Representations by Quaternary Quadratic Forms with Coefficients 1, 3, 5 or 15

Ayşe Alaca
School of Mathematics and Statistics, Carleton University, Ottawa, Canada
AyseAlaca@cunet.carleton.ca

Received: 8/16/16, Revised: 6/22/17, Accepted: 2/7/18, Published: 2/19/18

Abstract
We determine explicit formulas for the number of representations of a positive integer \(n \) by quaternary quadratic forms with coefficients 1, 3, 5 or 15. We use the theory of modular forms.

1. Introduction

Let \(\mathbb{N}, \mathbb{N}_0, \mathbb{Z} \) and \(\mathbb{C} \) denote the sets of positive integers, nonnegative integers, integers and complex numbers, respectively. For \(n \in \mathbb{N} \) we set \(\sigma(n) = \sum_{1 \leq d | n} d \). If \(n \notin \mathbb{N} \) we set \(\sigma(n) = 0 \). For \(a, b, c, d \in \mathbb{N} \) and \(n \in \mathbb{N}_0 \) we define

\[
N(a, b, c, d; n) := \text{card}\{ (x, y, z, t) \in \mathbb{Z}^4 \mid n = ax^2 + by^2 + cz^2 + dt^2 \}.
\]

It is a classical result of Jacobi [8], [2], [16, Theorem 9.5] that

\[
N(1, 1, 1, 1; n) = 8\sigma(n) - 32\sigma(n/4).
\]

Jacobi’s result \(N(1, 1, 1, 1; n) \) was generalized to \(N(a, b, c, d; n) \) for various coefficients \(a, b, c, d \in \{1, p, q, pq\} \), where \(p \) and \(q \) are different primes. See, for example, [1] for \(p = 2 \) and \(q = 3 \), and [5] for \(p = 2 \) and \(q = 7 \). In this paper we determine explicit formulas for \(N(a, b, c, d; n) \) for \(a, b, c, d \in \{1, p, q, pq\} \) for \(p = 3 \) and \(q = 5 \).

For \(q \in \mathbb{C} \) with \(|q| < 1 \), Ramanujan’s theta function \(\varphi(q) \) is defined by

\[
\varphi(q) = \sum_{n=-\infty}^{\infty} q^{n^2}.
\]

We have

\[
\sum_{n=0}^{\infty} N(a, b, c, d; n) q^n = \varphi(q^a)\varphi(q^b)\varphi(q^c)\varphi(q^d).
\]
The Dedekind eta function \(\eta(z) \) is the holomorphic function defined on the upper half plane \(\mathbb{H} = \{ z \in \mathbb{C} \mid \text{Im}(z) > 0 \} \) by
\[
\eta(z) = e^{\pi iz/12} \prod_{n=1}^{\infty} (1 - e^{2\pi inz}).
\tag{1.2}
\]
Throughout the remainder of the paper we take \(q = q(z) := e^{2\pi iz} \) with \(z \in \mathbb{H} \). Hence we express the Dedekind eta function (1.2) as
\[
\eta(z) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n).
\tag{1.3}
\]
It is well known [6, p. 11] that \(\varphi(q) \) can be expressed as
\[
\varphi(q) = \frac{\eta^3(2z)}{\eta(z)\eta(4z)}. \tag{1.4}
\]
Let \(N \) be a positive integer. A product of the form
\[
f(z) = \prod_{1 \leq \delta | N} \eta^{r_{\delta}}(\delta z), \tag{1.5}
\]
where \(r_{\delta} \in \mathbb{Z} \), not all zero, is called an eta quotient. When all of the exponents \(r_{\delta} \) are nonnegative, \(f(z) \) is said to be an eta product. We define the modular subgroup \(\Gamma_0(N) \) by
\[
\Gamma_0(N) = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \mid a, b, c, d \in \mathbb{Z}, \ ad - bc = 1, \ c \equiv 0 \pmod{N} \right\}.
\]
Let \(m \in \mathbb{Z} \). For each \(t \in \{-12, -5, -4, -3, 1, 5, 12, 60\} \) we define a character \(\chi_t \) by
\[
\chi_t(m) = \left(\frac{t}{m} \right), \ m \in \mathbb{Z}.
\tag{1.6}
\]
Note that \(\chi_1 \) is the trivial character. Let \(\chi_{t_1} \) and \(\chi_{t_2} \) be Dirichlet characters. For \(n \in \mathbb{N} \) we define the generalized sum of divisors functions \(\sigma_{(\chi_{t_1}, \chi_{t_2})}(n) \) by
\[
\sigma_{(\chi_{t_1}, \chi_{t_2})}(n) := \sum_{1 \leq m | n} \chi_{t_1}(m)\chi_{t_2}(n/m)m. \tag{1.7}
\]
If \(n \notin \mathbb{N} \) we set \(\sigma_{(\chi_{t_1}, \chi_{t_2})}(n) = 0 \). If \(\chi_{t_1} = \chi_{t_2} = \chi_1 \) then \(\sigma_{(\chi_{t_1}, \chi_{t_2})}(n) \) coincides with the sum of divisors function \(\sigma(n) \). For each
\[
(t_1, t_2) = (-20, -3), (-3, -20), (-15, -4), (-4, -15), (-4, -3), (-3, -4),
(1, 1), (1, 5), (5, 1), (1, 12), (12, 1), (1, 60), (60, 1)
\]
we define the Eisenstein series $E_{t_1, t_2}(z)$ by

$$E_{t_1, t_2}(z) := c_{t_1, t_2} + \sum_{n=1}^{\infty} \sigma(\chi_{t_1}, \chi_{t_2})(n)q^n,$$

