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Abstract

A finite or infinite matrix A with entries from Q is image partition regular provided
that whenever N is finitely colored, there must be some ~x with entries from N
such that all entries of A~x are in some color class. In 2003, Hindman, Leader
and Strauss studied centrally image partition regular matrices and extended many
results of finite image partition regular matrices to infinite image partition regular
matrices. It was shown that centrally image partition regular matrices are closed
under diagonal sums. In the present paper, we show that the diagonal sum of two
matrices, one of which comes from the class of all Milliken-Taylor matrices and the
other from a suitable subclass of the class of all centrally image partition regular
matrices, is also image partition regular. This will produce more image partition
regular matrices. We also study the multiple structures within one cell of a finite
partition of N.

1. Introduction

In 1933, R. Rado [9] produced a computable characterization, called the columns
condition, for the (finite) matrices with rational entries which are kernel partition
regular. Kernel partition regular matrices are those matrices A which have the
property that whenever N is finitely colored, there exists some ~x with monochrome
entries such that A~x = ~0. He also extended the result in his later paper [10] to
cover other subsets of R (and even of C).

Though several characterizations of (finite) image partition regular matrices were
known, a reasonable characterization of image partition regular matrices was intro-
duced by Hindman and Leader in 1993 [4]. A matrix A is said to be image partition
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regular if whenever N is finitely colored, there will be some ~x (with entries from
N) such that the entries of A~x are monochrome. Image partition regular matrices
generalize many of the classical theorems of Ramsey Theory. For example, Schur’s
Theorem [11] and van der Waerden’s Theorem [12] are equivalent to saying that the
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respectively. Some of the characterizations of finite image partition regular matri-
ces involve the notion of central sets. Central sets were introduced by Furstenberg
and defined in terms of notions of topological dynamics. A nice characterization of
central sets in terms of the algebraic structure of �N, the Stone-C̆ech compactifica-
tion of N, is given in Definition 1.2 (a). Central sets are very rich in combinatorial
properties. The basic fact about central sets is given by the Central Sets Theorem,
which is due to Furstenberg [3, Proposition 8.21] for the case S = Z.

Theorem 1.1. (Central Sets Theorem) Let S be a commutative semigroup. Let ⌧
be the set of sequences hyni1n=1 in S. Let C be a subset of S which is central and
let F 2 Pf (⌧). Then there exist a sequence hani1n=1 in S and a sequence hHni1n=1

in Pf (N) such that for each n 2 N, maxHn < minHn+1 and for each L 2 Pf (N)
and each f 2 F ,

P
n2L(an +

P
t2Hn

f(t)) 2 C.

We shall present this characterization below, after introducing the necessary
background information.

Let (S, ·) be an infinite discrete semigroup. Now the points of �S are taken to
be the ultrafilters on S, the principal ultrafilters being identified with the points of
S. Given A ✓ S let us set Ā = {p 2 �S : A 2 p}. Then the set {Ā : A ✓ S} will
become a basis for a topology on �S. The operation · on S can be extended to the
Stone-C̆ech compactification �S of S so that (�S, ·) is a compact right topological
semigroup (meaning that for any p 2 �S, the function ⇢p : �S ! �S defined by
⇢p(q) = q ·p is continuous) with S contained in its topological center (meaning that
for any x 2 S, the function �x : �S ! �S defined by �x(q) = x · q is continuous).
Given p, q 2 �S and A ✓ S,A 2 p · q if and only if {x 2 S : x�1A 2 q} 2 p, where
x�1A = {y 2 S : x · y 2 A}.

A nonempty subset I of a semigroup (T, ·) is called a left ideal of T if T · I ✓ I,
a right ideal if I · T ✓ I, and a two-sided ideal (or simply an ideal) if it is both a
left and a right ideal. A minimal left ideal is a left ideal that does not contain any
proper left ideal. Similarly, we can define minimal right ideal and the smallest ideal.
Any compact Hausdor↵ right topological semigroup (T, ·) has the unique smallest
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two-sided ideal

K(T ) =
S
{L : L is a minimal left ideal of T}

=
S
{R : R is a minimal right ideal of T}.

Given a minimal left ideal L and a minimal right ideal R of T , L\R is a group,
and in particular K(T ) contains an idempotent. An idempotent that belongs to
K(T ) is called a minimal idempotent. Given any subset J ✓ T we shall use the
notation E(J) to denote the set of all idempotents in J .

Definition 1.2. Let S be a semigroup and let C ✓ S.
(a) C is called central in S if there is some idempotent p 2 K(�S) such that

C 2 p [7, Definition 4.42].
(b) C is called central⇤ in S if C\A 6= ; for every cental set A in S [7, Definition

15.3].

Like kernel partition regular matrices, finite image partition regular matrices can
also be described by a computable condition called the first entries condition. In
the following theorem [5, theorem 2.10], we see that central sets characterize all
finite image partition regular matrices.

Theorem 1.3. Let u, v 2 N and let A be a u⇥v matrix with entries from Q. Then
the following statements are equivalent.
(a) A is image partition regular.
(b) For every additively central subset C of N, there exists ~x 2 Nv such that A~x 2
Cu.

