therefore wE = 001011.

Definition 4. Let � = �1�2 . . ., where �i 2 {0, 1} for all i 2 N. The infinite
word uE(�) generated by the pseudopalindromic closure (or E-standard or pseu-
dostandard word) is the word whose prefixes wn are obtained from the recurrence
relation

wn+1 = (wn�n+1)E ,

w0 = ".

The sequence � is called the directive sequence of the word uE(�).

Below are several properties of the E-standard word u = uE(�) 2 {0, 1}N:

1. The sequence of prefixes (wk)k�0 of u contains every pseudopalindromic prefix
of u.
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2. The language of u is closed under the exchange antimorphism, i.e., w is a factor
of u if and only if E(w) is a factor of u.

3. The word u is uniformly recurrent.

4. A close relation between R-standard and E-standard words has been revealed
in Theorem 7.1 in [9]: Let � = �1�2 . . ., where �i 2 {0, 1} for all i 2 N. Then

uE(�) = 'TM (u(�)).

In words, any E-standard word is the image by the Thue-Morse morphism
'TM of the R-standard word with the same directive sequence �. Moreover,
the set of pseudopalindromic prefixes of uE(�) equals the image by 'TM of
the set of palindromic prefixes of u(�).

5. If � contains both 0 and 1 infinitely many times, then every prefix of u is left
special.

6. In contrast to infinite words generated by the palindromic closure, u can
contain left special factors that are not prefixes. Nevertheless, such left special
factors can be of length at most 2.

7. If w is a bispecial factor of u of length at least 3, then w = wk for some k.

8. Since u is (uniformly) recurrent, it is either aperiodic or purely periodic.

9. The complexity of u satisfies Cu(n + 1)� Cu(n) = 1 for all n � 3 if and only
if both 0 and 1 occur in the directive sequence � infinitely many times.

10. The word u is periodic if and only if � is of the form v0! or v1! for some
v 2 {0, 1}⇤.

Example 4. Let us illustrate the construction of an infinite word generated by the
pseudopalindromic closure for u = uE((01)!). Here are the first prefixes wk:

w1 = 01,
w2 = 011001,
w3 = 011001011001,
w4 = 0110010110011001011001.

Notice that 1 and 10 are left special factors that are not prefixes. The reader can
also check that u is the image by 'TM of the Fibonacci word, i.e., u = 'TM (uF ).
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5. Generalized Pseudopalindromic Closure

Generalized pseudostandard words form a generalization of infinite words generated
by the palindromic (resp. pseudopalindromic) closure; such a construction was first
described and studied in [9]. Let us start with their definition and known properties;
we use the papers [7, 9, 2].

5.1. Definition of Generalized Pseudostandard Words

Let us underline that we again restrict ourselves only to the binary alphabet {0, 1}.

Definition 5. Let � = �1�2 . . . and ⇥ = #1#2 . . ., where �i 2 {0, 1} and #i 2 {E,R}
for all i 2 N. The infinite word u(�,⇥) generated by the generalized pseudopalin-
dromic closure (or generalized pseudostandard word) is the word whose prefixes wn

are obtained from the recurrence relation

wn+1 = (wn�n+1)#n+1 ,

w0 = ".

The sequence ⇤ = (�,⇥) is called the directive bi-sequence of the word u(�,⇥).

We have the following two properties of the generalized pseudostandard word u =
u(�,⇥) 2 {0, 1}N: 1. If R (resp. E) is contained in ⇥ infinitely many times, then
the language of u is closed under reversal (resp. under the exchange antimorphism).
2. The word u is uniformly recurrent.

5.2. Normalization

In contrast to E- and R-standard words, the sequence (wk)k�0 of prefixes of a gen-
eralized pseudostandard word u(�,⇥) does not have to contain all E-palindromic
and palindromic prefixes of u(�,⇥). Blondin Massé et al. [2] introduced the notion
of normalization of the directive bi-sequence.

Definition 6. A directive bi-sequence ⇤ = (�,⇥) of a generalized pseudostandard
word u(�,⇥) is called normalized if the sequence of prefixes (wk)k�0 of u(�,⇥)
contains all E-palindromic and palindromic prefixes of u(�,⇥).

Example 5. Let ⇤ = (�,⇥) = ((011)!, (EER)!). Let us write down the first
prefixes of u(�,⇥):

w1 = 01,
w2 = 011001,
w3 = 01100110,
w4 = 0110011001.
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The sequence wk does not contain for instance the palindromic prefixes 0 and 0110
of u(�,⇥).

The authors of [2] proved that every directive bi-sequence ⇤ can be normalized,
i.e., transformed to such a form e⇤ that the new sequence (fwk)k�0 contains already
every E-palindromic and palindromic prefix and e⇤ generates the same generalized
pseudostandard word as ⇤.

Theorem 1 ([2]). Let ⇤ = (�,⇥) be a directive bi-sequence. Then there exists
a normalized directive bi-sequence e⇤ = (e�, e⇥) such that u(�,⇥) = u(e�, e⇥).

Moreover, in order to normalize the sequence ⇤, it su�ces firstly to execute the
following changes of its prefix (if it is of the corresponding form):

• (aā, RR)! (aāa,RER),

• (ai, Ri�1E)! (aiā, RiE) for i � 1,

• (aiāā, RiEE)! (aiāāa,RiERE) for i � 1,

and secondly to replace step by step from left to right every factor of the form:

• (abb̄,###)! (abb̄b,####),

where a, b 2 {0, 1} and # 2 {E,R}.

Example 6. Let us normalize the directive bi-sequence ⇤ = ((011)!, (EER)!) from
Example 5. According to the procedure from Theorem 1, we transform first the
prefix of ⇤. We replace (0, E) with (01, RE) and get ⇤1 = (01(110)!, RE(ERE)!).
The prefix of ⇤1 is still of a forbidden form, we replace thus the prefix (011, REE)
with (0110, RERE) and get ⇤2 = (0110(101)!, RERE(REE)!). The prefix of ⇤2

is now correct. It remains to replace from left to right the factors (101, REE)
with (1010, RERE). Finally, we obtain e⇤ = (0110(1010)!, RERE(RERE)!) =
(01(10)!, (RE)!), which is already normalized. Let us write down the first prefixes
(fwk)k�0 of u(e⇤):

fw1 = 0,
fw2 = 01,
fw3 = 0110,
fw4 = 011001.