(1.8)

where

$$
\begin{cases}
 c_{1,1} = -\frac{1}{24}, & c_{5,1} = -\frac{1}{5}, & c_{12,1} = -1, & c_{60,1} = -12, \\
 c_{t_1, t_2} = 0 \text{ if } (t_1, t_2) \neq (1,1), (5,1), (12,1), (60,1).
\end{cases}
$$

For $t_1 = t_2 = 1$ we write

$$L(q) := E_{1,1}(z) = -\frac{1}{24} + \sum_{n=1}^{\infty} \sigma(n)q^n.$$

(1.9)

It is well known that $L(q)$ is a quasi-modular form of weight 2 (see [9, p. 38]), not a modular form.

Let k be an integer. We write $M_k(\Gamma_0(N), \chi)$ to denote the space of modular forms of weight k with multiplier system χ for $\Gamma_0(N)$, and $E_k(\Gamma_0(N), \chi)$ and $S_k(\Gamma_0(N), \chi)$ to denote the subspaces of Eisenstein forms and cusp forms of $M_k(\Gamma_0(N), \chi)$, respectively. It is known (see for example [14, p. 83]) that

$$M_k(\Gamma_0(N)) = E_k(\Gamma_0(N)) \oplus S_k(\Gamma_0(N)).$$

(1.10)

We deduce from [14, Sec. 6.1, p. 93] that

$$\dim E_2(\Gamma_0(60), \chi_1) = 11, \quad \dim S_2(\Gamma_0(60), \chi_1) = 7.$$

(1.11)

We also deduce from [14, Sec. 6.3, p. 98] that

$$\dim E_2(\Gamma_0(60), \chi_5) = 12, \quad \dim S_2(\Gamma_0(60), \chi_5) = 6,$$

(1.12)

$$\dim E_2(\Gamma_0(60), \chi_{12}) = 8, \quad \dim S_2(\Gamma_0(60), \chi_{12}) = 8,$$

(1.13)

$$\dim E_2(\Gamma_0(60), \chi_{60}) = 8, \quad \dim S_2(\Gamma_0(60), \chi_{60}) = 8.$$

(1.14)

There are twenty-six quaternary quadratic forms $ax^2 + by^2 + cz^2 + dt^2$ with $a,b,c,d \in \{1,3,5,15\}$, $\gcd(a,b,c,d) = 1$ and $a \leq b \leq c \leq d$. Formulas for $N(a,b,c,d;n)$ for $(a,b,c,d) = (1,1,1,1), (1,1,1,3), (1,1,3,3), (1,3,3,3), (1,1,1,5), (1,1,5,5), (1,5,5,5), (1,1,1,15)$ appear in the literature; see for example [2, 3, 4, 15]. In this paper we treat the remaining eighteen forms. For convenience, in Table 1, we group these eighteen quaternary forms according to the modular spaces $M_2(\Gamma_0(60), \chi)$ to which $\varphi(q^n)\varphi(q^h)\varphi(q^l)\varphi(q^d)$ belong.
\[
\begin{array}{|c|c|c|c|}
\hline
 & M_2(\Gamma_0(60), \chi_1) & M_2(\Gamma_0(60), \chi_5) & M_2(\Gamma_0(60), \chi_{12}) \\
(1, 1, 15, 15) & (1, 1, 3, 15) & (1, 1, 5, 15) & (1, 1, 3, 5) \\
(1, 3, 5, 15) & (1, 3, 3, 5) & (1, 3, 5, 5) & (1, 5, 5, 15) \\
(3, 3, 5, 5) & (1, 5, 15, 15) & (3, 3, 5, 15) & (1, 15, 15, 15) \\
(3, 5, 15, 15) & (3, 5, 5, 15) & (3, 5, 5, 5) & (3, 5, 15, 15) \\
\hline
\end{array}
\]

Table 1

We note that the form \((1, 1, 3, 5)\) is one of Ramanujan’s universal quaternary quadratic forms given in [13].

2. Preliminary Results

We use the following lemma to determine if certain eta quotients are modular forms. See [7, p. 174], [10, Corollary 2.3, p. 37], [9, Theorem 5.7, p. 99] and [11].

Lemma 2.1. (Ligozat) Let \(N \in \mathbb{N}\) and \(f(z) = \prod_{1 \leq \delta | N} \eta^{s_{\delta}}(\delta z)\) be an eta quotient and \(s = \prod_{1 \leq \delta | N} \delta^{s_{\delta}}\). Suppose that \(k = \frac{1}{2} \sum_{1 \leq \delta | N} s_{\delta}\) is an integer. If \(f(z)\) satisfies the conditions

(i) \(\sum_{1 \leq \delta | N} \delta \cdot s_{\delta} \equiv 0 \pmod{24},\)

(ii) \(\sum_{1 \leq \delta | N} \frac{N}{\delta} \cdot s_{\delta} \equiv 0 \pmod{24},\)

(iii) \(\sum_{1 \leq \delta | N} \frac{\gcd(d, \delta)^2 \cdot s_{\delta}}{\delta} \geq 0\) for each positive divisor \(d\) of \(N,\)

then \(f(z) \in M_k(\Gamma_0(N), \chi),\) where \(\chi\) is given by \(\chi(m) = \left(\frac{-1}{m}\right)^{k_s} = \left(\frac{-1}{m}\right)^{k_s/m}\).

