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Abstract
We give a method to calculate the weight of binary Steinhaus triangles generated
by the vectors of the canonical basis of the F2-vector space Fn

2 .

1. Introduction

In 1958 H. Steinhaus [17, Chapter VII] posed the following problem:

“The figure given below consists of 14 plus signs and 14 minus signs.
They are arranged in such a way that under each pair of equal signs
there appears a positive sign and under opposite signs a minus sign.

+ + − + − + +
+ − − − − +

− + + + −
− + + −

− + −
− −

+

If the first row had n signs, then in an analogous figure there would
be n(n + 1)/2 signs; our example corresponds to the case n = 7. As
n(n+ 1)/2 is an even number for n = 3, 4, 7, 8, 11, 12,. . . , etc., we can
ask whether it is possible to construct a figure analogous to the above
one and beginning with n signs in the highest row.”



The figure above is called a Steinhaus triangle. We can replace the signs + and
− by 1 and 0, respectively, and reformulate the rule of signs by the sum in the
field F2 of order 2. The number of ones in a sequence is called its weight, and the
number of ones in the whole triangle is called the weight of the triangle. More
formally, given a sequence x = (x0, . . . , xn−1) ∈ Fn

2 , its derivative is the sequence
∂x = (x0 + x1, x1 + x2, . . . , xn−2 + xn−1) ∈ Fn−1

2 . Recursively, for r ≥ 2, we define
∂rx = ∂∂r−1x; we also define ∂0x = x. The Steinhaus triangle generated by x is
the sequence T (x) = (x, ∂x, ∂2x, . . . , ∂n−1x). The length n of the initial sequence
is the size of the triangle. The r-th derivative ∂rx of x is the r-th row the triangle
(thus, we number rows from 0 to n−1). We number the coordinates of ∂rx from 0 to
n−1−r. The weight of the sequence x = (x0, . . . , xn−1) ∈ Fn

2 is |x| = #{i : xi = 1},
and the weight of T (x) is

|T (x)| =
n−1∑

i=0

|∂ix|.

The problem posed by Steinhaus is the following one: given n ≡ 0, 3 (mod 4), deter-
mine if there exist sequences x ∈ Fn

2 such that |T (x)| = n(n+1)/4. H. Harborth [14]
solved the problem by constructing examples of such sequences. The problem has
also been solved for sequences x with some additional conditions (S. Elihaou and
D. Hachez [10, 11], S. Eliahou, J. M. Maŕın and M. P. Revuelta [12]), and also
generalized for sequences in the cyclic group Zm (J. C. Molluzzo [16], J. Chap-
pelon [6, 7, 8], J. Chappelon and S. Eliahou [9]). Steinhaus triangles appear in the
context of cellular automata; see A. Barbé [1, 2, 3] and J. Chappelon [7, 8]. In this
context, A. Barbé [3] has studied some properties related to symmetries. Steinhaus
triangles with rotational and dihedral symmetry are characterized by J. M. Brunat
and M. Maureso in [4].

An easy induction that involves only the binomial number recurrence shows that
the entry of a Steinhaus triangle T (x) on row r and column c is

T (x)(r, c) =
r∑

i=0

(
r

i

)
xc+i, (1)

so it depends linearly on the entries of x. Thus, the set S(n) of Steinhaus triangles
of size n is an F2-vector space of dimension n that can be identified with a vector
subspace of Fn(n+1)/2

2 , that is, with a (binary) linear code of length n(n+1)/2 and
dimension n. Then, the weight distribution of Steinhaus triangles, or equivalently,
how many triangles exist of every possible weight, is a particular case of the gen-
eral problem of weight distribution in linear codes. This is, in general, a difficult
problem, and it seems that it is also difficult for the particular case of Steinhaus
triangles.

Obviously, in S(n) there exists only one Steinhaus triangle of weight 0, which
is the one generated by the sequence 0 = (0, . . . , 0). It is easy to see that the
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next possible weight is n and that it is generated by the sequences 1 = (1, . . . , 1),
e0 = (1, 0, . . . , 0), and en−1 = (0, . . . , 0, 1). H. Harborth, in his paper [14] solving
the original problem, observed that the maximum weight is ⌈n(n+1)⌉ and gave the
sequences that generates triangles of this maximum weight. G. J. Chang [5] deter-
mined the triangles having the first four non-zero weights and the last two weights.
Also, there is an asymptotic result by F. M. Malysev and E. V. Kutyreva [15], who
estimated the number of Steinhaus triangles (which they call Boolean Pascal trian-
gles, and take the initial sequence in the bottom of the triangle) of sufficiently large
size n containing a given number ω ≤ kn (k > 0) of ones. Not much else is known
about the weight distribution of Steinhaus triangles.

Here, we study the weight of Steinhaus triangles generated by the vectors of the
canonical basis. The main tool is Lucas’s Theorem, so let us recall it. Given a
prime number p, Lucas’s Theorem gives a way to calculate binomial numbers in Fp,
the field of order p.