It is an immediate consequence of Theorem 1.3 that whenever A and B are finite

image partition regular matrices, so is
✓

A 0
0 B

◆
, where 0 represents a matrix of

appropriate size with zero entries. However, it is a consequence of [2, Theorem
3.14] that the corresponding result is not true for infinite image partition regular
matrices. In [6], it was shown that for an image partition regular matrix A, I(A)
(Definition 2.1) is a nonempty compact subset of (�N,+). It is also a sub-semigroup
of (�N,+) if A is a finite image partition regular matrix.

In Section 2, we will investigate the multiplicative structure of I(A) in (�N, ·)
for finite and infinite matrix A. Using both additive and multiplicative structures
of �N we show that the diagonal sum of two matrices, one of which is a Milliken-
Taylor matrix and the other is a subtracted centrally image partition regular matrix
(Definition 2.11), is also an image partition regular matrix.

One knows from Finite Sums Theorem [7, Corollary 5.10] that whenever r 2 N
and N =

Sr
i=1 Ei there exist i 2 {1, 2, ....., r} and a sequence hxni1n=1 in N such that
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FS(hxni1n=1) ✓ Ei. It is also known that whenever r 2 N and N =
Sr

i=1 Ei there
exist j 2 {1, 2, ....., r} and a sequence hyni1n=1 in N such that FP (hyni1n=1) ✓ Ej .
The following theorem [7, Corollary 5.22] will allow us to take i = j.

Theorem 1.4. Suppose r 2 N and N =
Sr

i=1 Ei. Then there exist i 2 {1, 2, ....., r}
and sequences hxni1n=1 and hyni1n=1 in N such that FS(hxni1n=1)

S
FP (hyni1n=1) ✓

Ei.

We generalize this result in Section 3 in matrix version. We also use both additive
and multiplicative structures of �N to show that multiple structures induced from
matrices with rational co-e�cients will be in one cell of a finite partition of N.

2. Diagonal Sum of Matrices

It is natural that the additive structure of �N is useful to study the image partition
regular matrices over (N,+). In [2], [5], [6] and [8], mostly the additive structure of
�N is used to study the image partition regular matrices over �N. In this section,
we shall see that the multiplicative structure of �N is also helpful to study the image
partition regular matrices over (N,+).

We start with the following definition [6, Definition 2.4].

Definition 2.1. Let A be a finite or infinite matrix with entries from Q. Then
I(A) = {p 2 �N : for every P 2 p, there exists ~x with entries from N such that all
entries of A~x are in P}.

We also recall the following lemma [6, Lemma 2.5].

Lemma 2.2. Let u, v 2 N [ {!} and let A be a u⇥ v matrix with entries from Q.
(a) The set I(A) is compact and I(A) 6= ; if and only if A is image partition regular.
(b) If A is finite and image partition regular, then I(A) is a sub-semigroup of
(�N,+).

Let us now investigate the multiplicative structure of I(A). In the following
lemma, we shall see that if A is a image partition regular matrix then I(A) is a left
ideal of (�N, ·). It is also a two-sided ideal of (�N, ·) provided A is a finite image
partition regular matrix.

Lemma 2.3. Let u, v 2 N [ {!} and let A be a u⇥ v matrix with entries from Q.
(a) If A is image partition regular then I(A) is a left ideal of (�N, ·).
(b) If A is finite and image partition regular, then I(A) is a two-sided ideal of
(�N, ·).
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Proof. Assume that A is image partition regular. Let p 2 �N and let q 2 I(A). We
shall show that p · q 2 I(A) and, if A is finite, then q · p 2 I(A). Let U 2 p · q. Pick
a 2 N such that a�1U 2 q. Pick ~x 2 Nv such that A~x 2 (a�1U)u. Then a~x 2 Nv

and A(a~x) 2 Uu.
Now assume that A is finite and let U 2 q ·p. Let B = {x 2 N : x�1U 2 p}. Pick

~x 2 Nv such that ~y = A~x 2 Bu. Let C =
Tu

i=1 y�1
i U . Then C 2 p so pick a 2 C.

Then ~xa 2 Nv and A(~xa) 2 Uu.

The following theorem was proved in 2003 using combinatorics [6, Lemma 2.3].
We now provide an alternative proof of this theorem using the algebra of (�N, ·).

Theorem 2.4. Let A and B be finite and infinite image partition regular matrices

respectively (with rational co-e�cients). Then
✓

A 0
0 B

◆
is image partition regular.

Proof. Let r 2 N be given and N =
Sr

i=1 Ei. Suppose that A is a u ⇥ v matrix

where u, v 2 N. Also let M =
✓

A 0
0 B

◆
. Now by Lemma 2.3(b), I(A) is a two-sided

ideal of (�N, ·). So K(�N, ·) ✓ I(A). Also by Lemma 2.3(a), I(B) is a left ideal
of (�N, ·). Therefore K(�N, ·) \ I(B) 6= ;. Hence I(A) \ I(B) 6= ;. Now choose
p 2 I(A)\I(B). Since N =

Sr
i=1 Ei, there exists k 2 {1, 2, ....., r} such that Ek 2 p.