We can notice that the new sequence (fwk)k�0 now contains the palindromes 0 and
0110 that were skipped in Example 5.
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6. Conjecture 4n

As a new result, we will construct a counterexample to Conjecture 4n (stated as
Conjecture 43 in [2]):

Conjecture 1 (Conjecture 4n). For every binary generalized pseudostandard
word u there exists n0 2 N such that Cu(n)  4n for all n > n0.

We have found a counterexample up = u(1!, (EERR)!) that satisfies Cup(n) >
4n for all n � 10. Moreover, we will show in the end of this section that up even
satisfies C(n) � 4.577 n for infinitely many n 2 N. Let us write down the first
prefixes wn of up:

w1 = 10,
w2 = 1010,
w3 = 10101,
w4 = 1010110101,
w5 = 1010110101100101001010,
w6 = 1010110101100101001010110101100101001010.

It is readily seen that w4k+1 and w4k+2 are E-palindromes, while w4k+3 and w4k+4

are palindromes for all k 2 N.
The aim of this section is to prove the following theorem.

Theorem 2. The infinite word up = u(1!, (EERR)!) satisfies

Cup(n) > 4n for all n � 10.

In order to prove Theorem 2, we have to describe all weak bispecial factors and
find enough strong bispecial factors so that it provides us with a lower bound on
the second di↵erence of complexity (see Equation (1)) that leads to the strict lower
bound equal to 4n on the complexity of up. The partial steps will be formulated in
several lemmas and observations.

Let us start with a description of the relation between the consecutive prefixes
wk and wk+1 that will turn out to be useful in many proofs. The knowledge of the
normalized form of the directive bi-sequence is needed.

Observation 1. The directive bi-sequence ⇤ = (1!, (EERR)!) has the normalized
form e⇤ = (1010(1)!, RERE(RREE)!).

Proof. The normalized form is obtained using the algorithm from Theorem 1.
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Example 7. The prefixes fwn of u(e⇤) satisfy:

fw1 = 1,
fw2 = 10,
fw3 = 101,
fwn = wn�2 for all n � 4.

Lemma 1. For the infinite word up = u(1!, (EERR)!) and k 2 N, the following
relations hold. For z  0 we set wz = ".

w4k+1 = w4k10E(w4k),
w4k+2 = w4k+1w

�1
4k�2w4k+1,

w4k+3 = w4k+2(010)�1R(w4k+2),
w4k+4 = w4k+3w

�1
4k w4k+3.

Proof. The statement follows from Theorem 29 in [2]. We prefer however to prove
it here also for integrity of our paper. One can easily check that the statement holds
for w1, w2, w3 and w4. Let k � 1.

• In order to get the E-palindrome w4k+1, it is necessary to find the longest E-
palindromic su�x of w4k1. In other words, it is necessary to find the longest E-
palindromic su�x preceded by 0 of the palindrome w4k. Taking into account
the normalized form of the directive bi-sequence e⇤ from Observation 1, for
every E-palindromic (resp. palindromic) prefix p of up there exists ` 2 N such
that p = fw`. Therefore all E-palindromic su�xes of w4k are of the form R(fw`),
where fw` = E(fw`). However, we search only for the longest E-palindromic
su�x of w4k preceded by 0. If 0R(fw`) is a su�x of w4k, then fw`0 has to be
the prefix of w4k. Using the normalized form e⇤ we nevertheless notice that
no fw` = E(fw`) is followed by 0. Consequently, w4k+1 = w4k10E(w4k).

• To obtain the E-palindrome w4k+2, we look for the longest E-palindromic
su�x of w4k+11. We proceed analogously as in the previous case, thus we
search for the longest E-palindromic prefix fw` of w4k+1 followed by 1. Then
E(fw`1) = 0fw` is the longest E-palindromic su�x of w4k+1 preceded by 0. It
follows from the form of e⇤ that every E-palindromic prefix fw` of w4k+1 is fol-
lowed by 1. Moreover, according to Example 7, E-palindromes in the sequence
(wk)k�0 coincide with E-palindromes in the sequence (fwk)k�0, therefore the
longest E-palindromic prefix fw` of w4k+1 followed by 1 is w4k�2. Conse-
quently, w4k+2 = w4k+1w

�1
4k�2w4k+1.

• The remaining two cases are similar. They are left as an exercise for the
reader.
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It is not di�cult to find strong bispecials among members of the sequence
(wk)k�0.

Lemma 2. Consider up = u(1!, (EERR)!) and let k 2 N. Then w4k+1 and w4k+3

are strong bispecials of up. Moreover, 1w4k+10 is a central factor of w4(k+1)+1 and
0w4k+30 is a central factor of w4(k+1)+3.

Proof. Let us show the statement for the E-palindrome w4k+1. The proof for the
palindrome w4k+3 is similar.

Since � = 1!, the prefix w4k+1 is followed by 1. Consider now any E-palindrome
wj such that j > 4k + 1. Since wj = E(wj) and w4k+11 is a prefix of wj , the factor
0E(w4k+1) = 0w4k+1 is a su�x of wj . The prefix wj is again followed by 1, therefore
0w4k+11 2 L(up). Consider further on any palindrome w` such that ` > 4k + 1.
Since w4k+11 is again a prefix of w` = R(w`), the factor 1R(w4k+1) is a su�x of
w`. The prefix w` is followed by 1, thus 1R(w4k+1)1 2 L(up). Since the language
is closed under R and E, we deduce that 1w4k+11, 0w4k+10 2 L(up).

Let us find the missing bilateral extension 1w4k+10 of the E-palindrome w4k+1.
We will show that 1w4k+10 is a central factor of w4(k+1)+1. By Lemma 1 we have

w4(k+1)+1 = w4(k+1)10E(w4(k+1)).

The factor w4k1 is a prefix of the palindrome w4(k+1), therefore 1R(w4k) = 1w4k

is a su�x of w4(k+1). It implies moreover that E(1w4k) = E(w4k)0 is a prefix of
E(w4(k+1)). Altogether we see that 1w4k+10 = 1w4k10E(w4k)0 is a central factor
of w4(k+1)+1.