Theorem 1 (Lucas’s Theorem). Let p be a prime number,

r = αtp
t + αt−1p

t−1 + · · ·+ α1p+ α0, and

s = βtp
t + βt−1p

t−1 + · · ·+ β1p+ β0,

with αi,βi ∈ {0, 1, . . . , p− 1} for i ∈ {0, . . . , t}. Then,

(
r

s

)
=

(
αt

βt

)(
αt−1

βt−1

)
· · ·

(
α0

β0

)
in Fp.

See [13] for a nice proof by N. J. Fine.

2. Canonical Basis

For n ≥ 1 and 0 ≤ k ≤ n− 1, the k-th vector of the canonical basis of Fn
2 is

e(n)k = (0, . . . , 0︸ ︷︷ ︸
k terms

, 1, 0, . . . , 0︸ ︷︷ ︸
n−1−k terms

).

In order to simplify notation, we define T (k, n) = T (e(n)k ) and w(k, n) = |T (k, n)|.
We give a way to calculate w(k, n) that depends on t = ⌊log2 k⌋ + 1 and on the
quotient and the remainder of dividing n by 2t.

We apply equation (1) to the vectors of the canonical basis of Fn
2 . The coordinates

of e(n)k are xk = 1 and xc+i = 0 for i ̸= k − c. Therefore,

T (k, n)(r, c) =

(
r

k − c

)
=

(
r

r − k + c

)
.
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In particular, T (k, n)(r, c) = 0 for c > k, that is, in any row of T (k, n), all entries
in positions c with c > k are 0.

As T (0, n)(r, 0) = 1 and T (0, n)(r, c) = 0 for c > 0, we have w(0, n) = n for all
n ≥ 1. Thus, in the following, we assume k ≥ 1.

Note that the triangles T (k, n) and T (n− 1 − k, n) are symmetric with respect
to the vertical line passing through the bottom vertex of the triangle:

T (n− 1− k, n)(r, n− 1− r − c) =

(
r

r − (n− 1− k) + (n− 1− r − c)

)

=

(
r

k − c

)
= T (k, n)(r, c).

As we are interested in the values of w(k, n) = |T (k, n)|, and the triangles T (k, n)
and T (n − 1 − k, n) have the same weight because of symmetry, we can assume
n ≥ 2k + 1 ≥ 3.

For m ∈ {1, . . . , n}, denote by s(k, n,m) the sum of the weights of the rows
0, 1, . . . ,m− 1 of T (n, k). Our main result is the following.

Theorem 2. Let k ≥ 1 and n ≥ 2k+1 be integers. Let t = ⌊log2 k⌋+1, q = ⌊n/2t⌋,
r = n− 2tq, λ = s(k, k + 1 + 2t, 2t), and µ = w(k, r + 2t). Then,

w(k, n) = (q − 1)λ+ µ.

Proof. We have 2t−1 ≤ k < 2t, hence n ≥ 2k+ 1 ≥ 2t + 1. We claim that row 2t of

T (k, n) is just e(n−2t)
k . Indeed, we have

T (k, n)(2t, c) =

(
2t

k − c

)
.

If c < k, and k− c = αa2a + · · ·+α12+α0, we have a < t and some αi = 1 because
k − c > 0. By Lucas’s Theorem,

(
2t

k − c

)
=

(
1

0

)(
0

0

)
· · ·

(
0

0

)(
0

αa

)
· · ·

(
0

αi

)
· · ·

(
0

α0

)
= 0

because
( 0
αi

)
=

(0
1

)
= 0. Also, we have T (k, n)(2t, k) =

(2t
0

)
= 1, and, for c > k,

T (k, n)(2t, c) =
( 2t

k−c

)
= 0, so ∂2te(n)k = e(n−2t)

k .

Therefore, if we delete the first 2t rows of the triangle T (k, n), we obtain the
triangle T (k, n − 2t). Then, w(k, n) − w(k, n − 2t) = s(k, n, 2t). In any row, all
entries in positions c > k are 0. Then, s(k, n, 2t) = s(k, k + 1 + 2t, 2t). Let q and
r be the quotient and the remainder of dividing n by 2t. Then, for a fixed k, the
sequence

w(k, r + 2t), w(k, r + 2 · 2t), w(k, r + 3 · 2t), . . . , w(k, r + q · 2t) = w(k, n)

is an arithmetic progression with difference λ = s(k, k+1+2t, 2t). If µ = w(k, r+2t),
we have w(k, n) = λ(q − 1) + µ.
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With the notation of the previous theorem, let S be the region formed by the 2t

first rows of T (k, k+1+2t), that is, the region used to calculate s(k, k+1+2t, 2t),
and let R = T (k, r + 2t). Then, T (k, n) has the following schema:

S

S

S

R

k + 1 + 2t

r + 2t rows

q − 1 blocks S
each of 2t rows

0

For instance, let us compute w(6, 203). We have k = 6; t = 3; 2t = 8, n = 203 =
8·25+3, that is q = 25 and r = 3. Let us calculate λ = s(k, k+1+2t, 2t) = s(6, 15, 8)
and µ = w(k, r + 2t) = w(6, 11):

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 1 1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 0 0
1 1 1 1 1 1 1 0

(S)

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 1 1 1 1 0
0 0 1 0 0 0 1
0 1 1 0 0 1
1 0 1 0 1
1 1 1 1
0 0 0
0 0
0

(R)

We see that λ = s(6, 15, 8) = 26 and µ = w(6, 11) = 21. Then w(6, 203) =
λ(q − 1) + µ = 26 · 24 + 21 = 645.
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Note that λ = s(k, k + 1 + 2t, 2t) depends only on k, and not on n. Moreover,
µ = w(k, 2t + r) depends on k and r, but r, as the remainder of a division by 2t, is
bounded by 2t ≤ 2k.