Thus by definition of I(A) and I(B), there exist ~x 2 Nv and ~y 2 N! such that

A~x 2 Eu
k and B~y 2 E!

k . Take ~z =
✓

~x
~y

◆
. Then M~z =

✓
A~x
B~y

◆
. So M~z 2 E!

k .

Therefore M =
✓

A 0
0 B

◆
is image partition regular.

The following theorem is [6, Corollary 2.6]. We also provide an alternative proof
of this corollary in the following theorem.

Theorem 2.5. Let F denote the set of all finite image partition regular matri-
ces with entries from Q. If B is an image partition regular matrix then I(B) \
(
T

A2F I(A)) 6= ;.

Proof. Note that for each A 2 F , I(A) is a two-sided ideal of (�N, ·) and therefore
K(�N, ·) ✓ I(A). Hence K(�N, ·) ✓

T
A2F I(A). Also by Lemma 2.3(a), I(B) is a

left ideal of (�N, ·). Thus I(B)\K(�N, ·) 6= ;. Hence I(B)\ (
T

A2F I(A)) 6= ;.

We introduce the following definition to see that the analogous statements are
also true for kernel partition matrices.

Definition 2.6. Let A be a finite or infinite matrix with entries from Q. Then
J(A) = {p 2 �N : for every P 2 p, there exists ~x with entries from P such that
A~x = ~0}.
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Lemma 2.7. Let u, v 2 N [ {!} and let A be a u⇥ v matrix with entries from Q.
(a) The set J(A) is compact and J(A) 6= ; if and only if A is kernel partition
regular.
(b) If A is finite and kernel partition regular, then J(A) is a sub-semigroup of
(�N,+).

Proof. The proof is similar to the proof of [6, Lemma 2.5].

Lemma 2.8. Let u, v 2 N [ {!} and let A be a u⇥ v matrix with entries from Q.
(a) If A is kernel partition regular then J(A) is a left ideal of (�N, ·).
(b) If A is finite and kernel partition regular, then J(A) is a two-sided ideal of
(�N, ·).

Proof. The proof is similar to the proof of Lemma 2.3.

We now recall the following definition [8, Definition 1.6(a)].

Definition 2.9. Let A be a ! ⇥ ! matrix with entries from Q. The matrix A
is centrally image partition regular if for every central subset C of (N,+), there
exists ~x 2 N! such that A~x 2 C!.

We also recall the following definition [5, Definition 1.7].

Definition 2.10. Let A be a u⇥ v matrix with rational entries. Then A is a first
entries matrix if

(1) no row of A is ~0;
(2) the first nonzero entry of each row is positive; and
(3) the first nonzero entries of any two rows are equal if they occur in the same

column.

If A is a first entries matrix and d is the first nonzero entry of some row of A,
then d is called a first entry of A. A first entries matrix A is said to be monic
whenever all the first entries of A are 1.

Here we shall use both the additive and multiplicative structures of �N to show
that the diagonal sum of two infinite image partition regular matrices, one of which
comes from the class of all Milliken-Taylor matrices and the other from the class
of all subtracted centrally image partition regular matrices, is also image partition
regular. For this we introduce the following definition.

Definition 2.11. Let A be an !⇥ ! matrix with entries from Q. The matrix A is
subtracted centrally image partition regular if and only if

(1) no row of A is ~0;
(2) for each i 2 !, {j 2 ! : aij 6= 0} is finite; and
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(3) there exists v 2 N, an !⇥v matrix A1, and an !⇥! matrix A2 such that the
rows of A1 are the rows of a finite image partition regular matrix, A2 is a centrally
image partition regular matrix, and A =

�
A1 A2

�
.

Example 2.12. An example of a subtracted centrally image partition regular ma-
trix is given below.

0
BBBBBBBBBBBBBBB@

2 0 1 0 0 0 · · ·
2 1 0 0 0 0 · · ·
2 1 1 0 0 0 · · ·
2 0 0 1 0 0 · · ·
2 0 1 0 0 0 · · ·
2 1 0 1 0 0 · · ·
2 1 1 1 0 0 · · ·
2 0 1 1 0 0 · · ·
2 0 0 0 0 1 · · ·
...

...
...

...
...

...

1
CCCCCCCCCCCCCCCA

In the following theorem we show that subtracted centrally image partition reg-
ular matrices are centrally image partition regular.

Theorem 2.13. Let A be a subtracted centrally image partition regular matrix.
Then A is centrally image partition regular.

Proof. Since A is a subtracted centrally image partition regular matrix, pick u, v 2
N, a u ⇥ v image partition regular matrix D, an ! ⇥ v matrix A1 whose rows
are all rows of D, and an ! ⇥ ! centrally image partition regular matrix A2 such
that A =

�
A1 A2

�
as in Definition 2.11. Let C be a central subset of (N,+)

and p be a minimal idempotent of (�N,+) such that C 2 p. Let B = {x 2 N :
�x + C 2 p}. Then B 2 p and hence B is central in (N,+). Now by Theorem
1.3, pick ~x(1) 2 Nv such that D~x(1) 2 Bu. If y = A1~x(1) then {yi : i 2 !}
is finite so E =

T
i<!(�yi + C) 2 p. Therefore E is central in (N,+). Choose

~x(2) 2 N! such that ~w = A2~x(2) 2 E!. Let ~x =
✓

~x(1)

~x(2)

◆
. Then ~x 2 N! and

A~x = A1~x(1) + A2~x(2) = ~y + ~w 2 C!. Therefore A is centrally image partition
regular.