Let us indicate how we managed to find weak bispecials. The factor wk has wk�11
as prefix. When constructing wk = #(wk), one looks for the longest #-palindromic
su�x of wk�11. In order to get a weak bispecial, we look instead for the longest
#-palindromic su�x of wk�11. If this su�x is longer than the longest #-palindromic
su�x, we check whether its bilateral extension is also a #-palindrome. If yes, we
extend it and continue in the same way. When we arrive at the moment where it is
not possible to extend it any more, we have a bispecial factor: We get either a factor
of the form apa, where p = R(p), and since the language is closed under reversal,
apa is a factor of up too. Or we get a factor of the form apa, where p = E(p), and
since the language is closed under the exchange antimorphism, apa is a factor of up

too.

Example 8. Let us show how to obtain the shortest weak bispeacials using the
above described way. The factor w5 is an E-palindrome. The longest E-palindromic
su�x of w41 is ", while the longest palindromic su�x is 1101011. This palindrome
may be moreover extended by 0 to 011010110. We have thus obtained the shortest
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weak bispecial. The second weak bispecial of the same length is E(011010110) =
100101001.

Let us now provide a formal description of weak bispecials.

Lemma 3. Consider up = u(1!, (EERR)!). Then for all k 2 N, k � 1, the
following factors of up are bispecials:

s4k+1 = R(w4(k�1)+1)w�1
4(k�1)w4(k�1)+3w

�1
4(k�1)w4(k�1)+1,

s4k+3 = E(w4(k�1)+3)w�1
4k�2w4k+1w

�1
4k�2w4(k�1)+3.

Moreover, the palindrome s4k+1 is contained in the prefix w4k+1 and has the bilateral
extensions 1s4k+10 and 0s4k+11, and the E-palindrome s4k+3 is contained in the
prefix w4k+3 and has the bilateral extensions 0s4k+30 and 1s4k+31.

Proof. Let us show the statement for s4k+1. The proof for s4k+3 is similar. Using
Lemma 1 we can write w4k+1 = w4k10E(w4k). The prefix w4k and the su�x E(w4k)
can be again rewritten as follows:

w4k+1 = w4(k�1)+3w
�1
4(k�1)w4(k�1)+310E(w4(k�1)+3w

�1
4(k�1)w4(k�1)+3).

Thus w4k+1 has w4(k�1)+3 as prefix. The factor w4(k�1)+3 has certainly w4(k�1)+11
as prefix. Since the factor w4(k�1)+3 is a palindrome, the factor 1R(w4(k�1)+1) is its
su�x. Using the above form of w4k+1, we know that 1R(w4(k�1)+1)w�1

4(k�1)w4(k�1)+3

is a factor of w4k+1.
Thanks to Lemma 2 we know that 1w4(k�1)+10 is a central factor of w4k+1. Let

us use again Lemma 1 to rewrite w4(k�1)+1:

w4(k�1)+1 = w4(k�1)10E(w4(k�1)).

The already constructed factor 1R(w4(k�1)+1)w�1
4(k�1)w4(k�1)+3 is therefore followed

by w�1
4(k�1)w4(k�1)+10. Consequently, we get the following factor of w4k+1: Hence,

s4k+1 = R(w4(k�1)+1)w�1
4(k�1)w4(k�1)+3w

�1
4(k�1)w4(k�1)+1 is contained in the prefix

w4k+1 and it is easy to check that s4k+1 is a palindrome. We have so far found its
bilateral extension 1s4k+10. Using the fact that L(up) is closed under reversal, it
follows that 0s4k+11 2 L(up).

Example 9. Let us write down the shortest two bispecials s` of up:

s5 = 011010110,

s7 = 010101101011001010010101.

Proposition 1. The factors s2k+1 are weak bispecials for all k � 2. Moreover,
there are no other weak bispecials in the language of up except for s2k+1 and their
R- and E-images.
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Let us postpone the proof of Proposition 1 to a separate subsection since it is long
and technical, and provide instead the remaining steps to the proof of Theorem 2.

In order to estimate the second di↵erence of complexity, we need to determine
the relation of lengths of weak and strong bispecials.

Observation 2. Consider up = u(1!, (EERR)!) and k 2 N, k � 2. Then

|s2k+1| < |w2k+1| < |s2k+3|.

Observation 3. Consider up = u(1!, (EERR)!). Then for all n 2 N the following
hold:

�2Cup(n) �

8><
>:

2 if n = |w2k+1| for some k � 1;
�2 if n = |s2k+1| for some k � 2;
0 otherwise.

Proof. We use Equation (1). For n = |w2k+1| we have at least two strong bispecials
of up: w4`+1 and R(w4`+1) (resp. w4`+3 and E(w4`+3)) by Lemma 2. For n =
|s2k+1| we have exactly two weak bispecials of up: s4`+1 and E(s4`+1) (resp. s4`+3

and R(s4`+3)) by Proposition 1. Moreover, Proposition 1 states that all other
bispecials have at least three bilateral extensions.

Lemma 4. Consider up = u(1!, (EERR)!). Let k � 5. Then wk contains all
factors of up of length less than or equal to |wk�5|, except possibly for the images
by the antimorphisms E and R, and the morphism ER. Further on, wk+2 contains
all factors of up of length less than or equal to |wk�5|.

Proof. We will prove the first statement. The second one is its direct consequence
– it su�ces to take into account the form of the directive bi-sequence. We will show
that ws for s � k � 5 does not contain (except for E-, R- and ER-images) factors
of length less than or equal to |wk�5| other than those ones that are contained in
wk. To obtain a contradiction assume that v is the first such factor and that s is
the smallest index such that v is contained in ws.
If s = 4`, then ws = ws�1w

�1
s�4ws�1. The factor v has to contain the central

factor 1ws�41 of ws (otherwise v would be contained already in ws�1), which is
a contradiction because |1ws�41| > |v|.
If s = 4`+1, then ws = ws�110E(ws�1). By Lemma 2, the factor ws�4 is a central
factor of ws and it has to contain the factor v since v is either a su�x of ws�11 or
a prefix of 0E(ws�1) or v contains the central factor 10 (otherwise, v or E(v) would
be contained already in ws�1). It is however a contradiction with the minimality of
the index s.
The remaining two cases are analogous to the above ones.
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Corollary 1. Consider up = u(1!, (EERR)!). Then for all n � 10 the following
hold:

�Cup(n) � 6 if |w4i+1| < n  |s4i+3| or |w4i+3| < n  |s4i+5| for some i � 1;
�Cup(n) � 4 otherwise.

Proof. Let us recall that �C(n+1) = �C(n)+�2C(n) for all n 2 N. Since |w4| = 10,
all factors of length 10 are, according to Lemma 4, contained in the prefix w11 of
length 1077. Checking this prefix by Sage [12] we determined �C(9) = 6. The claim
follows then by Observations 2 and 3 taking into account that |s5| = 9.