The tables bellow give the values λ and µ for k ∈ {1, 2, 3, 4, 5, 6, 7}. As in
Theorem 2, t = ⌊log2 k⌋+ 1 and r is the remainder of the division of n by 2t.

k 1 2 3
t 1 2 2
λ 3 8 9
r 0 1 0 1 2 3 0 1 2 3
µ 2 3 5 7 8 11 4 6 8 9

k 4 5
t 3 3
λ 22 24
r 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
µ 13 17 19 21 22 27 30 33 13 15 19 21 23 24 30 33

k 6 7
t 3 3
λ 26 27
r 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
µ 11 15 17 21 23 25 26 33 8 12 16 18 22 24 26 27

We can see the relation

w(k, n)− w(k, n− 2t) = s(k, k + 1 + 2t, 2t) (2)

in another way. In fact, for a fixed k, the weights w(k, n) satisfy the linear recurrence
(2) of order 2t with constant coefficients. The characteristic polynomial is x2t − 1,
and its roots are the 2t-th roots of unity,

αj = cos(2πj/2t) + i sin(2πj/2t), j ∈ {0, . . . , 2t − 1}.

As the right hand side of the recurrence is a constant, the solution of the recurrence
is of the form

w(k, n) = A0(k) +A1(k)n+B1(k)α
n +B2(k)α

2n + · · ·+B2t−1(k)α
(2t−1)n (3)

for certain complex constants A0(k), A1(k), B1(k), . . . , B2t−1(k). These constants
can be determined by finding the initial conditions w(k, 2k + 1), w(k, 2k + 2), . . .,
w(k, 2k + 2t + 1) and solving the system of the 2t + 1 equations in the unknowns
A0(k), A1(k), B1(k), . . . , B2t−1(k) obtained by substituting in (3) n = 2k + j, for
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j = 1, . . . , 2t +1. We skip the (long) calculations, but the results of this process for
1 ≤ k ≤ 7 are the following:

w(1, n) =
1

4
(−5 + 6n+ (−1)n)

w(2, n) =
1

4

(
−13 + 8n− (−1)n + 2 cos

nπ

2

)

w(3, n) =
1

8

(
−45 + 18n+ 3(−1)n + 2 cos

nπ

2
+ 6 sin

nπ

2

)

w(4, n) =
1

8

(
−71 + 22n− 3(−1)n + 2(2 +

√
2) cos

nπ

4

+2 sin
nπ

2
− 6 cos

nπ

2
+ 2(2−

√
2) cos

3nπ

4

)

w(5, n) =
1

16

(
−196 + 48n+ (4 + 3

√
2) cos

nπ

4
+ (2 + 3

√
2) sin

nπ

4

− 2 cos
nπ

2
− 6 sin

nπ

2

+ (4− 3
√
2) cos

3nπ

4
+ (−2 + 3

√
2) sin

3nπ

4
+ 8 cosnπ

+ (4− 3
√
2) cos

5nπ

4
+ (2− 3

√
2) sin

5nπ

4

− 2 cos
3nπ

2
+ 6 sin

3nπ

2

+(4 + 3
√
2) cos

7nπ

4
− (2 + 3

√
2) sin

7nπ

4

)

w(6, n) =
1

8

(
−128 + 26n+ (1 +

√
2) cos

nπ

4
+ (4 + 2

√
2) sin

nπ

4

+ 4 cos
nπ

2
− sin

nπ

2

+ (1−
√
2) cos

3nπ

4
+ (−4 + 2

√
2) sin

3nπ

4
− 4 cos(nπ)

+ (1−
√
2) cos

5nπ

4
+ (4 − 2

√
2) sin

5nπ

4

+ 4 cos
3nπ

2
+ sin

3nπ

2

+(1 +
√
2) cos

7nπ

4
+ (−4− 2

√
2) sin

7nπ

4

)
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w(7, n) =
1

16

(
−315 + 54n+ (−1− 3

√
2) cos

nπ

4
+ (7 + 6

√
2) sin

nπ

4

+ 3 cos
nπ

2
+ 9 sin

nπ

2

+ (−1 + 3
√
2) cos

3nπ

4
+ (−7 + 6

√
2) sin

3nπ

4
+ 9 cos(nπ)

+ (−1 + 3
√
2) cos

5nπ

4
+ (7− 6

√
2) sin

5nπ

4

+ 3 cos
3nπ

2
− 9 sin

3nπ

2

+(−1− 3
√
2) cos

7nπ

4
+ (−7− 6

√
2) sin

7nπ

4

)
.
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