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Abstract
We consider partition configurations introduced recently by Andrews and Deutsch in
connection with the Stanley-Elder theorems. Using a variation of Stanley’s original
technique we give a combinatorial proof of the equality of the number of times an
integer k appears in all partitions and the number of partition configurations of
length k. Then we establish new generalizations of the Elder and configuration
theorems. We also consider a related result asserting the equality of the number
of 2k’s in partitions and the number of unrepeated multiples of k, providing a new
proof and a generalization.

1. Introduction

A partition of a positive integer n is a representation of n as a sum of positive integers
without regard to order. The summands are called parts, and n is the weight, of
the partition [3][1]. A partition will be written as a nondecreasing sequence of its
parts. Thus a partition � of n into k parts will be expressed as

� = (�1,�2, . . . ,�k), 1  �1  �2  · · ·  �k. (1)

The number of parts function gk(n) is defined as the total number of k’s appearing
in all partitions of n.

We consider a general combinatorial technique for proving a wide class of parti-
tion identities of which the following results are prototypical examples.

1Partially supported by NRF South Africa under grant number 80860.
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Stanley’s Theorem. The number of di↵erent parts in all partitions of n is equal
to g1(n).

Elder’s Theorem. The number of di↵erent parts repeated k or more times in all
partitions of n is equal to gk(n).

Andrews and Deutsch [2] recently devised a proof technique for such identities
using “partition configurations” (defined below), and stated a parallel result based
on the divisibility of parts. Gilbert [7] explored the origins of the Stanley and Elder
theorems and indicated that the theorems were originally discovered by N. J. Fine
[6, 5]. Dastidar and Gupta [4] considered certain generalizations of the theorems
and developed Ramanujan-type congruence properties for gk(n). Further relevant
work on this problem may be found in Knopfmacher and Munagi [8].

In this paper, we give combinatorial proofs of the main results in [2] and establish
new generalizations. Our bijective proofs rely mostly on variations of Stanley’s proof
of Elder’s theorem [10].

Definition. A partition configuration, A, is a finite nondecreasing sequence of
non-negative integers containing 0. The weight of a partition configuration A =
(a1, . . . , ak), of length k, is given by w(A) = a1 + a2 + · · · + ak.

Definition. A partition � is said to contain a partition configuration (a1, . . . , ak)
if there is a distinct subsequence of parts of � of the form a1 + j, a2 + j, . . . , ak + j
for some integer j > 0.

For example, the partition (1, 2, 2, 4, 4, 5, 8, 9, 9) contains an instance of A = (0, 3, 6, 7)
because the parts 2, 5, 8, 9 exceed by 2 the successive entries of A.

The first main result in [2] is the configuration theorem:

Theorem 1. (Andrews-Deutsch) Let A be a partition configuration of length k.
The total number of configurations A in all partitions of n is equal to gk(n�w(A)).

The second main result concerns divisibility of parts:

Theorem 2. (Andrews-Deutsch) Given k � 1, in each partition of n we count
the number of times a part divisible by k appears uniquely (i.e. is not a repeated
part); then sum these numbers over all the partitions of n. The result is equal to
g2k(n + k).

In Section 2 we state a reformulation of Theorem 1 and discuss the consequences
and proofs. In Section 3 we present generalizations of Elder’s theorem and Theorem
1. Section 4 is devoted to a combinatorial proof of Theorem 2. An extension of the
theorem is proved using generating functions. Lastly, Section 5 provides additional
properties of the function gk(n).
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2. Combinatorial Proof of the Configuration Theorem

Theorem 1 depends on the weight w(A) and length of a partition configuration A
but not on specification of the parts. Since 0 2 A, we can recover A from any of
its occurrences in a partition �. Thus if (b1, . . . , bk) ✓ � represents an occurrence
of A, then A = (0, b2 � b1, . . . , bk � b1), an expression containing k � ` initial zeros
and a partition of w(A) into ` parts, 0  ` < k. So Theorem 1 does not rely on the
length k as a stringent defining property of A but rather as a preferred measure for
traversing partition subsequences. Thus a configuration may be identified with the
partition determined by its nonzero parts. The foregoing observations lead to the
following definition.