Proof of Theorem 2. In order to get C(10) it su�ces by Lemma 4 to check the prefix
w11 of length 1077 because |w4| = 10. Using the program Sage [12] we determined
C(10) = 42. It is then a direct consequence of Corollary 1 that C(n) > 4n for all
n � 10.

6.1. Proof of Proposition 1

This section is devoted to quite a long and technical proof of the fact that the
only weak bispecials of up are s4k+1 and s4k+3 and their E- and R-images for all
k 2 N, k � 1. We will put together several lemmas and observations to finally get
the proof.

Lemma 5. Let v be a prefix of up = u(1!, (EERR)!). If v is a bispecial, then
v has at least three bilateral extensions and E(v), R(v), ER(v) has at least three
bilateral extensions too.

Proof. Denote by a the letter for which va is a prefix of up. We can certainly
find k, ` 2 N such that va is a prefix of wk = R(wk) and w` = E(w`). Then
aR(v) is a su�x of wk and aE(v) is a su�x of w`. By the construction of up,
the words aR(v)1 and aE(v)1 belong to the language of up. Since the language is
closed under E and R, it follows that 1va and 0va are factors of up too. Since v
is a bispecial, v has to have a bilateral extension bva for some b 2 {0, 1}. Hence, v
has at least three bilateral extensions. The rest of the proof follows by application
of the antimorphisms E,R and the morphism ER.

In order to detect all weak bispecial factors, we need to describe all occurrences
of wk = #(wk) and #(wk) and of some of their bilateral extensions. To manage that
task, we will distinguish between regular and irregular occurrences.

Let v be a factor of up. Every element of {v,E(v), R(v), ER(v)} is called an
image of v. Let us define occurrences (of the images of v) generated by a particular
occurrence i of v. Let k be the minimal index such that wk contains, the factor
v at the occurrence i. Since wk is a #-palindrome, it contains #(v) symmetrically
with respect to the center, of wk. If the corresponding occurrence j of #(v) is larger
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than i, we say that the occurrence j is generated by the occurrence i of v. Assume
w` contains occurrences i1, . . . , is of the images of v generated by the particular
occurrence i of v. In order to get all occurrences of the images of v generated by
the particular occurrence i of v in w`+1, we proceed in the following way: the prefix
w`+1 is a #-palindrome for some # 2 {E,R}, and therefore contains symmetrically
with respect to its center occurrences j1, . . . , js of v1, . . . , vs that are #-images of
images of v at the occurrences i1, . . . , is. Putting all occurrences i1, . . . , is, j1, . . . , js

together, we obtain all occurrences generated by the particular occurrence i of v in
w`+1.

We say that an occurrence of v is regular if it is generated by the very first
occurrence of any image of v in up. Otherwise, we call the occurrence of v irregular.

Example 10. Consider v = 110. Its images are: 110, 100, 011 and 001. The first
occurrence of an image of v is i = 3 of 011 in the palindrome w4 = 1010110101.
Hence, the occurrence i = 4 of v = 110 in w4 = 1010110101 is regular. (It is the
R-image of 011 in w4.) However, for instance the occurrence i = 9 of v = 110 in the
E-palindrome w5 = 1010110101100101001010 is irregular. (It is not the E-image of
any image of v at a regular occurrence in w4.)

Observation 4. Let v be a factor of up. Then v has only regular occurrences in
up if and only if any element of {v,E(v), R(v), ER(v)} has only regular occurrences
in up.

Lemma 6. Consider up = u(1!, (EERR)!). Let k 2 N. Assume the factors w4k

and w4k+2 have only regular occurrences in up. Then the following statements hold:

• All irregular occurrences of the factor 1w4k1 in up are generated by its occur-
rences as the su�x of the prefix w4`1 for all ` > k. Moreover, the first regular
occurrence of 1w4k1 is as the central factor of the prefix w4(k+1),

• All irregular occurrences of the factor 0w4k+21 in up are generated by its
occurrences as the su�x of the prefix w4`+21 for all ` > k. Moreover, the first
regular occurrence of 0w4k+21 is as the central factor of the prefix w4(k+1)+2,

• All irregular occurrences of the factor 1w4k+10 in up are generated by its
occurrences as the central factor of the prefix w4`+1 for all ` > k+1. Moreover,
the first regular occurrence of 1w4k+10 is as the central factor of the prefix
w4(k+1)+1,

• All irregular occurrences of the factor 0w4k+30 in up are generated by its
occurrences as the central factor of the prefix w4`+3 for all ` > k+1. Moreover,
the first regular occurrence of 0w4k+30 is as the central factor of the prefix
w4(k+1)+3.

Proof. We will prove two of the four statements:
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• Let us show the statement for 1w4k1. The statement for 0w4k+21 is an analogy,
we thus leave it for the reader. Using Lemma 1 we know that w4(k+1) =
w4k+3w

�1
4k w4k+3. It is easy to see that the bilateral extension of the central

factor w4k is 1w4k1. This bilateral extension occurs in w4(k+1) exactly once.
Let us explain why: The factor w4k has only regular occurrences in up, and
therefore w4k+1 contains w4k1 as prefix and 0E(w4k) as su�x. Further on,
w4k+2 contains moreover 0E(w4k)1 and 0w4k1, and w4k+3 contains in addition
1E(w4k)0 and 1w4k0. Consequently, 0E(w4k)0 is not contained in w4(k+1) and
the first occurrence of 1w4k1 in w4(k+1) is necessarily regular.

Let us study occurrences of 1w4k1 in the whole word up. All regular occur-
rences of 1w4k1 are generated by the first occurrence of 1w4k1 as the central
factor of the prefix w4(k+1). We will show that all irregular occurrences of
1w4k1 are generated by the occurrences of 1w4k1 as the su�x of the prefix
w4`1 for all ` > k. It is evident that 1w4k1 is a su�x of the prefix w4`1 and
the factor 1w4k1 is here at an irregular occurrence.

