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Abstract
Previously Heyman and Shparlinski gave an asymptotic formula with error term
for the number of Eisenstein polynomials of fixed degree and bounded height. Let
 (f) denote the number of primes for which a polynomial f is Eisenstein. We give
expressions for the mean and variance of the function  for each fixed degree, where
the polynomials are ordered according to their height.

1. Introduction

For an integer d � 2, let f(x) = adxd + ad�1xd�1 + · · ·+ a1x + a0 be a polynomial
with integer coe�cients. We say that f is Eisenstein if there exists a prime p such
that p | ai for i = 0, 1, . . . , d � 1, p2 - a0, and p - ad. The well-known fact that
Eisenstein polynomials are irreducible is often encountered in an undergraduate
algebra course. See [1] for a fascinating history of this result, which was proved
independently by Schönemann and Eisenstein.

Dobbs and Johnson (see [2]) posed some probabilistic questions concerning Eisen-
stein polynomials. In particular, one could ask: What is the probability that a
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randomly chosen polynomial is Eisenstein? Dubickas answers this question in [4] by
providing an asymptotic expression for the number of monic Eisenstein polynomials
of fixed degree and bounded height. Later Heyman and Shparlinski (see [6]) gave
an asymptotic expression for the number of Eisenstein polynomials (monic or not)
of fixed degree and bounded height but with a stronger error term. We mention in
passing that there are generalizations and variations one may consider; some results
in this area include [5, 7, 8, 3].

Our paper builds naturally on [6] so we begin by stating their result. Define the
height of a polynomial f to be max{|a0|, |a1|, . . . , |ad|}. Let Fd(H) be the set of
Eisenstein polynomials of degree d and height at most H.

Theorem 1 (Heyman–Shparlinski). We have

#Fd(H) = �d(2H)d+1 +

(
O(Hd) if d > 2
O(H2(log H)2) if d = 2 .

Let  (f) denote the number of primes for which f is Eisenstein. Our aim is to
study the statistics of this function. We establish the following result, which gives
an expression for the mean and variance of the function  (f) as f ranges over all
Eisenstein polynomials of a fixed degree.

Theorem 2. Let

↵d :=
X

p prime

(p� 1)2

pd+2
, �d :=

X

p prime

✓
(p� 1)2

pd+2

◆2

and
�d := 1�

Y

p prime

✓
1� (p� 1)2

pd+2

◆
.

Then we have

µd := lim
H!1

P
f2Fd(H)  (f)
P

f2Fd(H) 1
=
↵d

�d
,

�2
d := lim

H!1

P
f2Fd(H)( (f)� µd)2P

f2Fd(H) 1
=
↵d + ↵2

d � �d � µd↵d

�d
.

We note in passing that ↵d and �d can be expressed as finite linear combinations
of values of the prime zeta function P (s) =

P
p p�s. Throughout this paper, the

variables p and q will always denote primes. See Section 3 for additional comments
on ↵d, �d, �d, µd, �2

d, including a table of numerical values for various values of d.
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2. Proofs

As usual we let !(n) denote the number of distinct prime factors of n and let �(n)
denote the Euler phi-function. Following [6], we let Hd(s,H) be the number of
polynomials of degree d and height at most H satisfying s | ai for i = 0, 1, . . . , d�1,
gcd(a0/s, s) = 1, and gcd(ad, s) = 1.

Lemma 1. We have

#Hd(s,H) =
(2H)d+1�2(s)

sd+2
+ O

✓
2!(s)Hd

sd�1

◆
. (1)

Proof. See Lemma 5 of [6].

Lemma 2. We have

X

f2Fd(H)

 (f) = (2H)d+1↵d +

(
O(H2) if d > 2
O(H2 log log H) if d = 2 .

(2)

Proof. We rewrite the sum in question as a sum over primes and apply Lemma 1;
this yields
X

f2Fd(H)

 (f) =
X

pH

#Hd(p,H)

=
X

pH


(2H)d+1�2(p)

pd+2
+ O

✓
2!(p)Hd

pd�1

◆�

= (2H)d+1
X

pH

(p� 1)2

pd+2
+
X

pH

O

✓
Hd

pd�1

◆

= (2H)d+1
X

p

(p� 1)2

pd+2
� (2H)d+1

X

p>H

(p� 1)2

pd+2
+
X

pH

O

✓
Hd

pd�1

◆
.

The splitting of
P

pH into
P

p and
P

p>H is justified since
P

p converges absolutely.
It remains to bound the second and third terms in the last line above. We bound
the second term using the integral test to obtain

(2H)d+1
X

p>H

(p� 1)2

pd+2
= O

✓
Hd+1

Z 1

H

(x� 1)2

xd+2
dx

◆
= O

�
Hd+1H�d+1

�
= O

�
H2
�

.

For the third term, we find

Hd
X

pH

1
pd�1

=

(
O
�
H2
�

if d > 2
O
�
H2 log log H

�
if d = 2 ,

where we have used Mertens’ Theorem (see, for example, [9]) in the case of d = 2.
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Lemma 3. We have

X

f2Fd(H)

 (f)2 = (↵d + ↵2
d � �d)(2H)d+1 +

(
O(H2) if d > 2
O(H2(log log H)2) if d = 2 .