Definition. Given a positive integer k and a partition � = (�1, . . . ,�`), 0  ` < k,
a translate of �, of length k, is any k-part partition of the form

A(�, k)j = (j, . . . , j,�1 + j . . . ,�` + j),

where j is a positive integer and appears with multiplicity k � ` > 0 as a part.

We see that a partition � contains a configuration

A = A(�, k)0 = (0, . . . , 0,�1, . . . ,�`)

if and only if the sequence of parts of � contains a distinct translate of the underlying
(possibly empty) partition �.

Theorem 1 then implies the following more inclusive statement.

Theorem 3. Let n,m, k be positive integers with k  n, 0  m < n, and let �
be a partition of m into less than k parts. The number of distinct translates of �,
of length k, in all partitions of n is equal to the number of k’s in all partitions of
n�m.

Note that Theorem 1 may be obtained from Theorem 3 by specifying � with k.
For example if m = 5 and k = 4, the translates of each

� 2 {(5), (1, 4), (2, 3), (1, 1, 3), (1, 2, 2)}

give the same number of 4’s in partitions of n � 9, where � = (5) =) A =
(0, 0, 0, 5), � = (1, 4) =) A = (0, 0, 1, 4), and so forth.

We remark that the generating function proof of Theorem 1 given in [2] is suf-
ficient to prove Theorem 3 since m is equal to the weight w(A) of any partition
configuration A with the given length. So we present only a bijective proof in this
section.

We first note some proof applications of Theorem 3. The set of translates of
� = (�1, · · · ,�`) will be denoted by A(�, k):

A(�, k) = {(1, . . . , 1,�1 + 1 . . . ,�` + 1), (2, . . . , 2,�1 + 2 . . . ,�` + 2), . . . }.
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Stanley’s Theorem: Take � = ; and k = 1; thus m = 0 and

A(;, 1) = {(1), (2), . . . }.

Elder’s Theorem: Take � = ; and k � 1; thus m = 0 and

A(;, k) = {(1, . . . , 1), (2, . . . , 2), . . . }.

The following result was discovered independently by Knopfmacher-Munagi [8] and
Andrews-Deutsch [2]:

The number of sequences of elements of a multiset of k consecutive
integers in all partitions of n is equal to gk(n�

�k
2

�
).

To prove the statement take � = (1, 2, . . . , k � 1) with k � 1; thus m =
�k
2

�
and

Ak(�, k) = {(1, 2, . . . , k), (2, 3, . . . , k + 1), . . . }.

Proof of Theorem 3. Let T (n,A(�, k)) denote the multiset of translates of � of
length k in partitions of n, and let Gk(n) be the multiset of k’s in partitions of
n, that is |Gk(n)| = gk(n).
We describe a bijection ✓ : T (n,A(�, k))! Gk(n�m) as follows.

If � = (�1, . . . ,�`) ` m, then (j, . . . , j,�1 + j, . . . ,�` + j) 2 T (n,A(�, k)), and

✓ : (j, . . . , j,�1 + j, . . . ,�` + j) 7�! k, . . . , k| {z }
j copies

. (2)

In practical terms, we write down all partitions � of n containing a length k
translate of �, writing down each partition � of n as many times as there are
length k translates of � within it. For each of these partitions take an instance of
(j, . . . , j,�1 + j, . . . ,�` + j) within it, and remove these parts and replace them by j
parts equal to k. This produces a list of partitions of n�m in which each partition
containing r parts equal to k occurs exactly r times.

Conversely, if a partition � ` n � m contains r copies of k, then for each j 2
{1, . . . , r}, we use (2) to map � to a partition of n containing j translates of a fixed
partition of m. So � produces r partition pre-images.

This gives the asserted bijection.