For a contradiction assume that 1w4k1 occurs at an irregular position that
is not generated by the occurrence of 1w4k1 as the su�x of the prefix w4`1
for any ` > k. Such an irregular occurrence may as well be generated by
an occurrence of 0E(w4k)0. Let ws be the first prefix that contains such
an irregular occurrence of 1w4k1 (resp. of 0E(w4k)0). Let m � k + 1. If
s = 4m + 1, then ws = ws�110E(ws�1) and according to Lemma 2 the prefix
ws has 1w4k+10 as its central factor. The irregular occurrence of 1w4k1 (resp.
of 0E(w4k)0) has to be contained in this factor. But 1w4k+10 contains 1w4k1
only as a prefix and this occurrence corresponds at the same time to the su�x
of w4m1, which is a contradiction. If s = 4m + 2, then ws = ws�1w

�1
s�4ws�1

and the irregular occurrence of 1w4k1 (resp. of 0E(w4k)0) has to contain the
central factor of ws: 1ws�41. However, |1ws�41| > |1w4k1| = |0E(w4k)0|,
which is a contradiction. Let s = 4m + 3, then ws = ws�1(010)�1R(ws�1).
Using Lemma 2 the prefix ws has w4k+3 as its central factor. The irregular
occurrence of 1w4k1 (resp. of 0E(w4k)0) has to contain the central factor of
ws: 10101. Consequently, 1w4k1 (resp. 0E(w4k)0) has to be contained in
w4k+3, which is a contradiction. If s = 4m + 4, then ws = ws�1w

�1
s�4ws�1

and the irregular occurrence of 1w4k1 (resp. of 0E(w4k)0) has to contain the
central factor of ws: 1ws�41. However, |1ws�41| > |1w4k1| = |0E(w4k)0|,
which is a contradiction.

• Let us show the statement for 1w4k+10. The fourth statement is its analogy.
The first and thus regular occurrence of 1w4k+10 is by Lemma 2 and by the
assumption on regular occurrences of w4k as the central factor of the prefix
w4(k+1)+1.

Firstly, let us show that for all ` > k every occurrence of 1w4k+10 (resp. of
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0R(w4k+1)1) in the prefixes w4`+2, w4`+3, w4`+4 is already generated by an
occurrence of an image of 1w4k+10 in the prefix w4`+1.

By Lemma 1 we can write w4`+2 = w4`+1w
�1
4`�2w4`+1 and 0w4`�21 is its central

factor. If w4`+2 contains an occurrence of 1w4k+10 (resp. of 0R(w4k+1)1)
that is not generated by an occurrence of an image of 1w4k+10 in w4`+1,
then this occurrence has to contain 0w4`�21. This is not possible because for
all ` > k we have |0w4`�21| > |1w4k+10| = |0R(w4k+1)1|. Next, w4`+3 =
w4`+2(010)�1R(w4`+2). The central factor is 10101 and moreover we know
by Lemma 2 that w4k+3 is also a central factor of w4`+3. If w4`+3 contains
an occurrence of 1w4k+10 (resp. of 0R(w4k+1)1) that is not generated by
an occurrence of an image of 1w4k+10 in w4`+1, then this occurrence has
to contain the factor 10101. Then such an occurrence of 1w4k+10 (resp. of
0R(w4k+1)1) is necessarily contained in w4k+3. This is not possible since
the factor 1w4k+10 occurs for the first time in w4(k+1)+1 and its R-image
even later. Finally we have w4`+4 = w4`+3w

�1
4` w4`+3 and 1w4`1 is its central

factor. If w4`+4 contains an occurrence of 1w4k+10 (resp. of 0R(w4k+1)1) that
is not generated by an occurrence of an image of 1w4k+10 in w4`+1, then this
occurrence has to contain the factor 1w4`1. This is again not possible because
of lengths of those factors.

Secondly, let us show that the occurrence of the factor 1w4k+10 as the cen-
tral factor of the prefix w4`+1 is the only occurrence of 1w4k+10 (resp. of
0R(w4k+1)1) in the prefix w4`+1 that is not generated by any occurrence of
an image of 1w4k+10 in the prefix w4`. We have w4`+1 = w4`10E(w4`). Using
Lemma 2 it follows that 1w4k+10 is the central factor of w4`+1 and this oc-
currence is not generated by any image of 1w4k+10 contained in w4`. In order
to have another occurrence of 1w4k+10 (resp. of 0R(w4k+1)1) in the prefix
w4`+1 so that it is not generated by any image of 1w4k+10 in the prefix w4`,
it has to be either a su�x of w4`1 or a prefix of 0E(w4`) or it has to contain
the central factor of w4`+1: 10. However such an occurrence of 1w4k+10 (resp.
of 0R(w4k+1)1) has to be contained in the longer central factor of w4`+1:
w4(k+1)+1. This is not possible because 1w4k+10 occurs in w4(k+1)+1 exactly
once as the central factor and this occurrence has been already discussed.
Altogether we have described all occurrences of the factor 1w4k+10 in up.
All irregular occurrences of 1w4k+10 are thus generated by the occurrences of
1w4k+10 as the central factor of w4`+1, ` > k + 1.

Lemma 7. Consider up = u(1!, (EERR)!) and k 2 N.

1. All occurrences of w4k and E(w4k) are regular for k � 1.

2. All occurrences of w4k+2 and R(w4k+2) are regular.
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3. All irregular occurrences of w4k+1 and R(w4k+1) are generated by the occur-
rences of w4k+1 as the central factor of the prefixes w4`+1 for all ` > k.

4. All irregular occurrences of w4k+3 and E(w4k+3) are generated by the occur-
rences of w4k+3 as the central factor of the prefixes w4`+3 for all l > k.

Proof. We will prove only the first and the third statement. The other statements
may be proved analogously. Let us proceed by induction. Assume the first and the
third statement hold for some k 2 N.

1. We will first prove that w4(k+1) has only regular occurrences in up. Putting
together Lemma 6, the induction assumption and the fact that 1w4k1 and
w4(k+1) are both palindromes, it follows that the occurrence of w4(k+1) is
regular if and only if the occurrence of its central factor 1w4k1 is regular.

Therefore the factor w4(k+1) at an irregular occurrence has to have as its
central factor 1w4k1 at an irregular occurrence, i.e., by Lemma 6 generated
by an occurrence of 1w4k1 as the su�x of the prefix w4`1 for some ` > k.
Assume w4(k+1) is at such an occurrence that its central factor 1w4k1 is the
su�x of the prefix w4`1. By Lemma 2 we know that w4`+1 = w4`10E(w4`)
has the central factor 1w4k+10. Therefore w4(k+1) having the su�x 1w4k1
of w4`1 as its central factor has to contain 1w4k+10. This is a contradiction
because using Lemma 6 and the induction assumption, one can see that the
factor 1w4k+10 occurs for the first time in w4(k+1)+1.