(iii)’ In addition to the above conditions, if the inequality in (iii) is strict for each positive divisor \(d\) of \(N,\) then \(f(z) \in S_k(\Gamma_0(N), \chi).\)

We note that the eta quotients given by (3.1)–(3.7), (4.1)–(4.6), (5.1)–(5.8) and (6.1)–(6.8) are constructed with MAPLE in such a way that they satisfy the conditions of Lemma 2.1 for \(N = 60\) and \(k = 2.\)

The following theorem follows directly from (1.4) and Lemma 2.1.
Theorem 2.1. Let $\chi_1, \chi_5, \chi_{12}$ and χ_{60} be as in (1.6). If (a, b, c, d) is in the first, second, third or fourth column of Table 1, then

$$
\varphi(q^a)\varphi(q^b)\varphi(q^c)\varphi(q^d) \in M_2(\Gamma_0(60), \chi_1),
\varphi(q^a)\varphi(q^b)\varphi(q^c)\varphi(q^d) \in M_2(\Gamma_0(60), \chi_5),
\varphi(q^a)\varphi(q^b)\varphi(q^c)\varphi(q^d) \in M_2(\Gamma_0(60), \chi_{12}),
\varphi(q^a)\varphi(q^b)\varphi(q^c)\varphi(q^d) \in M_2(\Gamma_0(60), \chi_{60}),
$$

respectively.

3. Modular Space $M_2(\Gamma_0(60))$

We define the eta products $A_r(q)$ and the integers $a_r(n)$ for $r \in \{1, 2, 3, 4, 5, 6, 7\}$ by

$$
A_1(q) := \eta(z)\eta(3z)\eta(5z)\eta(15z),
A_2(q) := \eta(2z)\eta(6z)\eta(10z)\eta(30z),
A_3(q) := \eta(4z)\eta(12z)\eta(20z)\eta(60z),
A_4(q) := \eta(3z)\eta(5z)\eta(6z)\eta(10z),
A_5(q) := \eta(6z)\eta(10z)\eta(12z)\eta(20z),
A_6(q) := \eta^2(2z)\eta^2(10z),
A_7(q) := \eta^2(6z)\eta^2(30z),
$$

$$
A_r(q) = \sum_{n=1}^{\infty} a_r(n)q^n. \tag{3.8}
$$

Note that

$$
A_3(q) = A_2(q^2) = A_1(q^4), \quad A_5(q) = A_4(q^2), \quad A_7(q) = A_6(q^3).
$$

For $1 < t | 60$, we define

$$
L_t(q) := L(q) - tL(q^4), \tag{3.9}
$$

which is a modular form in $M_2(\Gamma_0(t))$, see [14, Theorem 5.8, p. 88].

Theorem 3.1. A basis for $M_2(\Gamma_0(60))$ is given by

$$
\{L_t(q) \mid t = 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\} \cup \{A_r(q)\}_{1 \leq r \leq 7}.
$$
Proof. By taking both \(\chi \) and \(\psi \) as the trivial character in [14, Theorem 5.9, p. 88] and appealing to (1.11), we have that \(\{ L_t(q) \mid t = 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 \} \) is a basis for \(E_2(\Gamma_0(60)) \). By Lemma 2.1, \(A_r(q) \in S_2(\Gamma_0(60)) \) for each \(r \in \{1, 2, 3, 4, 5, 6, 7\} \). The set \(\{ A_r(q) \}_{1 \leq r \leq 7} \) can be shown to be linearly independent. Thus it follows from (1.11) that the set \(\{ A_r(q) \}_{1 \leq r \leq 7} \) is a basis for \(S_2(\Gamma_0(60)) \). The assertion now follows from (1.10).

To shorten the lengths of the identities in Theorems 3.2 and 3.3, we set
\[
R(q) := L(q) - 2L(q^2) + 4L(q^4),
\]
which is not a modular form.

Theorem 3.2.
\[
\varphi^2(q)\varphi^2(q^{15}) = \frac{2}{3}R(q) - 2R(q^3) + \frac{10}{3}R(q^5) - 10R(q^{15}) + \frac{2}{3}(A_1(q) - 2A_2(q) + 4A_3(q) + 4A_4(q) + 8A_5(q)),
\]
\[
\varphi(q)\varphi(q^3)\varphi(q^5) = \frac{1}{2}(R(q) + 3R(q^3) - 5R(q^5) - 15R(q^{15})) + \frac{3}{2}A_1(q) + A_2(q) + 6A_3(q),
\]
\[
\varphi^2(q^3)\varphi^2(q^5) = \frac{2}{3}R(q) - 2R(q^3) + \frac{10}{3}R(q^5) - 10R(q^{15}) - \frac{2}{3}(5A_1(q) + 14A_2(q) + 20A_3(q) - 4A_4(q) - 8A_5(q)).
\]