Proof. If we define

⌧(f, p) =

(
1 if f is p-Eisenstein
0 otherwise ,

then the first sum can be rewritten as

X

f2Fd(H)

 (f)2 =
X

f2Fd(H)

0

@
X

p prime

⌧(f, p)

1

A
2

=
X

f2Fd(H)

0

@
X

p prime

⌧(f, p)
X

q prime

⌧(f, q)

1

A

=
X

f2Fd(H)

0

@
X

p,q prime

⌧(f, p)⌧(f, q)

1

A

=
X

p,q prime

0

@
X

f2Fd(H)

⌧(f, p)⌧(f, q)

1

A .

The inner sum above represents the number of polynomials of height at most H
that are Eisenstein for both p and q, but the fact that p may equal q complicates
matters. Consequently, we have

X

f2Fd(H)

 (f)2 =
X

pH

#H(p,H) +
X

pqH
p6=q

#H(pq,H) .

The first sum on the right-hand side above is exactly what appears in Lemma 2,
and therefore is it equal to the right-hand side of (2). It remains to deal with the
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second sum, which equals
X

pqH
p6=q

#H(pq,H)

= (2H)d+1
X

pqH
p6=q

(p� 1)2(q � 1)2

pd+2qd+2
+ O

0

BB@
X

p,q prime
pqH

Hd

(pq)d�1
2!(pq)

1

CCA

= (2H)d+1
X

pqH

(p� 1)2(q � 1)2

pd+2qd+2
� (2H)d+1

X

p2H

✓
(p� 1)2

pd+2

◆2

+ O

0

BB@Hd
X

p,q prime
pqH

1
(pq)d�1

1

CCA .

For the first term, as in the proof of Lemma 2, we have

(2H)d+1
X

pqH

(p� 1)2(q � 1)2

pd+2qd+2

= (2H)d+1
X

p,q

(p� 1)2(q � 1)2

pd+2qd+2
+ (2H)d+1

X

p>H

1
pd

X

q>H/p

1
qd

= (2H)d+1

 
X

p

(p� 1)2

pd+2

!2

+ O

0

@Hd+1
X

p>H

1
pd

1

A

= (2H)d+1↵2
d + O(H2) .

For the second term,

(2H)d+1
X

p2H

✓
(p� 1)2

pd+2

◆2

= (2H)d+1
X

p

✓
(p� 1)2

pd+2

◆2

� (2H)d+1
X

p>
p

H

✓
(p� 1)2

pd+2

◆2

= (2H)d+1�d + O(H3/2) .

Finally, for the third term, we have

Hd
X

p,q prime
pqH

1
(pq)d�1

=

(
O(H2), if d > 2
O(H2 (log log H)2), if d = 2 .

Putting this all together proves the lemma.
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Proof of Theorem 2. The part of the theorem concerning the mean µd follows im-
mediately from Lemma 2 and Theorem 1. Now we consider the variance:

�2
d = lim

H!1

P
f2Fd(H)( (f)� µd)2P

f2Fd(H) 1

= lim
H!1

1
#Fd(H)

X

f2Fd(H)

�
 (f)2 � 2 (f)µd + µ2

d

�

= lim
H!1

1
#Fd(H)

2

4
X

f2Fd(H)

 (f)2 � 2µd

X

f2Fd(H)

 (f) + µ2
d

X

f2Fd(H)

1

3

5 .

By Lemma 2, Lemma 3, and Theorem 1, the limit above equals
1
�d

⇥
(↵d + ↵2

d � �d)� 2µd↵d + µ2
d�d

⇤
,

which simplifies to the desired expression.

3. Remarks on the Constants

It is not hard to show that

↵d =
1

2d+2
+ O

✓
1
3d

◆
, �d =

1
22(d+2)

+ O

✓
1

32d

◆
, �d =

1
2d+2

+ O

✓
1
3d

◆
.

It then follows that limd!1 µd = 1 and limd!1 �2
d = 0, as one would expect. If

one was interested in the mean µ̂d and variance �̂2
d of  (f) as f ranges over all

polynomials, instead of just Eisenstein polynomials, one would obtain the simpler
expressions µ̂d = ↵d and �̂2

d = ↵d � �d. We will not prove this explicitly but it
essentially follows from the proof of Theorem 2. In this case, one observes that
limd!1 µ̂d = 0 and limd!1 �̂2

d = 0, as expected.

d ↵d = µ̂d �d �d µd �2
d �̂2

d

2 0.17971 0.00731 0.16765 1.07192 0.07187 0.17239
3 0.05653 0.00127 0.05557 1.01714 0.01705 0.05525
4 0.02255 0.00027 0.02243 1.00519 0.00517 0.02227
5 0.00989 0.00006 0.00988 1.00169 0.00169 0.00983
6 0.00456 0.00001 0.00456 1.00056 0.00056 0.00454

Table 1: Approximate values of the constants for small d
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