By Observation 4 it follows that E(w4(k+1)) has only regular occurrences in
up too.

Let us conclude the proof for k = 1. We will show that w4 and E(w4) have only
regular occurrences in up. It is easy to check that w8 contains only regular
occurrences of w4 and E(w4). See Appendix for the form of w8. Assume
k > 8 and wk contains the first irregular occurrence of w4 (resp. of E(w4)).
For k = 4m+1, we have wk = wk�110E(wk�1). By Lemma 2 the factor w5 is
a central factor of wk, hence the irregular occurrence of w4 (resp. of E(w4))
has to be contained in w5, which is a contradiction. If k = 4m + 2, then
wk = wk�1w

�1
k�4wk�1. The irregular occurrence of w4 (resp. of E(w4)) has to

contain the central factor 0wk�41, which is a contradiction. For k = 4m+3, we
have wk = wk�1(010)�1R(wk�1). The central factor of wk is w7 by Lemma 2.
Therefore the irregular occurrence of w4 (resp. of E(w4)) has to be contained
in w7, which is a contradiction. Finally for k = 4m + 4, the argument is
similar as for k = 4m + 2. Consequently, w4 and E(w4) have only regular
occurrences in up.

3. We will first prove that all irregular occurrences of w4(k+1)+1 are generated
by its occurrences as the central factor of the prefixes w4`+1 for all ` > k + 1.
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Since by Lemma 6 and by the induction assumption, the factor 1w4k+10 occurs
for the first time as the central factor of the prefix w4(k+1)+1 and since both
1w4k+10 and w4(k+1)+1 are E-palindromes and w4(k+1)+1 does not contain
0R(w4k+1)1, it follows that the occurrence of w4(k+1)+1 is regular if and only
if the occurrence of its central factor 1w4k+10 is regular.

We will thus consider irregular occurrences of 1w4k+10. We know using
Lemma 6 and the induction assumption that every irregular occurrence of
1w4k+10 (resp. of 0R(w4k+1)1) is generated by an occurrence of 1w4k+10 as
the central factor of w4`+1 for ` > k + 1. It is then a direct consequence
that all irregular occurrences of w4(k+1)+1 are generated by the occurrences
of w4(k+1)+1 as the central factor of the prefixes w4`+1 for all ` > k + 1.

The statement for R(w4(k+1)+1) follows using Observation 4.

It remains to prove the statement for k = 0. We have to show that all
irregular occurrences of w1 in up are generated by the occurrences of w1 as
the central factor of the prefixes w4`+1 for all ` � 1. It is easy to show that
the first irregular occurrence of w1 is the occurrence as the central factor of
the prefix w5. Let m > 5 and let wm contain the first irregular occurrence
of w1 (resp. of R(w1)) that is not generated by the occurrence of w1 as the
central factor of the prefix w5. If m = 4` + 2, then wm = wm�1w

�1
m�4wm�1.

Then the irregular occurrence of w1 (resp. of R(w1)) has to contain the
central factor of wm: 0wm�41, which is not possible. If m = 4` + 3, then
wm = wm�1(010)�1R(wm�1). By Lemma 2 the factor w3 is a central factor of
wm. Then the irregular occurrence of w1 (resp. of R(w1)) has to be contained
in w3, which is a contradiction. If m = 4` + 4, then wm = wm�1w

�1
m�4wm�1.

Then the irregular occurrence of w1 (resp. of R(w1)) has to contain the
central factor of wm: 1wm�41, which is not possible. If m = 4` + 5, then
wm = wm�110E(wm�1). By Lemma 2 the factor w5 is a central factor of wm.
Then the irregular occurrence of w1 (resp. of R(w1)) has to be contained in
w5. It follows that w1 has to be the central factor of w4`+5, ` � 1.

In the proof of the last and essential lemma, we will make use of the following
observation.

Observation 5. Consider up = u(1!, (EERR)!). For all k 2 N, k � 1, let:

p4k+1 = w4(k�1)+3w
�1
4(k�1)w4(k�1)+1,

p4k+3 = w4k+1w
�1
4k�2w4(k�1)+3.

Then the factor p4k+1 is a su�x of s4k+1 and a prefix of w4k and similarly the factor
p4k+3 is a su�x of s4k+3 and a prefix of w4k+2.
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Lemma 8. Let v be a factor, but not an image of a prefix of up = u(1!, (EERR)!).
The following statements hold:

• If v is neither an E-palindrome, nor a palindrome, then v is not bispecial in
up,

• If v is an E-palindrome or a palindrome, but di↵erent from s4k+1, E(s4k+1),
s4k+3, R(s4k+3) for all k � 1, then v is either not a bispecial, or it is a bispecial
with three bilateral extensions,

• If v is equal to one of the bispecials s4k+1, E(s4k+1), s4k+3, R(s4k+3) for
some k � 1, then v is a weak bispecial.

Proof. We will find the minimal index k such that wk contains an image of the factor
v. Let the first occurrence of an image of v correspond without loss of generality to
v. Let us discuss the possible cases.

No such factors are contained in w3.

1. Let k = 4`, ` � 1. We have w4` = w4(`�1)+3w
�1
4`�4w4(`�1)+3. The bilateral

extension of the central factor is 1w4`�41. According to Lemma 6 the factor
1w4`�41 occurs for the first time as the central factor of w4` and moreover
w4` does not contain 0E(w4`�4)0. Since v is not contained in w4(`�1)+3, the
factor v has to contain the central factor of w4`: 1w4`�41. Hence v occurs once
in w4`. Let us denote avb the corresponding bilateral extension of v, where
a, b 2 {0, 1}. If v is a #-palindrome, then thanks to the unique occurrence of
the palindrome 1w4`�41 and the absence of 0E(w4`�4)0 in w4`, the factor v
has to be the central palindrome of w4`. In this case its bilateral extension
is ava, i.e. a = b. Moreover, v is distinct from s4m+1 and E(s4m+1) for all
m 2 N because these palindromes do not have the central factor 1w4`�41.