Proof. We prove only the first identity as the other ones can be proven similarly. By (1.4) and Theorem 2.1 we have \(\varphi^2(q)\varphi^2(q^{15}) \in M_2(\Gamma_0(60)) \). By Theorem 3.1, \(\varphi^2(q)\varphi^2(q^{15}) \) must be a linear combination of \(L_t(q) \) (\(t = 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 \)) and \(A_r(q) \) (\(r \in \{1, 2, 3, 4, 5, 6, 7\} \)), namely
\[
\varphi^2(q)\varphi^2(q^{15}) = \sum_{2 \leq d \mid 60} x_d L_d(q) + \sum_{i=1}^{7} y_i A_i(q)
\]
for some scalars \(x_d \) and \(y_i \) in \(\mathbb{C} \) for \(2 \leq d \mid 60 \) and \(1 \leq i \leq 7 \). The Sturm bound for the modular space \(M_2(\Gamma_0(60)) \) is 24 (see [9, Theorem 3.13]). Equating the coefficients of \(q^n \) for \(0 \leq n \leq 24 \) on both sides of (3.11), we find a system of linear equations, with the unknowns \(x_i \) (\(i \in \{2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\} \)) and \(y_j \) (\(j \in \{1, 2, 3, 4, 5, 6, 7\} \)). Using MAPLE [12] we solve the system and find that
\[
\varphi^2(q)\varphi^2(q^{15}) = \frac{2}{3}L_2(q) + \frac{2}{3}L_3(q) - \frac{2}{3}L_4(q) - \frac{2}{3}L_5(q) - \frac{2}{3}L_6(q) + \frac{2}{3}L_{10}(q) + \frac{2}{3}L_{12}(q) + \frac{2}{3}L_{15}(q) - \frac{2}{3}L_{20}(q) - \frac{2}{3}L_{30}(q) + \frac{2}{3}L_{60}(q)
\]
\[+ \frac{2}{3} A_1(q) - \frac{4}{3} A_2(q) + \frac{8}{3} A_3(q) + \frac{8}{3} A_4(q) + \frac{16}{3} A_5(q). \]

Substituting (3.9) into (3.12) we obtain
\[\varphi^2(q) \varphi^2(q^{15}) = \frac{2}{3} L(q) - \frac{4}{3} L(q^2) - 2L(q^3) + \frac{8}{3} L(q^4) + \frac{10}{3} L(q^5) + 4L(q^6) \]
\[- \frac{20}{3} L(q^{10}) - 8L(q^{12}) - 10L(q^{15}) + \frac{40}{3} L(q^{20}) + 20L(q^{30}) \]
\[- 40L(q^{60}) + \frac{2}{3} (A_1(q) - 2A_2(q) + 4A_3(q) + 4A_4(q) + 8A_5(q)). \]

After rearranging the terms in the above equation we have
\[\varphi^2(q) \varphi^2(q^{15}) = \frac{2}{3} (L(q) - 2L(q^2) + 4L(q^4)) - 2(L(q^3) - 2L(q^6) + 4L(q^{12})) \]
\[+ \frac{10}{3} (L(q^5) - 2L(q^{10}) + 4L(q^{20})) \]
\[- 10(L(q^{15}) - 2L(q^{30}) + 4L(q^{60})) \]
\[+ \frac{2}{3} (A_1(q) - 2A_2(q) + 4A_3(q) + 4A_4(q) + 8A_5(q)). \quad (3.13) \]

The assertion now follows from (3.10) and (3.13). \[\square \]

We now give explicit formulas for \(N(1, 1, 15; n) \), \(N(1, 3, 5, 15; n) \) and \(N(3, 3, 5, 5; n) \). For \(n \in \mathbb{N} \) we set
\[r(n) := \sigma(n) - 2\sigma(n/2) + 4\sigma(n/4). \quad (3.14) \]

Theorem 3.3. Let \(n \in \mathbb{N} \). Then
\[N(1, 1, 15; n) = \frac{2}{3} r(n) - 2r(n/3) + \frac{10}{3} r(n/5) - 10r(n/15) \]
\[+ \frac{2}{3} (a_1(n) - 2a_2(n) + 4a_3(n) + 4a_4(n) + 8a_5(n)), \]
\[N(1, 3, 5, 15; n) = \frac{1}{2} (r(n) + 3r(n/3) - 5r(n/5) - 15r(n/15)) \]
\[+ \frac{3}{2} a_1(n) + a_2(n) + 6a_3(n), \]
\[N(3, 3, 5, 5; n) = \frac{2}{3} r(n) - 2r(n/3) + \frac{10}{3} r(n/5) - 10r(n/15) \]
\[+ \frac{2}{3} (-5a_1(n) - 14a_2(n) - 20a_3(n) + 4a_4(n) + 8a_5(n)). \]

Proof. Appealing to (1.1), (1.9), (3.1)–(3.8), and equating the coefficients of \(q^n \) on both sides of the equations in Theorem 3.2, we deduce the asserted results. \[\square \]
4. Modular Space $M_2(\Gamma_0(60), \chi_5)$