The bijection is illustrated in Table 1 for n = 11, � = (3) and k = 3. Using
a larger value of n, say n = 15, then, for instance, (4, 4, 7) with translate (4, 4, 7)
maps to (3, 3, 3, 3) while (1, 1, 2, 2, 4, 5) with translates (1, 1, 4), (2, 2, 5) maps to
(2, 2, 3, 5) and (1, 1, 3, 3, 4) respectively. Conversely (3, 3, 3, 3) has the following
pre-images corresponding respectively to 1, 2, 3 and 4 copies of 3: (1, 1, 3, 3, 3, 4),
(2, 2, 3, 3, 5), (3, 3, 3, 6), (4, 4, 7), and so forth.

Note the following property of Table 1 which is analogously shared by all such
tables:
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T (11, A((3), 3)) translates G3(8)
(1, 1, 4, 5) (1, 1, 4) (3, 5)
(2, 2, 2, 5) (2, 2, 5) (2, 3, 3)
(1, 1, 1, 4, 4) (1, 1, 4) (1, 3, 4)
(1, 1, 2, 2, 5) (2, 2, 5) (1, 1, 3, 3)
(1, 1, 2, 3, 4) (1, 1, 4) (2, 3, 3)
(1, 1, 1, 1, 3, 4) (1, 1, 4) (1, 1, 3, 3)
(1, 1, 1, 2, 2, 4) (1, 1, 4) (1, 2, 2, 3)
(1, 1, 1, 1, 1, 2, 4) (1, 1, 4) (1, 1, 1, 2, 3)
(1, 1, 1, 1, 1, 1, 1, 4) (1, 1, 4) (1, 1, 1, 1, 1, 3)

Table 1: The bijection T (11, A(�), 3)! G3(8), where � = (3)

“Each partition in the first column appears as many times as the number of �-
translates it contains and each partition in the third column appears as many times
as the number of k’s it contains”.

Remark 1. The map ✓ can be factored into a composition of two bijections as
follows:
A de-configuration or leveling map: ⇢ : T (n,A(�, k))! T (n�m,A(;, k)), where

⇢ : (a1, . . . , ak) 7�! (a1, . . . , ak)�A(�, k)0 = (a1, a1, . . . , a1).

The Elder map: " : T (n,A(;, k))! Gk(n), where

" : (a, . . . , a) 7�! k, . . . , k| {z }
a copies

.

The bijection " (strictly " = ✓|(j,...,j)) was popularized by Richard Stanley [10] who
used it to prove Elder’s theorem.

Then we see that ✓ = "⇢.

3. Generalization of the Elder and Configuration Theorems

In this section we give natural extensions of Elder’s theorem and Theorem 3.
Let vk(n, t) denote the number of multiples of k appearing at least t times in all

partitions of n. Thus Elder’s theorem takes the compact form

gk(n) = v1(n, k). (3)
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Theorem 4. The number of multiples of k appearing at least t times in all partitions
of n equals the number of tk’s in all partitions of n:

vk(n, t) = gtk(n), t = 1, 2, . . . .

Note that Theorem 4 becomes Elder’s theorem when k = 1.

Proof. Let Vk(n, t) be the set of objects enumerated by vk(n, t). Define the map
"k,t : Vk(n, t) ! Gtk(n) as follows. If � ` n contains r � t copies of mk, replace t
copies of mk by m copies of tk:

"k,t : mk, . . . ,mk| {z }
t copies

7�! tk, . . . , tk| {z }
m copies

.

Conversely, if � ` n contains r copies of tk, then for each j 2 {1, 2, . . . , r} replace
j copies of tk with t copies of jk:

"�1
k,t : tk, . . . , tk| {z }

j copies

7�! jk, . . . , jk| {z }
t copies

.

Thus "k,t is a bijection. Hence the result.
The bijection is illustrated in Table 2 for n = 12, k = 3, t = 2.