We will now study irregular occurrences of v. It is not di�cult to see that
regular occurrences of 1w4`�41 are factors of regular occurrences of v and
R(v). Therefore we have to look at irregular occurrences of 1w4`�41. The
first such occurrence is as the su�x of the prefix w4`1. Then v cannot contain
the central factor 1w4(l�1)+10 of w4`+1 = w4`10E(w4`) since by Lemmas 6
and 7 the factor 1w4(l�1)+10 occurs for the first time in w4`+1 while v occurs
already in w4`. Consequently and since v contains 1w4`�41 once, v has to
be contained in the su�x of s4`+1: p4`+1 defined in Observation 5. If v is
not a su�x of p4`+1, then since p4`+1 is a prefix of w4`, we do not get any
new bilateral extension of v. If v is a su�x of p4`+1 and thus of the bispecial
s4`+1, the word up contains the bilateral extension avb too. All other irregular
occurrences of 1w4`�41 are generated by its occurrences as the su�x of the
prefix w4m1, m > `. It is not di�cult to see that such occurrences do not
provide any new bilateral extension of v. Altogether we have found for v
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that is not an R palindrome the bilateral extension avb and possibly avb.
Thus, such a factor v is not bispecial. If v is a palindrome, then its bilateral
extension is either only ava and it is not a bispecial, or its bilateral extensions
are ava, ava and by the fact that the language is closed under reversal also
ava. Therefore v is a bispecial with three bilateral extensions.

2. Let k = 4` + 1, ` � 1. The factor v occurs for the first time in w4`+1 =
w4`10E(w4`). Therefore v contains either the central factor 1w4(`�1)+10 of
w4`+1 or v has to contain at least the su�x 1w4(`�1)+31 of w4`1. If v contains
neither 1w4(`�1)+10 nor 1w4(`�1)+31, then v itself is contained in p4`+1 defined
in Observation 5. However, p4`+1 is a prefix of w4`, and therefore v would be
contained already in w4`.

If v contains 1w4(`�1)+10, then v occurs in w4`+1 once since w4`+1 contains
1w4(`�1)+10 only once by Lemmas 6 and 7. If v contains 1w4(`�1)+31, then v
occurs in w4`+1 only once too, as one can easily check using Lemma 7. Let avb
denote the corresponding bilateral extension of v. If v is a #-palindrome, then
two cases are possible. If v contains 1w4(`�1)+10, then v is an E-palindromic
central factor of w4`+1. Then v is not equal to s4m+3 or R(s4m+3) for any
m 2 N because neither s4m+3 nor R(s4m+3) is a central factor of w4`+1. The
bilateral extension of v is then ava. If v contains 1w4(`�1)+31, then v has
to be a palindrome with the central factor 1w4(`�1)+31. The longest such
palindrome in w4`+1 is s4`+1. If v = s4`+1, then its bilateral extension is ava.
If v is a shorter palindrome, i.e., a central factor of s4`+1, then its bilateral
extension is ava.

It is not di�cult to see that no irregular occurrence of any image of v is
contained in w4`+1. Consider irregular occurrences of images of v first in
w4`+2 = w4`+1w

�1
4`�2w4`+1. The first irregular occurrence of an image of

v has to contain the central factor 0w4`�21 of w4`+2, which is not possible
because 0w4`�21 occurs by Lemmas 6 and 7 for the first time in w4`+2, and
moreover w4`+2 does not contain 1R(w4`�2)0. Thus w4`+2 does not contain
any irregular occurrence of any image of v. Similarly, no irregular occurrence
of an image of v is contained in w4`+3 = w4`+2(010)�1R(w4`+2). The image
of v cannot contain the central factor 0w4(`�1)+30 because this factor occurs
for the first time in w4`+3 and its E-image even later. The image of v cannot
contain the su�x 0w4`�21 of w4`+21 because 0w4`�21 occurs for the first time
in w4`+2 and its R-image even later. This implies however that the image of
v is contained in p4`+3 defined in Observation 5. And since p4`+3 is a prefix
of w4`+2, such occurrence of the image of v is regular. Consider an image of v
has an irregular occurrence in w4`+4. Then the image of v has to contain its
central factor 1w4`1, which occurs however for the first time in w4`+4 and its
E-image even later. Therefore it is not possible. No new irregular occurrences
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can appear in larger prefixes: for s > `, the prefixes w4s+2 and w4s+4 has too
long central factors that v has to contain, while w4s+1 and w4s+3 have central
factors w4`+1 (resp. w4`+3) and these cases have been already discussed.

If v is not a #-palindrome, then the only bilateral extension of v is avb, thus v
is not a bispecial. If v is an E-palindrome, then its only bilateral extension is
ava and we do not get any new bilateral extension by application of E. Hence
v is not a bispecial. If v is a palindrome, but distinct from s4`+1, then its
bilateral extension is ava and we do not get any new bilateral extension by
application of R. Finally, if v = s4`+1, then its bilateral extension is ava and
by application of R we get ava, thus v is a weak bispecial.

3. Let k = 4` + 2. This case is analogous to the first one.

4. Let k = 4` + 3. This case is analogous to the second one.

Proof of Proposition 1. The result follows from Lemmas 5 and 8.

6.2. Complexity of up is Significantly Larger Than 4n

Let us prove that the infinite word up from the counterexample to Conjecture 4n
not only satisfies Cup(n) > 4n for all n � 10, but its complexity is significantly
larger than 4n.

We start with a simple observation concerning the lengths of weak bispecial
factors.

Observation 6. For all i 2 N, i � 1, we have:

|s4i+5|� |w4i+3| = 2|w4i+1|� 2|w4i| = 2|w4i| + 4,
|s4i+3|� |w4i+1| = 2|w4i�1|� 2|w4i�2| = 2|w4i�2|� 6.

Proof. It follows from the form of weak bispecials described in Lemma 3 that

|s4i+5| = 2|w4i+1| + |w4i+3|� 2|w4i|,
|s4i+3| = 2|w4i�1| + |w4i+1|� 2|w4i�2|.

(2)

Applying then Lemma 1, we obtain the statement.

Theorem 3. Let up = u(1!, (EERR)!). Then its complexity satisfies:

lim sup
Cup(n)

n
� 4.57735.
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Proof. For n � 10 we have C(n) = C(10) +
Pn�1

`=10 �C(`), where by Corollary 1 we
have for ` � 10:

�C(`) � 6 if |w4i+1| < `  |s4i+3| or |w4i+3| < `  |s4i+5| for some i � 1;
�C(`) � 4 otherwise.