Let $n \in \mathbb{N}$. We define the eta quotients $B_r(q)$ and the integers $b_r(n)$ for $r \in \{1, 2, 3, 4, 5, 6\}$ by

$$B_1(q) = \frac{\eta^4(2z)\eta(3z)\eta(15z)}{\eta^2(z)}, \quad (4.1)$$
$$B_2(q) = \frac{\eta(z)\eta(5z)\eta^4(6z)}{\eta^2(3z)}, \quad (4.2)$$
$$B_3(q) = \frac{\eta(3z)\eta^4(10z)\eta(15z)}{\eta^2(5z)}, \quad (4.3)$$
$$B_4(q) = \frac{\eta(4z)\eta^4(6z)\eta(20z)}{\eta^2(12z)}, \quad (4.4)$$
$$B_5(q) = \frac{\eta(z)\eta(5z)\eta^4(30z)}{\eta^2(15z)}, \quad (4.5)$$
$$B_6(q) = \frac{\eta(4z)\eta(20z)\eta^4(30z)}{\eta^2(60z)}, \quad (4.6)$$

$$B_r(q) := \sum_{n=1}^{\infty} b_r(n)q^n. \quad (4.7)$$

Theorem 4.1. Let χ_5 be as in (1.6). A basis for $M_2(\Gamma_0(60), \chi_5)$ is given by

$$\{E_{1,5}(tz), E_{5,1}(tz) \mid t = 1, 2, 3, 4, 6, 12\} \cup \{B_r(q) \mid r = 1, 2, 3, 4, 5, 6\}.$$

Proof. Let $r \in \{1, 2, 3, 4, 5, 6\}$. By Lemma 2.1, we have $B_r(q) \in S_2(\Gamma_0(60), \chi_5)$. The set $\{B_r(q)\}_{1 \leq r \leq 6}$ can be shown to be linearly independent. Then appealing to (1.12), we deduce that $\{B_r(q)\}_{1 \leq r \leq 6}$ is a basis for $S_2(\Gamma_0(60), \chi_5)$. By taking $\epsilon = \chi_5$ and $\chi, \psi \in \{\chi_1, \chi_5\}$ in [14, Theorem 5.9, p. 88] and appealing to (1.12) we have that $\{E_{1,5}(tz), E_{5,1}(tz) \mid t = 1, 2, 3, 4, 6, 12\}$ is a basis for $E_2(\Gamma_0(60), \chi_5)$. The assertion now follows from (1.10). \hfill \Box

To shorten the lengths of the identities in Theorem 4.2, we set

$$T_1(q) := E_{1,5}(z) + 6E_{1,5}(3z) + 4E_{1,5}(4z) + 24E_{1,5}(12z), \quad (4.8)$$
$$T_2(q) := 2E_{1,5}(z) - 3E_{1,5}(3z) + 8E_{1,5}(4z) - 12E_{1,5}(12z), \quad (4.9)$$
$$T_3(q) := 2E_{5,1}(z) + 3E_{5,1}(3z) + 8E_{5,1}(4z) + 12E_{5,1}(12z), \quad (4.10)$$
$$T_4(q) := E_{5,1}(z) - 6E_{5,1}(3z) + 4E_{5,1}(4z) - 24E_{5,1}(12z), \quad (4.11)$$

and for $n \in \mathbb{N}$ we define

$$t_1(n) := \sigma_{(\chi_1, \chi_5)}(n) + 6\sigma_{(\chi_1, \chi_5)}(n/3) + 4\sigma_{(\chi_1, \chi_5)}(n/4) + 24\sigma_{(\chi_1, \chi_5)}(n/12), \quad (4.12)$$
\[t_2(n) := 2\sigma_{(x_1,x_5)}(n) - 3\sigma_{(x_1,x_5)}(n/3) + 8\sigma_{(x_1,x_5)}(n/4) - 12\sigma_{(x_1,x_5)}(n/12), \quad (4.13) \]
\[t_3(n) := 2\sigma_{(x_5,x_1)}(n) + 3\sigma_{(x_5,x_1)}(n/3) + 8\sigma_{(x_5,x_1)}(n/4) + 12\sigma_{(x_5,x_1)}(n/12), \quad (4.14) \]
\[t_4(n) := \sigma_{(x_5,x_1)}(n) - 6\sigma_{(x_5,x_1)}(n/3) + 4\sigma_{(x_5,x_1)}(n/4) - 24\sigma_{(x_5,x_1)}(n/12). \quad (4.15) \]

Theorem 4.2. Let \(\chi_1 \) be the trivial character and \(\chi_5 \) be as in (1.6). Then

\[
N(1,1,3,15;n) = t_2(n) - \frac{1}{5} t_3(n) + \frac{14}{5} b_1(n) + 2b_2(n)
- 2b_3(n) + \frac{8}{5} b_4(n) - 6b_5(n) - 4b_6(n),
\]
\[
N(1,3,3,5;n) = t_1(n) + \frac{1}{5} t_4(n) - \frac{2}{5} b_1(n)
+ 2b_2(n) + 2b_3(n) - 4\frac{4}{5} b_4(n) - 2b_5(n),
\]
\[
N(1,5,15,15;n) = \frac{1}{5} (t_1(n) + t_4(n)) + \frac{2}{5} b_1(n)
+ \frac{2}{5} b_2(n) - \frac{2}{5} b_3(n) - 2b_5(n) + 4\frac{4}{5} b_6(n),
\]
\[
N(3,5,15,15;n) = \frac{1}{5} (t_2(n) - t_3(n)) + \frac{2}{5} b_1(n) - \frac{6}{5} b_2(n)
- \frac{14}{5} b_3(n) - 4\frac{4}{5} b_4(n) + 2b_5(n) + 8\frac{8}{5} b_6(n).
\]