The converse of Theorem 2.13 is not true. For example, finite sum matrix (i.e.
the Milliken-Taylor matrix [Definition 2.16] generated by the compressed sequence
h1i) is centrally image partition regular but not subtracted centrally image partition
regular.
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We now recall the following definitions [8, Definition 2.1], [7, Definition 5.13(b)]
and [2, Definition 2.4].

Definition 2.14. Let v 2 N [ {!} and let ~x 2 Zv. Then
(a) d(~x) is the sequence obtained by deleting all occurrence of 0 from ~x.
(b) c(~x) is the sequence obtained by deleting every digit in d(~x) which is equal

to its predecessor and
(c) ~x is a compressed sequence if and only if ~x = c(~x).

Definition 2.15. Let hxti1t=0 be a sequence in N. A sequence hyti1t=0 in N is said to
be a sum� subsystem of hxti1t=0 if there exists a sequence hHti1t=0 of finite subsets
of N with maxHt < minHt+1 for all t 2 ! such that yt =

P
s2Ht

xs.

Definition 2.16. An !⇥ ! matrix M with entries from Z is a Milliken� Taylor
matrix if and only if

(1) each row of M has only finitely many nonzero entries; and
(2) there exist m 2 N and a finite compressed sequence ~a = ha1, a2, ....., ami 2

(Z \ {0})m such that am > 0 and ~r is a row of M if and only if c(~r) = ~a.

For Lemma 2.17 and Lemma 2.18, we need to view �N as a subset of �Z. Given
p 2 �Z, let �p = {�B : B 2 p}. Then given p, q 2 �Z, (�p) + (�q) = �(p + q).
One can establish this fact by simple observation. Let ⌫ : Z �! Z be defined by
⌫(x) = �x and suppose ⌫̃ : �Z �! �Z is its continuous extension. Then ⌫̃(p) = �p.
Since ⌫ is a homomorphism, so is ⌫̃ by [7, Corollary 4.22] and from this, one can
easily verify the fact.

Lemma 2.17. Let u, v 2 N, let A be a u ⇥ v image partition regular matrix with
entries from Q, and let p be a minimal idempotent of (�N,+). For each D 2 p
and each n 2 N, there exists Q ✓ ⇥v

j=1(N \ {1, 2, ..., n}) such that for all ~z 2 Q,
A~z 2 Du.

Proof. Let p̄ = (p, p, ....., p) 2 (�N)u. Define f : Nv �! Zu by f(x) = A~x and
note that f is a homomorphism. Let Y = �(Nv) and let f̃ : Y �! (�Z)u be the
continuous extension of f , so that f̃ is a homomorphism by [7, Corollary 4.22].
We claim that f̃�1[{p̄}] 6= ;. To see this, note that {f�1[Bu] : B 2 p} has the
finite intersection property since p 2 I(A). Therefore

T
B2p clY f�1[Bu] 6= ;. It

is routine to verify that
T

B2p clY f�1[Bu] ✓ f̃�1[{p̄}]. Since f̃�1[{p̄}] 6= ; and
f̃ is a homomorphism, f̃�1[{p̄}] is a subsemigroup of Y , so pick an idempotent
q 2 f̃�1[{p̄}]. Then for each D 2 p there is some Q 2 q such that f [Q] ✓ Du.
So it su�ces to show that for each n 2 N, ⇥v

j=1(N \ {1, 2, ..., n}) 2 q. Since
⇥v

j=1(N\{1, 2, ..., n}) =
Tv

j=1 ⇡�1
j [N\{1, 2, ..., n}], it su�ces to let j 2 {1, 2, ....., v}

and show that ⇡�1
j [N \ {1, 2, ....., n}] 2 q. Suppose instead that

Sn
t=1 ⇡�1

j [{t}] =
⇡�1

j [{1, 2, .....n}] 2 q and pick t 2 {1, 2, ....., n} such that ⇡�1
j [{t}] 2 q. If ⇡̃j : Y �!
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(�N)u is the continuous extension of ⇡j , ⇡̃j(q) = t. But ⇡̃j is a homomorphism, so
t is an idempotent, a contradiction.

Lemma 2.18. Let u, v 2 N and let A be a u⇥v image partition regular matrix with
entries from Q. Let r 2 �Z and let p be a minimal idempotent of (�N,+). Then
the following are true.
(1) If r 2 I(A), then r + p 2 I(A).
(2) If r 2 �I(A), then r + p 2 I(A).
(3) If r 2 I(A), then r + (�p) 2 �I(A).
(4) If r 2 I(A), then r + (�p) 2 �I(A).