Let us set n = |s4k+5| + 1. Since C(10) = 42, we get the following expression:

C(n) � 42 + 4(n� 10) + 2
kX

i=1

(|s4i+3|� |w4i+1|) + 2
kX

i=1

(|s4i+5|� |w4i+3|) .

Inserting formulas from Observation 6, we obtain:

C(n) � 4n + 2� 4k + 4
kX

i=1

(|w4i�2| + |w4i|) . (3)

Using (2) we have |s4k+5| = 2|w4k+1|+ |w4k+3|� 2|w4k| and applying Lemma 1 we
obtain

|s4k+5| = 2|w4k| + 2|w4k+2| + 1. (4)

Therefore it su�ces to deal with wn for even n.
By Lemma 1 we easily deduce the following set of equations:

|w4k+2| = 4|w4k|� |w4k�2| + 4,
|w4k+4| = 4|w4k+2|� |w4k|� 6,

|w4k| = 4|w4k�2|� |w4k�4|� 6.
(5)

We multiply the first equation by four and add the remaining two equations so that
we get the following recurrence equation for |w4k|:

|w4k+4| = 14|w4k|� |w4k�4| + 4.

The initial values are |w0| = 0 and |w4| = 10. The solution of the above recurrence
equation reads

|w4k| =
1 + 2

p
3

6
⌧k +

1� 2
p

3
6

(⌧ 0)k � 1
3
, (6)

where ⌧ = 7 + 4
p

3 > 1 and ⌧ 0 = 7 � 4
p

3 2 (0, 1) are roots of the equation
x2 � 14x + 1 = 0. It follows using the last equation from (5) that

4|w4k�2| = |w4k�4|+|w4k|+6 =
16
3

+
1 + 2

p
3

6
⌧k(⌧ 0+1)+

1� 2
p

3
6

(⌧ 0)k(⌧ +1). (7)

Consequently,

4
kX

i=1

(|w4i�2| + |w4i|) = 4k +
1 + 2

p
3

6
(⌧ 0 + 5)

⌧

⌧ � 1
(⌧k � 1) + c1(k),
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where c1(k) is a bounded sequence.
Inserting the previous formula into (3), we have:

C(n) � 4n + 2 +
1 + 2

p
3

6
(⌧ 0 + 5)

⌧

⌧ � 1
(⌧k � 1) + c1(k). (8)

In order to continue with the estimate on complexity, we have to express the
relation between k and n. We know that n = |s4k+5|+1. Combining Equations (4),
(6) and (7), we obtain:

|s4k+5| = 3 +
1 + 2

p
3

6
5 + ⌧

2
⌧k + c2(k),

where c2(k) is again a bounded sequence. Consequently,

n = |s4k+5| + 1 =
1 + 2

p
3

6
5 + ⌧

2
⌧k + c3(k),

where constants have been included in the bounded sequence c3(k). Hence, we have:

⌧k =
6

1 + 2
p

3
2

5 + ⌧
n + c4(k),

where c4(k) is a bounded sequence. Inserting the previous formula into (8), we
obtain the following lower bound on complexity:

C(n) � 4n + n
⌧ 0 + 5
⌧ + 5

2⌧
⌧ � 1

+ c5(k),

where c5(k) is a bounded sequence, where all constants have been included. Finally,
we obtain:

lim sup
C(n)

n
� 4 +

⌧ 0 + 5
⌧ + 5

2⌧
⌧ � 1

.= 4.57735.

7. Open Problems

It remains as an open problem to determine a new upper bound on the complexity
of binary generalized pseudostandard words.

• Let us start here with a simple observation: If both E and R occur in the
sequence ⇥ an infinite number of times, then since the language of u(�,⇥)
is closed under the antimorphisms E and R, the first di↵erence of complexity
has even values, i.e., �C(n) 2 {2, 4, 6, . . .}.
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• It might be helpful to illustrate what the situation is for su�ciently long left
special factors of the Thue–Morse word and what seems to be the situation
for the word up. See Figure 1. In both cases, there are two infinite left
special branches – the infinite word itself and its ER-image, i.e., the word
that arises when exchanging ones with zeroes. The weak bispecial factors
form finite branches and the common prefixes of the weak bispecials and the
infinite left special branch correspond to strong bispecials. The first di↵erence
of complexity �C(n) equals to the number of left special factors of length n.
In the case of up in contrast to uTM , the detached parts of finite branches
may overlap, thus the first di↵erence of complexity is larger. The question
is whether it is possible to construct an example where there are even more
overlapping detached parts of finite branches.

Figure 1: Infinite left special factors of up and uTM . We illustrate in each case
only one of two infinite left special branches. Hence, the total first di↵erence of
complexity has to be doubled.

• Let us state a new conjecture based on our computer experiments:

Conjecture 2 (Conjecture 6n). Let u be a binary generalized pseudostan-
dard word, then its complexity satisfies Cu(n) < 6n for all n 2 N.

The arguments supporting our conjecture are as follows:
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1. On one hand, in all our examples the first di↵erence of complexity satis-
fies �C(n)  6.

2. On the other hand, we have checked for u = u(1!, (RRRRREEEEE)!)
that Cu(n) > 5n for some n 2 N.
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[4] J. Cassaigne, Complexité et facteurs spéciaux, Bull. Belg. Math. Soc. Simon Stevin 4 (1997),
67-88.

[5] X. Droubay, J. Justin, and G. Pirillo, Episturmian words and some constructions of de Luca
and Rauzy, Theoret. Comput. Sci. 225 (2001), 539-553.
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Appendix

In this appendix, we list the members of the sequence (wk)9k=1 for the infinite word
up = u(1!, (EERR)!). For their generation the program Sage [12] was used. We
have moreover highlighted the first occurrences of weak bispecials s2k+1, k � 2.

w1 = 10

w2 = 1010

w3 = 10101

w4 = 1010110101

w5 = 101 011010110| {z }
s5

0101001010

w6 = 1010110101100101001010110101100101001010

w7 = 10101101011001010010101101011001010010101| {z }
s7

001010011010

110101001010011010110101

w8 = 10101101011001010010101101011001010010101001010011010
11010100101001101011010110010100101011010110010100101
01001010011010110101001010011010110101

w9 = 10101101011001010010101101011001010010101001010011010
11 010100101001101011010110010100101011010110010100101| {z }
01001010011010110101001010011010110101100101001010| {z }

s9

011

01011010100101001101011010101101011001010010101101011
00101001010011010110101001010011010110101011010110010
1001010110101100101001010