Proof. We prove only the first identity as the other ones can be proven similarly. By Theorem 2.1, \(\varphi^2(q)\varphi(q^3)\varphi(q^{15}) \in M_2(\Gamma_0(60), \chi_5) \). By Theorem 3.1, \(\varphi^2(q)\varphi(q^3)\varphi(q^{15}) \) must be a linear combination of \(\{E_{1,5}(tz), E_{5,1}(tz) \mid t = 1, 2, 3, 4, 6, 12 \} \) and \(\{B_r(q) \mid r = 1, 2, 3, 4, 5, 6 \} \), namely

\[
\varphi^2(q)\varphi(q^3)\varphi(q^{15}) = \sum_{1 \leq d \mid 12} x_d E_{1,5}(dz) + \sum_{1 \leq d \mid 12} y_d E_{5,1}(dz) + \sum_{i=1}^{6} z_i B_i(q) \quad (4.16)
\]

for some scalars \(x_d, y_d \) and \(z_i \) in \(\mathbb{C} \) for \(1 \leq d \mid 12 \) and \(1 \leq i \leq 6 \). By [14, Corollary 9.20], the Sturm bound for the modular space \(M_2(\Gamma_0(60), \chi_5) \) is 24. Equating the coefficients of \(q^n \) for \(0 \leq n \leq 24 \) on both sides of (4.16) and appealing to (4.9) and (4.10) we obtain

\[
\varphi^2(q)\varphi(q^3)\varphi(q^{15}) = T_2(q) - \frac{1}{5} T_3(q) + \frac{14}{5} B_1(q) + 2B_2(q)
- 2B_3(q) + \frac{8}{5} B_4(q) - 6B_5(q) - 4B_6(q). \quad (4.17)
\]

The assertion now follows from (1.1), (4.7), (4.13), (4.14) and (4.17).
5. Modular Space $M_2(\Gamma_0(60), \chi_{12})$

Let $n \in \mathbb{N}$. We define the eta quotients $C_r(q)$ and the integers $c_r(n)$ for $r \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ by

$$C_1(q) = \frac{\eta(2z)\eta(3z)\eta(4z)\eta^2(5z)\eta(12z)}{\eta(2z)\eta(3z)},$$

$$C_2(q) = \frac{\eta(z)\eta(4z)\eta(6z)\eta(12z)\eta^2(15z)}{\eta(2z)\eta(3z)},$$

$$C_3(q) = \frac{\eta^2(2z)\eta(5z)\eta^2(6z)\eta^3(20z)}{\eta(z)\eta^2(10z)\eta(12z)},$$

$$C_4(q) = \frac{\eta^5(2z)\eta(15z)\eta(20z)}{\eta^2(z)\eta(4z)\eta(30z)},$$

$$C_5(q) = \frac{\eta(3z)\eta^2(10z)\eta^3(12z)\eta^2(30z)}{\eta^2(6z)\eta(15z)\eta(20z)},$$

$$C_6(q) = \frac{\eta^5(2z)\eta(5z)\eta^2(60z)}{\eta(z)\eta^2(4z)\eta(30z)},$$

$$C_7(q) = \frac{\eta^3(3z)\eta^2(10z)\eta(12z)\eta^2(30z)}{\eta(5z)\eta^2(12z)\eta(60z)},$$

$$C_8(q) = \frac{\eta^2(4z)\eta(5z)\eta(10z)\eta(15z)\eta(60z)}{\eta(20z)\eta(30z)},$$

$$C_r(q) := \sum_{n=1}^{\infty} c_r(n)q^n.$$ \hfill (5.9)

Theorem 5.1. A basis for $M_2(\Gamma_0(60), \chi_{12})$ is given by

$$\{E_{1,12}(tz), E_{12,1}(tz), E_{-4,-3}(tz), E_{-3,-4}(tz) \mid t = 1, 5\} \cup \{C_r(q)\}_{1 \leq r \leq 8}.$$

Proof. By taking $\epsilon = \chi_{12}$ and $\chi, \psi \in \{\chi_{-4}, \chi_{-3}, \chi_1, \chi_{12}\}$ in [14, Theorem 5.9, p. 88] and appealing to (1.13), we deduce that $\{E_{1,12}(tz), E_{12,1}(tz), E_{-4,-3}(tz), E_{-3,-4}(tz) \mid t = 1, 5\}$ is a basis for $E_2(\Gamma_0(60), \chi_{12})$. Let $r \in \{1, 2, 3, 4, 5, 6, 7, 8\}$. By Lemma 2.1, $C_r(q) \in S_2(\Gamma_0(60), \chi_{12})$. The set $\{C_r(q)\}_{1 \leq r \leq 8}$ can be shown to be linearly independent. Thus appealing to (1.13) we deduce that $\{C_r(q)\}_{1 \leq r \leq 8}$ is a basis for $S_2(\Gamma_0(60), \chi_{12})$. We complete the proof by appealing to (1.10). \hfill \square