Proof. We already have (1) by Lemma 2.2 and Theorem 1.3. Statement (3) follows
from statement (2) and statement (4) follows from statement (1). So it su�ces to
prove (2).
Assume r 2 �I(A). Let B 2 r + p and C = {x 2 Z : �x + B 2 p}. Then
�C 2 �r and �r 2 I(A) so pick ~x 2 Nv such that ~y = A~x 2 (�C)u. Then for
each i 2 {1, 2, .....u}, yi + B 2 p. Let n = max{xi : i = 1, 2..., v} + 1 and let
D =

Tu
i=1 yi + B. Then D 2 p and so by Lemma 2.17, pick ~z 2 (N \ {1, 2, ....., n})v

such that ~w = A~z 2 Du. Then ~w�~y = A(~z�~x) 2 Bu and observe that ~z�~x 2 Nv,
which completes the proof.

Theorem 2.19. Let A be a subtracted centrally image partition regular matrix and

let M be a Milliken-Taylor matrix. Then
✓

A 0
0 M

◆
is image partition regular.

Proof. Pick u, v 2 N, a u⇥ v image partition regular matrix D, an !⇥ v matrix A1

whose rows are all rows of D, and an !⇥! centrally image partition regular matrix
A2 such that A =

�
A1 A2

�
. Pick m 2 N and a compressed sequence ~a = haiimi=1

in Z \ {0} such that am > 0 and M is the Milliken-Taylor matrix determined by ~a.
Pick a minimal idempotent p in (�N,+) and note that by [7, Lemma 5.19.2], for any
b 2 N, b · p is a minimal idempotent in (�N,+). Let q = a1 · p + a2 · p + ..... + am · p
and r = am · p. Note that q = q + r. It su�ces to show that I(A)

T
I(M) 6= ;.

By [6, Corollary 3.6], q + r 2 I(M). So it su�ces to show that q + r 2 I(A).
To this end, let V 2 q + r and let W = {x 2 N : �x + V 2 r}. Now for each
i 2 {1, 2, .....,m� 1}, if ai > 0, then since ai · p is a minimal idempotent in (�N,+),
ai · p 2 I(D) = I(A1). And if ai < 0, then since (�ai) · p is a minimal idempotent
in (�N,+), ai · p 2 �I(A1). Applying Lemma 2.18 repeatedly and using the fact
that am > 0, we have that q 2 I(A1). Since W 2 q, pick ~x(1) 2 Nv such that
~y = A~x(1) 2 W!. Then {yi : i 2 !} is finite and so Z =

T
i<!(�yi + V ) 2 r. Since

r ia a minimal idempotent in (�N,+), pick ~x(2)N! such that ~w = A~x(2) 2 Z!. Let

~x =
✓

~x(1)

~x(2)

◆
. Then ~x 2 N! and A~x = A1~x(1) + A2~x(2) = ~y + ~w 2 V !.
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3. Combined Additive and Multiplicative Structures Induced
by Matrices

In this section, we shall present some Ramsey theoretic properties induced from
combined additive and multiplicative structures of N. We start with the following
theorem [7, Theorem 15.5].

Theorem 3.1. Let (S,+) be an infinite commutative semigroup with identity 0, let
u, v 2 N and let A be a u ⇥ v matrix with entries from ! which satisfies the first
entries condition. Let C be a central set in S. If for every first entry c of A, cS
is a central⇤ set then there exist sequences hx1,ni1n=1, hx2,ni1n=1, ....., hxv,ni1n=1 in S
such that for every F 2 Pf (N),

~xF 2 (S \ {0})v and A~xF 2 Cu, where ~xF =

0
BBBBBBBBB@

X
n2F

x1,n

X
n2F

x2,n

...X
n2F

xv,n

1
CCCCCCCCCA

.

Let u, v 2 N [ {!} and A be a u ⇥ v matrix with entries from Q. Also assume
that each row of A has all but finitely many nonzero entries. Given ~x 2 Nv and
~y 2 Nu, we write ~xA = ~y to mean that for i 2 {0, 1, ....., u � 1},

Qv�1
j=0 x

aij

j = yi,

where A = (aij) and ~y =

0
B@

y0

y1
...

1
CA.

We now state the following [7, Theorem 15.20].

Theorem 3.2. Let u, v 2 N and C be a u ⇥ v matrix with entries from Z. Then
the following statements are equivalent.
(a) The matrix C is kernel partition regular over (N,+).
(b) The matrix C is kernel partition regular over (N, ·). That is whenever r 2 N
and N\{1} =

Sr
i=1 Di, there exist i 2 {1, 2, ....., r} and ~x 2 (Di)v such that ~xC = ~1.

(c) The matrix C satisfies the columns condition over Q.

We recall the following definition [8, Definition 3.1].

Definition 3.3. Let A be a !⇥! matrix with entries from Q. Then A is a segmented
image partition regular matrix if

(1) no row of A is ~0;
(2) for each i 2 !, {j 2 ! : aij 6= 0} is finite; and
(3) there is an increasing sequence h↵ni1n=0 in ! such that ↵0 = 0 and for each

n 2 !, {(ai,↵n , ai,↵n+1 , ....., ai,↵n+1�1) : i 2 !} \ {~0} is empty or is the set of rows of
a finite image partition regular matrix.
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If each of these finite image partition regular matrices is a first entries matrix,
A is called a segmented first entries matrix. If also the first nonzero entry of
each (ai,↵n , ai,↵n+1 , ....., ai,↵n+1�1) is 1, then A is a monic segmented first entries
matrix.