V3(12, 2) multiples of 3 G6(12)
(6, 6) 6, 6 (6, 6)
(3, 3, 6) 3, 3 (6, 6)
(1, 3, 3, 5) 3, 3 (1, 5, 6)
(2, 3, 3, 4) 3, 3 (2, 4, 6)
(1, 1, 3, 3, 4) 3, 3 (1, 1, 4, 6)
(3, 3, 3, 3) 3, 3 (3, 3, 6)
(1, 2, 3, 3, 3) 3, 3 (1, 2, 3, 6)
(1, 1, 1, 3, 3, 3) 3, 3 (1, 1, 1, 3, 6)
(2, 2, 2, 3, 3) 3, 3 (2, 2, 2, 6)
(1, 1, 2, 2, 3, 3) 3, 3 (1, 1, 2, 2, 6)
(1, 1, 1, 1, 2, 3, 3) 3, 3 (1, 1, 1, 1, 2, 6)
(1, 1, 1, 1, 1, 1, 3, 3) 3, 3 (1, 1, 1, 1, 1, 1, 6)

Table 2: The bijection Vk(12, t)! Gtk(12) for k = 3, t = 2.

Remark 2. Theorem 4 implies the symmetry property: vk(n, t) = vt(n, k).
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Definition. Given positive integers k, t and a partition � = (�1, . . . ,�`), 0  ` < t,
a k-translate of �, of length t, is any t-part partition of the form

Ak(�, t)jk = (jk, . . . , jk,�1 + jk . . . ,�` + jk),

where j is a positive integer and jk appears with multiplicity t� ` > 0 as a part.

Thus A1(�, t)j = A(�, t)j . We now state a generalization of Theorem 3.

Theorem 5. Let n,m, k, t be positive integers with t  n, 0  m < n, and let �
be a partition of m into less than t parts. The number of distinct k-translates of �,
of length t, in all partitions of n is equal to the number of tk’s in all partitions of
n�m.

Note that Theorem 5 reduces to Theorem 3 when k = 1.

Proof. We define a bijection ✓k,t : T (n,Ak(�, t))! Gtk(n�m). Since " = "1,t and
✓ = ✓1,t, it is clear that Remark 1 and the proof of Theorem 4 imply the definition

✓k,t = "k,t⇢.

This shows that ✓k,t may be realized as a composition of two bijections.

As an illustration suppose that k = 2, t = 5 and � = (1, 1, 4), then
A2(�, 5) = {(2, 2, 3, 3, 6), (4, 4, 5, 5, 8), (6, 6, 7, 7, 10), . . . }.

So if n � 16 and (2, 2, 3, 3, 6) 2 T (n,A2(�, 5)), then

(2, 2, 3, 3, 6) ⇢�! (2, 2, 2, 2, 2)
"2,5�! (10),

where (10) 2 G10(n� 6). Similarly,

(4, 4, 5, 5, 8) ⇢�! (4, 4, 4, 4, 4)
"2,5�! (10, 10);

and so forth.

An alternative proof of Theorem 4 may be deduced from Theorem 5 as follows:
take � = ;, k � 1 and t � 1 so that Ak(�, t) = {(k, . . . , k), (2k, . . . , 2k), . . . }.

4. Divisibility of Parts

This section is devoted to the proof of Theorem 2. We first establish a related
result.

Theorem 6. We have

gk(n) = g2k(n) + g2k(n + k).
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Proof. The theorem is a special case (t = 2) of Theorem 9 below. But we give a
full bijection here: G2k(n) [G2k(n + k) �! Gk(n).

If 2k 2 �, then

2k 7!
(

k, k if 2k 2 G2k(n),
k if 2k 2 G2k(n + k).

The rule for r > 1 copies of 2k, denoted by (2k)r, is as follows:
(I) If (2k)r 2 G2k(n), then for each j 2 {1, . . . , r} replace j copies of 2k with 2j
copies of k.
(II) If (2k)r 2 G(n + k), then for each j 2 {1, . . . , r} replace j copies of 2k with
2j � 1 copies of k.
Note that if (2k)r 2 �, then � begets r image partitions for Gk(n) in either case.