To shorten the lengths of the identities in Theorem 5.2, we set

$$u_1(n) := 6\sigma_{\chi_1,\chi_{12}}(n) - \sigma_{(\chi_{12},\chi_1)}(n) - 2\sigma_{(\chi_{-3},\chi_{-4})}(n) + 3\sigma_{(\chi_{-4},\chi_{-3})}(n),$$

$$u_2(n) := 6\sigma_{\chi_1,\chi_{12}}(n) + \sigma_{(\chi_{12},\chi_1)}(n) + 2\sigma_{(\chi_{-3},\chi_{-4})}(n) + 3\sigma_{(\chi_{-4},\chi_{-3})}(n),$$

$$u_3(n) := 2\sigma_{\chi_1,\chi_{12}}(n) - \sigma_{(\chi_{12},\chi_1)}(n) + 2\sigma_{(\chi_{-3},\chi_{-4})}(n) - \sigma_{(\chi_{-4},\chi_{-3})}(n),$$

$$u_4(n) := 2\sigma_{\chi_1,\chi_{12}}(n) + \sigma_{(\chi_{12},\chi_1)}(n) - 2\sigma_{(\chi_{-3},\chi_{-4})}(n) - \sigma_{(\chi_{-4},\chi_{-3})}(n).$$
Theorem 5.2. Let χ_1 be the trivial character and χ_{12} be as in (1.6). Then

\begin{align*}
N(1, 1, 5, 15; n) &= \frac{15}{13} u_1(n/5) + \frac{2}{13} u_2(n) - \frac{16}{13} c_3(n) + \frac{28}{13} c_4(n) - \frac{20}{13} c_6(n), \\
N(1, 3, 5, 5; n) &= \frac{3}{13} u_1(n) - \frac{10}{13} u_2(n/5) - \frac{56}{13} c_1(n) - \frac{168}{13} c_2(n) - \frac{56}{13} c_3(n) \\
&\quad + \frac{94}{13} c_4(n) - \frac{60}{13} c_5(n) - \frac{10}{13} c_6(n) - \frac{30}{13} c_7(n) + \frac{56}{13} c_8(n), \\
N(1, 3, 15, 15; n) &= \frac{3}{13} u_3(n) - \frac{10}{13} u_4(n/5) + \frac{16}{13} c_1(n) - \frac{48}{13} c_2(n) - \frac{16}{13} c_3(n) \\
&\quad + \frac{8}{13} c_4(n) - \frac{40}{13} c_5(n) + \frac{8}{13} c_6(n) - \frac{4}{13} c_7(n) + \frac{32}{13} c_8(n), \\
N(3, 3, 5, 15; n) &= \frac{15}{13} u_3(n/5) + \frac{2}{13} u_4(n) + \frac{8}{3} c_1(n) + \frac{64}{13} c_2(n) + \frac{64}{39} c_3(n) \\
&\quad - \frac{146}{39} c_4(n) + \frac{36}{13} c_5(n) + \frac{22}{39} c_6(n) + \frac{14}{13} c_7(n) - \frac{128}{39} c_8(n).
\end{align*}

Proof. The proof is similar to that of Theorem 4.2.

6. Modular Space $M_2(\Gamma_0(60), \chi_{60})$

Let $n \in \mathbb{N}$. We define the eta quotients $D_r(q)$ and the integers $d_r(n)$ for $r \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ by

\begin{align*}
D_1(q) &= \frac{\eta(3z)\eta^3(10z)\eta(12z)}{\eta^3(5z)\eta(6z)\eta^3(20z)}, \\
D_2(q) &= \frac{\eta^{10}(2z)\eta(3z)\eta(5z)\eta(12z)\eta(20z)}{\eta^4(z)\eta^4(4z)\eta(6z)\eta(10z)}, \\
D_3(q) &= \frac{\eta^5(2z)\eta^2(3z)\eta(20z)}{\eta^2(z)\eta(4z)\eta(6z)}, \\
D_4(q) &= \frac{\eta^3(5z)\eta^3(6z)\eta(20z)}{\eta^3(3z)\eta(10z)\eta^3(12z)}, \\
D_5(q) &= \frac{\eta(z)\eta(3z)\eta(4z)\eta(12z)\eta(30z)}{\eta(2z)}, \\
D_6(q) &= \frac{\eta(3z)\eta(12z)\eta^3(20z)\eta^3(30z)}{\eta(6z)\eta(15z)\eta^2(60z)}, \\
D_7(q) &= \frac{\eta(2z)\eta(5z)\eta(15z)\eta(20z)\eta(60z)}{\eta(30z)}, \\
D_8(q) &= \frac{\eta^3(2z)\eta(15z)\eta(60z)}{\eta^3(z)\eta^3(4z)\eta(30z)}, \\
D_r(q) &= \sum_{n=1}^{\infty} d_r(n)q^n.
\end{align*}
Theorem 6.1. A basis for $M_2(\Gamma_0(60), \chi_{60})$ is given by

$$\{E_{1,60}(z), E_{60,1}(z), E_{5,12}(z), E_{12,5}(z), E_{-20,-3}(z), E_{-3,-20}(z),$$

$$E_{-15,-4}(z), E_{-4,-15}(z)\} \cup \{D_r(q)\}_{1 \leq r \leq 8}.$$

Proof. By taking $\epsilon = \chi_{60}$ and $\chi, \psi \in \{\chi_{-20}, \chi_{-15}, \chi_{-4}, \chi_{-3}, \chi_1, \chi_5, \chi_{12}, \chi_{60}\}$ in [14, Theorem 5.9, p. 88] and appealing to (1.14), we deduce that

$$\{E_{1,60}(z), E_{60,1}(z), E_{5,12}(z), E_{12,5}(z), E_{-20,-3}(z), E_{-3,-20}(z), E_{-15,-4}(z), E_{-4,-15}(z)\}$$

is a basis for $E_2(\Gamma_0(60), \chi_{60})$. By Lemma 2.1, $D_r(q) \in S_2(\Gamma_0(60), \chi_{60})$ for each $r \in \{1, 2, 3, 4, 5, 6, 7, 8\}$. The set $\{D_r(q)\}_{1 \leq r \leq 8}$ can be shown to be linearly independent. Thus by (1.14), $\{D_r(q)\}_{1 \leq r \leq 8}$ is a basis for $S_2(\Gamma_0(60), \chi_{60})$. The assertion now follows from (1.10). \qed