Lemma 3.4. Let A be a monic segmented first entries matrix with entries from !
and let C be a central subset of (N, ·). Then there exists ~x 2 N! such that ~xA 2 C!.

Proof. Let ~c0, ~c1, ~c2, ..... denote the columns of A. Let h↵ni1n=0 be an increasing se-
quence as in the definition of a monic segmented first entries matrix [Definition 3.3].
For n 2 !, let An be the matrix whose columns are ~c↵n ,~c↵n+1,~c↵n+2, .....,~c↵n+1�1.
Then the set of nonzero rows of An is finite and, if nonempty, is the set of rows of
a finite monic first entries matrix. (An may contain infinitely many nonzero rows
but only finitely many rows are distinct.) Let Bn=(A0 A1 ..... An). Let C be a
central subset of (N, ·) and p be a minimal idempotent in (�N, ·) such that C 2 p.
Let C⇤ = {n 2 C : n�1C 2 p}. Then C⇤ 2 p and for every n 2 C⇤, n�1C⇤ 2 p
(by Lemma 4.14, [7]). Now by Theorem 3.1, we can choose ~x(0) 2 N↵1�↵0 such
that if ~y = (~x(0))A0 then yi 2 C⇤ for every i 2 ! for which the ith row of A0 is
nonzero. We now make the induction assumption that, for some m 2 !, we have
chosen ~x(0), ~x(1),.....,~x(m) such that if i 2 {0, 1, 2, .....,m} then ~x(i) 2 N↵i+1�↵i , and

if ~z =

0
BBB@

~x(0)

~x(1)

...
~x(m)

1
CCCA and ~y = ~zBm then yj 2 C⇤ for every j 2 ! for which the jth row of

Bm is nonzero. Let D = {j 2 ! : jth row of Bm is nonzero} and note that for each
j 2 !, we have y�1

j C⇤ 2 p. By Theorem 3.1, we can choose ~x(m+1) 2 N↵m+2�↵m+1

such that if ~z = (~x(m+1))Am+1 then zj 2 C⇤ \ (
T

t2D y�1
t C⇤) for every j 2 ! for

which the jth row of Am+1 is nonzero and is equal to 1 otherwise. Thus we can
choose an infinite sequence h~x(i)i1i=0 such that if i 2 ! then ~x(i) 2 N↵i+1�↵i , and if

~z =

0
BBB@

~x(0)

~x(1)

...
~x(i)

1
CCCA and ~y = ~zBi then yj 2 C⇤ for every j 2 ! for which the jth row of Bm

is nonzero. Let ~x =

0
BBB@

~x(0)

~x(1)

~x(2)

...

1
CCCA and let ~y = ~xA. We note that for every j 2 !, there

exists m 2 ! such that yj is the jth entry of ~z =

0
BBB@

~x(0)

~x(1)

...
~x(i)

1
CCCA and ~y = ~zBi whenever
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i > m. Thus, all the entries of ~y are in C⇤.

Theorem 3.5. Let A be a !⇥! monic segmented first entries matrix with entries
from !. Let r 2 N and N =

Sr
i=1 Ei be an r-coloring of N. Then there exist

i 2 {1, 2, ....., r} and vectors ~x, ~y 2 N! such that all the elements of A~x and ~yA are
in Ei.

Proof. Since I(A) is a left ideal of (�N, ·), we can choose p·p = p 2 K(�N, ·)
T

I(A).
Also since N =

Sn
i=1 Ei, there exists i 2 {1, 2, ....., r} such that Ei 2 p. As Ei 2 p

and p 2 I(A), we can choose ~x 2 N! such that A~x 2 E!
i . Also the facts that Ei 2 p

and p 2 K(�N, ·) imply that Ei is multiplicatively central in (N, ·). Now by the
previous lemma, we can find ~y 2 N! such that ~yA 2 E!

i . So our claim is proved.

We note that the Theorem 1.4 follows as a corollary of the above theorem.

Theorem 3.6. Let u, v 2 N and A be a u ⇥ v monic first entries matrix with
entries from !. Let r 2 N and N =

Sr
i=1 Ei be an r-coloring of N. Then there exist

i 2 {1, 2, ....., r} and ~x, ~y 2 Nv such that A~x 2 Eu
i and ~yA 2 Eu

i .

Proof. The proof is almost the same as that of Theorem 3.5.

We now raise the following question.

Question 3.7. Let u, v 2 N and let A be a u ⇥ v monic first entries matrix with
entries from !. Let r 2 N and N =

Sr
i=1 Ei be an r-coloring of N. Does there exist

~x 2 Nu such that A~x 2 Eu
i and ~xA 2 Eu

i for some i 2 {1, 2, ....., r}?

If the question 3.7 is true, one may extend it by taking u, v 2 N [ {!} by con-
sidering A to be a monic segmented first entries matrix.

The following theorem is the kernel partition regular version of Theorem 3.7.