For the inverse map let � have r � 1 parts equal to k. Then we map � to b r
2c

partitions of n by replacing 2j parts k by j parts 2k (1  j  r
2 ), and also to d r

2e
partitions of n + k by replacing 2j + 1 parts k by j + 1 parts 2k for 0  j < r

2 .
Hence the bijection.
The bijection is illustrated in Table 3. Note that if a partition � contains r copies

of k then � appears b r
2c times as an image of members of G2k(n), and b r+1

2 c times
as an image of members of G2k(n + k).

G4(7) [G4(9) �! G2(7)
(3,4) 7! (2,2,3)

(1,2,4) 7! (1,2,2,2)
(1,1,1,4) 7! (1,1,1,2,2)
(4, 5) 7! (2,5)

(1, 4, 4) 7! (1,2,4)
(1, 4, 4) 7! (1,2,2,2)
(2,3,4) 7! (2,2,3)

(1,1,3,4) 7! (1,1,2,3)
(1,2,2,4) 7! (1,2,2,2)

(1,1,1,2,4) 7! (1,1,1,2,2)
(1,1,1,1,1,4) 7! (1,1,1,1,1,2)

Table 3: The map G2k(n) [G2k(n + k)! Gk(n) for n = 7, k = 2.

4.1. Proof and Extension of Theorem 2

Define fk(n) as the number of times a multiple of k appears uniquely in all partitions
of n. Then Theorem 2 takes the form

fk(n) = g2k(n + k). (4)
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The proof is deduced from Theorems 6 and 4:

g2k(n + k) = gk(n)� g2k(n) = vk(n, 1)� vk(n, 2) = fk(n).

Now consider the function

fk(n, s) := number of multiples of k appearing exactly s times in all partitions
of n.

Thus fk(n, 1) = fk(n). By definition we have

fk(n, s) = vk(n, s)� vk(n, s + 1).

Hence from Theorem 4 we obtain:

Theorem 7. We have

fk(n, s) = gsk(n)� g(s+1)k(n).

Note that Theorem 7 is a generalization of Theorem 2 since Equation (4) may
be stated as

fk(n, 1) = gk(n)� g2k(n).

Proof. The generating function for gsk(n) is given by
1X

n=0

gsk(n)qn = (qsk + 2q2sk + 3q3sk + · · · )
1Y

n=1
n6=sk

(1 + qn + q2n + q3n + · · · )

=
qsk

(1� qsk)2

1Y
n=1

n6=sk

1
1� qn

=
qsk

1� qsk

1Y
n=1

1
1� qn

.

Therefore,
1X

n=0

(gsk(n)� g(s+1)k(n))qn =
✓

qsk

1� qsk
� q(s+1)k

1� q(s+1)k

◆ 1Y
n=1

1
1� qn

=
1Y

n=1

1
1� qn

1X
j=1

qskj(1� qkj)

=
1X

j=1

qskjQ1
n=1

n6=kj
(1� qn)

=
1X

n=0

fk(n, s)qn.

Equating the coe�cients of qn on both sides gives the theorem.
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Remark 3. The function f1(n, s) has been tabulated in Sloane [9, A197126] under
the description “number of cliques of size s in all partitions of n � 1” (where a
“clique” refers to all parts in a partition with the same value). If we designate this
as the sequence of 1-cliques, then fk(n, s) assumes the definition: “number of k-
cliques of size s in all partitions of n � 1” (where a “k-clique” refers to all copies of
a fixed multiple of k in a partition). Small values of some of the sequences fk(n, s)
are shown in Table 4.