Theorem 6.2. Let χ_1 be the trivial character and χ_{12} be as in (1.6). Then

\begin{align*}
N(1,1,3,5;n) &= \frac{1}{12} \left(30\sigma_{(1,1,3)}(n) - \sigma_{(3,60,1)}(n) - 6\sigma_{(1,5,12)}(n) \\
&\quad + 5\sigma_{(1,1,5)}(n) - 3\sigma_{(1,20,1)}(n) + 10\sigma_{(1,3,1)}(n) \\
&\quad - 2\sigma_{(1,1,15)}(n) + 15\sigma_{(1,4,15)}(n) \right) - d_8(n),
\end{align*}

\begin{align*}
N(1,3,3,15;n) &= \frac{1}{12} \left(10\sigma_{(1,3,1)}(n) - \sigma_{(3,60,3)}(n) + 2\sigma_{(3,5,12)}(n) - 5\sigma_{(3,12,3)}(n) \\
&\quad - \sigma_{(3,20,3)}(n) + 10\sigma_{(3,3,1)}(n) + 2\sigma_{(3,15,3)}(n) \right) - 5\sigma_{(1,4,15)}(n) + d_4(n),
\end{align*}

\begin{align*}
N(1,5,5,15;n) &= \frac{1}{12} \left(6\sigma_{(1,5,1)}(n) - \sigma_{(5,60,1)}(n) + 6\sigma_{(5,5,12)}(n) - \sigma_{(12,5,1)}(n) \\
&\quad + 3\sigma_{(5,20,5)}(n) - 2\sigma_{(5,3,1)}(n) - 2\sigma_{(5,15,5)}(n) \\
&\quad + 3\sigma_{(5,4,15)}(n) \right) + d_1(n),
\end{align*}

\begin{align*}
N(1,15,15,15;n) &= \frac{1}{12} \left(2\sigma_{(1,15,1)}(n) - \sigma_{(15,60,1)}(n) + 2\sigma_{(5,5,12)}(n) - \sigma_{(12,5,15)}(n) \\
&\quad - \sigma_{(15,20,5)}(n) + 2\sigma_{(5,3,1)}(n) + 2\sigma_{(15,15,5)}(n) \\
&\quad - \sigma_{(15,4,15)}(n) \right) - \frac{4}{9}d_1(n) + \frac{1}{3}d_4(n) + \frac{16}{9}d_6(n),
\end{align*}

\begin{align*}
N(3,3,3,5;n) &= \frac{1}{12} \left(10\sigma_{(3,3,1)}(n) - \sigma_{(60,1)}(n) - 2\sigma_{(3,5,12)}(n) + 5\sigma_{(12,5,5)}(n) \\
&\quad + \sigma_{(3,20,3)}(n) - 10\sigma_{(3,3,1)}(n) + 2\sigma_{(5,15,5)}(n) \\
&\quad - 5\sigma_{(3,4,15)}(n) \right) - \frac{25}{18}d_1(n) - \frac{10}{3}d_3(n) \\
&\quad - \frac{5}{6}d_4(n) + 2d_5(n) + \frac{50}{9}d_6(n) + \frac{5}{3}d_8(n).
\end{align*}
\[N(3, 5, 5; n) = \frac{1}{12} \left(6\sigma_{(x_1,x_60)}(n) - \sigma_{(x_60,x_1)}(n) - 6\sigma_{(x_{12},x_3)}(n) \\
- 3\sigma_{(x_{20},x_{-3})}(n) + 2\sigma_{(x_{-3},x_{-20})}(n) - 2\sigma_{(x_{-15},x_{-4})}(n) \\
+ 3\sigma_{(x_{-4},x_{-15})}(n) \right) + \frac{16}{3} d_7(n) - \frac{5}{3} d_6(n), \]

\[N(3, 5, 15, 15; n) = \frac{1}{12} \left(2\sigma_{(x_1,x_{60})}(n) - \sigma_{(x_{60},x_1)}(n) - 2\sigma_{(x_{12},x_3)}(n) \\
+ \sigma_{(x_{12},x_{15})}(n) + \sigma_{(x_{20},x_{-3})}(n) - 2\sigma_{(x_{-3},x_{-20})}(n) \\
+ 2\sigma_{(x_{-15},x_{-4})}(n) - \sigma_{(x_{-4},x_{-15})}(n) \right) - \frac{1}{6} d_4(n) - \frac{2}{5} d_5(n) \\
- \frac{1}{10} d_4(n) - \frac{2}{5} d_5(n) + \frac{2}{3} d_6(n) + \frac{1}{5} d_6(n). \]

Proof. The proof is similar to that of Theorem 4.2. \(\square \)

Acknowledgments. The author would like to thank the anonymous referee for helpful comments on the original manuscript. This research was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (RGPIN-418029-2013).

References

[4] A. Alaca, Ş. Alaca and K. S. Williams, On the quaternary forms \(x^2 + y^2 + z^2 + 5t^2, \)
\(x^2 + y^2 + 5z^2 + 5t^2 \) and \(x^2 + 5y^2 + 5z^2 + 5t^2, \) *JP J. Algebra Number Theory Appl.* **9** (2007), 37–53.