Theorem 3.8. Let u, v, r 2 N and let A be a u ⇥ v matrix with entries from
Q satisfying the columns condition over Z. If N =

Sr
i=1 Ei then there exist i 2

{1, 2, ....., r} and ~x, ~y 2 Eu
i such that A~x = ~0 and ~yA = ~1.

Proof. Imitate the proof of Theorem 3.5 using Lemma 2.8 and [7, Theorem 15.16(a)].

We devote the remaining portion of this section to investigate some Ramsey
theoretic properties concerning product of sums or sum of products arising from
matrices. Henceforth, all the matrices under consideration are with rational entries.

Note that I(A) contains all minimal idempotents of (�N,+) for all A 2 F where
F denotes the set of all finite image partition regular matrices over Q. Hence
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I =
T

A2F I(A) contains all the minimal idempotents of (�N,+). In Theorem 3.16,
we show that multiple structures induced by image partition regular matrices are
contained in one cell of a finite coloring of N.

Definition 3.9. Let m 2 N be given and ~y(i) 2 Nui , ui 2 N[{!} for i 2 {1, · · · ,m}.
Also let hxti1t=1 be a sequence in N. Then

(a) P (~y(1), ~y(2), ....., ~y(m)) = {
Qm

i=1 yi : yi is an entry of ~y(i) for all i = 1, 2, ....,m}.
(b) S(~y(1), ~y(2), ....., ~y(m)) = {

Pm
i=1 yi : yi is an entry of ~y(i) for all i = 1, 2, ....,m}.

(c) PSm(hxti1t=1) = {
Qm

i=1

X
t2Fi

xt : F1, F2, ....., Fm 2 Pf (N) and maxFi <

minFi+1 for all i = 1, ....,m� 1}.
By y 2 ~y, we mean y is an entry of ~y.

Lemma 3.10. Let m 2 N. For each i 2 {1, 2, .....,m}, let Ai be a ui⇥vi image par-
tition regular matrix over N where ui, vi 2 N. If U 2 pm where p 2 I =

T
A2F I(A),

there exists ~x(i) 2 Nui , 1  i  m, such that P (A1~x(1), A2~x(2), ....., Am~x(m)) ✓ U .

Proof. We shall prove this theorem by induction on m. Clearly, by definition of
I, the theorem is true for m = 1. Let the theorem be true for m = n. Let
U 2 pn+1 and for each i 2 {1, 2, ....., n + 1}, let Ai be a ui ⇥ vi image partition
regular matrix over N. Now U 2 pn+1 implies that {x 2 N : x�1U 2 p} 2 pn.
Thus by induction hypothesis, there exists ~x(i) 2 Nvi for 1  i  n, such that
P (A1~x(1), A2~x(2), ....., An~x(n)) ✓ {x 2 N : x�1U 2 p}. Let ~y(i) = Ai~x(i) for 1  i 
n. Then (

Qn
i=1 yi)�1U 2 p whenever yi 2 ~y(i) for 1  i  n. Let Y = {

Qn
i=1 yi :

yi 2 ~y(i) for 1  i  n}. Since ~y(i) is finite for each i 2 {1, 2, ....., n}, Y is also
finite. Thus we have

T
y2Y y�1U 2 p. Now I ✓ I(An+1). Hence p 2 I(An+1). Also

since
T

y2Y y�1U 2 p, there exists ~x(n+1) 2 Nun+1 such that yn+1 2
T

y2Y y�1U

for all yn+1 2 ~y(n+1) where ~y(n+1) = A~x(n+1). It is easy to see that
Qn+1

i=1 yi 2 U
for all yi 2 ~y(i) for 1  i  n + 1. So P (~y(1), ~y(2), ....., ~y(n+1)) ✓ U . Therefore
P (A1~x(1), A2~x(2), ....., An+1~x(n+1)) ✓ U . This completes the proof.

Note that in above theorem, we need not assume p to be a minimal idempotent
of (�N,+). We now prove a similar version of Lemma 3.10 by replacing one of the
finite image partition regular matrices by an infinite image partition regular matrix.

Lemma 3.11. Let m 2 N and let for each i 2 {1, 2, .....,m}, Ai be a ui ⇥ vi

image partition regular matrix where ui, vi 2 N. Also let B be any infinite image
partition regular matrix. If U 2 pm · q where p 2 I =

T
A2F I(A) and q 2 I(B)

then there exist ~x(i) 2 Nui for each i 2 {1, 2, .....,m} and ~x(m+1) 2 N! such that
P (A1~x(1), A2~x(2), ....., Am~x(m), B~x(m+1)) ✓ U .

Proof. Let U 2 pm · q. Then {x 2 N : x�1U 2 q} 2 pm. By Lemma 3.10, there
exists ~x(i) 2 Nui , 1  i  m, such that P (A1~x(1), A2~x(2), ....., Am~x(m)) ✓ {x 2
N : x�1U 2 q}. Now let for each i 2 {1, 2, .....,m}, yi = A~x(i). For simplicity, let
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Y = P (A1~x(1), A2~x(2), ....., Am~x(m)). Since Ai is a finite image partition regular
matrix for each i 2 {1, 2, .....,m}, Y is finite. Thus we have

T
y2Y y�1U 2 q. Also

since q 2 I(B), there exists ~x(m+1) 2 N! such that ym+1 2
T

y2Y y�1U for all
ym+1 2 ~y(m+1) where ~y(m+1) = B~x(m+1). Hence yym+1 2 U for all y 2 Y and
ym+1 2 ~y(m+1). Therefore P (A1~x(1), A2~x(2), ....., Am~x(m), B~x(m+1)) ✓ U .