f1(n, s)
H

H
HHn

s
1 2 3 4 5

1 1 0 0 0 0
2 1 1 0 0 0
3 3 0 1 0 0
4 4 2 0 1 0
5 8 2 1 0 1
6 11 4 2 1 0
7 19 5 3 1 1
8 26 10 3 3 1
9 41 11 7 3 2
10 56 20 8 5 3

f2(n, s)
H

H
HHn

s
1 2 3 4 5

1 0 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 2 1 0 0 0
5 3 1 0 0 0
6 6 1 1 0 0
7 8 2 1 0 0
8 13 4 1 1 0
9 18 5 2 1 0
10 28 8 3 1 1

f3(n, s)
H

H
HHn

s
1 2 3

2 0 0 0
3 1 0 0
4 1 0 0
5 2 0 0
6 3 1 0
7 5 1 0
8 7 2 0
9 12 2 1
10 16 4 1
11 24 5 2

f4(n, s)
H

H
HHn

s
1 2 3

3 0 0 0
4 1 0 0
5 1 0 0
6 2 0 0
7 3 0 0
8 5 1 0
9 7 1 0
10 11 2 0
11 15 3 0
12 23 4 1

f5(n, s)
H

H
HHn

s
1 2 3

4 0 0 0
5 1 0 0
6 1 0 0
7 2 0 0
8 3 0 0
9 5 0 0
10 7 1 0
11 11 1 0
12 15 2 0
13 22 3 0

Table 4: Small values of fk(n, s) for k = 1, 2, 3, 4 and 5

5. Further Properties of gk(n)

The summation of Theorem 7 over s results in the following identity.

Corollary 8. The number of k-cliques in all partitions of n equals the number of
k’s in all partitions of n: X

s�1

fk(n, s) = gk(n).
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A bijective proof of Corollary 8 is given by (mk)s  ! (k)sm. This bijection is
equivalent to "�k, where �k : mk 7! (m)k.

If an integer k occurs as a part of � ` n, one can delete k from � to obtain
an arbitrary partition of n � k. So the number of partitions of n containing at
least j copies of k is p(n � jk); the number containing exactly j copies of k is
p(n� jk)� p(n� (j + 1)k). Therefore

gk(n) =
X
j�1

j(p(n� jk)� p(n� (j + 1)k)) =
X
j�1

p(n� jk). (5)

An immediate consequence is

p(n) = gk(n + k)� gk(n), (6)

since the right-hand side of (6) is equal to
P
j�0

p(n� jk)�
P
j�1

p(n� jk) = p(n).

We will need the following extension of Equation (6) (replace k by tk, then n by
n� ik):

p(n� ik) = gtk(n + (t� i)k)� gtk(n� ik), (7)

where i, t are integers. From (5) and (7) we have

gk(n) =
X
j�1

gtk(n + (t� j)k)�
X
j�1

gtk(n� jk).

Group the summations into pairs of t summands, then isolate the first pair:

gk(n) =
X
i�0

0
@ (i+1)tX

j=it+1

gtk(n + (t� j)k)�
(i+1)tX
j=it+1

gtk(n� jk)

1
A

=
tX

j=1

gtk(n + (t� j)k)�
tX

j=1

gtk(n� jk)

+
X
i�0

(i+2)tX
j=(i+1)t+1

gtk(n + (t� j)k)�
X
i�1

(i+1)tX
j=it+1

gtk(n� jk)

=
tX

j=1

gtk(n + (t� j)k) +

0
@� tX

j=1

gtk(n� jk) +
2tX

j=t+1

gtk(n + (t� j)k)

1
A

+
X
i�1

0
@ (i+2)tX

j=(i+1)t+1

gtk(n + (t� j)k)�
(i+1)tX
j=it+1

gtk(n� jk)

1
A (8)

The two summations inside either pair of parentheses are identical with opposite
signs. So only the first summation survives. Reversing the order of summation in
the latter we obtain the next result (also stated in [4]).
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Theorem 9. The following identity holds for all integers n, k, t > 0:

gk(n) =
t�1X
j=0

gtk(n + jk).

Note that Theorem 9 may also be proved bijectively by extending the proof of
Theorem 6. The relevant bijection

S
j Gtk(n+jk) �! Gk(n) is obtained as follows:

if (tk)v 2 Gtk(n + jk), then for each i 2 {1, . . . , v} replace i copies of tk with it� j
copies of k. The reverse transformation may be deduced analogously.
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