Corollary 3.12. Let r,m 2 N. For each i 2 {1, 2, .....,m}, let Ai be a ui ⇥ vi

image partition regular matrix over N; ui, vi 2 N. If N =
Sr

i=1 Ei be an r-coloring
of N then there exist k 2 {1, 2, ....., r} and ~x(i) 2 Nvi for 1  i  m, such that
P (A1~x(1), A2~x(2), ....., Am~x(m)) ✓ Ek.

Proof. Let p be a minimal idempotent of (�N,+). Choose k 2 {1, 2, ....., r} such
that Ek 2 pm and use Lemma 3.10.

Theorem 3.13 is an analogous version of Corollary 3.12 for the sums of products
induced by a certain class of image partition regular matrices.

Theorem 3.13. Let m, r 2 N be given and for each i 2 {1, 2, .....,m}, let Ai be
a ui ⇥ vi monic first entries matrix; ui, vi 2 N. If N =

Sr
i=1 Ei then there exists

~x(i) 2 Nui , 1  i  m, such that S((~x(1))A1 , (~x(2))A2 , ....., (~x(m))Am) ✓ Ei for some
i 2 {1, 2, .....,m}.

Proof. See proof of Lemma 3.10 and Corollary 3.12.

Theorem 3.14. Let p+p = p 2 �N. Let m 2 N and let U 2 pm. Then there exists
a sequence hxti1t=1 in N such that PSm(hxti1t=1) ✓ U .

Proof. Imitate the proof of [7, Theorem 17.24].

In the following theorem one does not require p to be an additive idempotent.

Theorem 3.15. Let hxti1t=1 be a sequence in N. If p 2
T1

k=1 FS(hxti1t=k), then for
all n and k in N, PSn(hxti1t=k) 2 pn.

Proof. Imitate the proof of [7, Theorem 17.26].

Theorem 3.16. Let r,m 2 N be given and N =
Sn

i=1 Ei be an r-coloring of N.
Suppose for each i 2 {1, 2, .....,m}, Ai is a ui ⇥ vi image partition regular matrix
over (N,+) where ui, vi 2 N. Then there exist k 2 {1, 2, .....,m}; ~x(i), ~y(i) 2 Nv

for i 2 {1, 2, .....,m} and hzti1t=1 such that Ai~x(i) 2 Eui
k for i 2 {1, 2, .....,m} and

P (A1~y(1), A2~y(2), ....., Am~y(m)), PSm(hzti1t=1) ✓ Ek.

Proof. For each i 2 {1, 2, .....,m}, Ai is a finite image partition regular matrix
over (N,+) and hence by Lemma 2.2, I(Ai) 6= ; and is a compact sub-semigroup
of (�N,+) for each i 2 {1, 2, .....,m}. Also observe that E(K(�N,+)) ✓ I(Ai) for
each i 2 {1, 2, .....,m}. Therefore

Tm
i=1 I(Ai) 6= ; and is a sub-semigroup of (�N,+).



15

Now choose an idempotent p of (�N,+) such that p 2
Tm

i=1 I(Ai). Also
Tm

i=1 I(Ai)
is a two-sided ideal of (�N, ·) because I(Ai) is a two-sided ideal of (�N, ·) for each
i 2 {1, .....,m} by Lemma 2.3(b). Thus pm 2

Tm
i=1 I(Ai). As N =

Sn
i=1 Ei, choose

Ek 2 pm for some k 2 {1, 2, ....., r}. Then
(a) For each i 2 {1, 2, .....,m} there exists ~x(i) 2 Nv such that Ai~x(i) 2 Eui

k , because
Ek 2 pm and pm 2

Tm
i=1 I(Ai).

(b) Since Ek 2 pm, by Lemma 3.11, for each i 2 {1, 2, .....,m} there exists ~yi 2 Nv
i

such that P (A1~y(1), A2~y(2), ....., Am~y(m)) ✓ Ek.
(c) As Ek 2 pm, by Theorem 3.14, there exists a sequence hzti1t=1 such that
PSm(hzti1t=1) ✓ Ek. This completes the proof.

A similar result will also be true if we replace P (A1~y(1), A2~y(2), ....., Am~y(m)) by
S((~y(1))A1 , (~y(2))A2 , ....., (~y(m))Am) and PSm(hzti1t=1) by SPm(hzti1t=1) in the pre-
vious theorem.

At the end of our paper we raise the following question.

Question 3.17. Let m 2 N \ {1}. Does there exist a finite partition R of N such
that given any A 2 R there do not exist one-to-one sequences hxti1t=1 and hyti1t=1

with PSm(hxti1t=1) ✓ A and PS1(hyti1t=1) ✓ A?
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