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Abstract
In this paper, we study numbers n that can be factored in three di↵erent ways as
n = A1B1 = A2B2 = A3B3 with A1 < A2 < A3 and B1 > B2 > B3 satisfying
A3 �A1, B1 �B3  C. Then one must have A3, B1  C(C � 1)2/4 and the upper
bound is best possible. With this, we obtain an optimal lower bound for the gap
between three close lattice points on the hyperbola xy = n.

1. Introduction and Main Results

Suppose a positive integer n can be factored as n = AB. Is it possible to have
another factorization n = (A + a)(B � b) with integers 0 < a, b  C and C small?
(Note: We consider A + a = B and B � b = A as a di↵erent factorization as order
matters.) The answer is yes. For this to hold, we require AB = (A + a)(B � b) or
ab = aB � bA. Let d = (a, b) and a = da0, b = db0. Then da0b0 = a0B � b0A. This
implies that a0|A and b0|B since a0 and b0 are relatively prime. Let A = a0A0 and
B = b0B0. Then d = B0 � A0. Therefore, any such number would have the form
n = (a0A0)(b0(A0 + d)) = (a0(A0 + d))(b0A0) where a0, b0, d satisfy da0, db0  C and
A0 can be arbitrarily large. What if we ask for two such extra factorizations, i.e.,
n = AB = (A + a1)(B � b1) = (A + a2)(B � b2)?

Suppose AB = (A + a1)(B � b1) = (A + a2)(B � b2) with 1  a1 < a2  C
and 1  b1 < b2  C. Then a1B � b1A = a1b1. Dividing by b1B, we have
a1/b1 � A/B = a1/B. Similarly a2/b2 � A/B = a2/B. Subtracting these two
equations, we have

a2

b2
� a1

b1
=

a2 � a1

B
> 0. (1)
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Hence,
1

C(C � 1)
 1

b1b2
 a2b1 � a1b2

b1b2
=

a2 � a1

B
 C � 1

B
.

This gives B  C(C � 1)2. Similarly, one also has A  C(C � 1)2.

Hence, given C � 2, if n = AB = (A + a1)(B � b1) = (A + a2)(B � b2) with
1  a1 < a2  C and 1  b1 < b2  C, then A,B  C(C� 1)2. So A and B cannot
be arbitrary large in terms of C.

Now one may ask if the upper bound C(C � 1)2 is sharp, and we have the
following.

Theorem 1. Let C � 4. If n = AB = (A + a1)(B � b1) = (A + a2)(B � b2) with
1  a1 < a2  C and 1  b1 < b2  C, then A,B  C(C � 1)2/4.

Moreover, the above upper bound can be attained if and only if C = 2N + 1 and

n =[(2N � 1)(N � 1)(N + 1)] · [(2N + 1)N2]
=[(2N � 1)(N � 1)(N + 1) + (N � 1)] · [(2N + 1)N2 �N ]
=[(2N � 1)(N � 1)(N + 1) + (2N � 1)] · [(2N + 1)N2 � (2N + 1)].

If one excludes this family of n’s, then one has A,B < C2(C � 4)/4 + C for C � 4.

In a di↵erent perspective, we can think of finding three close factorizations of n
as finding three close lattice points on the hyperbola xy = n. In [3], Cilleruelo and
Jiménez-Urroz proved the following theorem.

Theorem 2. On the hyperbola xy = N , there are at most k lattice points (x1, y1),
..., (xk, yk) such that N�  x1 < ... < xk and xk � x1  NEk(�) where

Ek(�) :=
bk�c(2k� � bk�c � 1)

k(k � 1)
.

Applying this with k = 3 and � = 1/2, we have E3(�) = 1/6. This matches
with the above theorems. For example, Theorem 1 shows that N = A1B1 with
A1, B1 < C3/4 and hence N < C6 or C > N1/6.

Granville and Jiménez-Urroz [5] gave a lower bound for an arc of the hyperbola
xy = n containing k integer lattice points. Suppose (x1, y1), (x2, y2) and (x3, y3)
are three integer lattice points on xy = n with x1 < x2 < x3. They showed that

x3 � x1 � 22/3 x1

n1/3
. (2)

From Theorem 1, we have the following corollary.
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Corollary 1. Suppose (x1, y1), (x2, y2) and (x3, y3) are three integer lattice points
on xy = n with x1 < x2 < x3. Then

max(x3 � x1, y1 � y3) � 22/3n1/6 + (3� 6
p

192).

Moreover, for any ✏ > 0, there exist infinitely many integers n such that the
hyperbola xy = n contains three integer lattice points (x1, y1), (x2, y2) and (x3, y3)
with x1 < x2 < x3 satisfying max(x3 � x1, y1 � y3) < 22/3n1/6 + 1 + ✏.

Note that (3� 6
p

192) = 0.598126... The lower bound in the first half of Corollary 1
is best possible. The second half of Corollary 1 shows that the constant 22/3 in (2) is
sharp and vanquishes any hope to prove the lower bound

p
(x3 � x1)2 + (y3 � y1)2 �

n1/4 as claimed by Granville and Jiménez-Urroz in [5].
In [4], Cilleruelo and Jiménez-Urroz studied the case of four close lattice points.

They defined
✏k(�) = lim inf{✏|n� ⌧ a1 < ... < ak = a1 + n✏}

where ai divides n for all 1  i  k, i.e., the minimum ✏ such that for infinitely
many n there exist k lattice points (ai, bi), ai ⇣ n� , on an arc of length n✏ of the
hyperbola xy = n, and proved that

✏4(1/2) = E4(1/2) = 1/6.

This suggests that there should be a similar result (with a smaller constant) for four
close factorizations. In a forthcoming paper, the author will deal with four and five
close factorizations.

More generally, I. Ruzsa proposed the following conjecture.

Conjecture 1. For all ✏ > 0, there exists an integer k such that only for a finite
number of values of n there can be more than k lattice points on xy = n with
n1/2  x  n1/2 + n1/2�✏.

The author made slight contributions in [1] and [2] to this conjecture for n’s that
are perfect squares and almost squares. This would be one ultimate direction of
research in this topic.

We will use the following notation. The symbol f(x) ⌧ g(x) means that |f(x)| 
Cg(x) for some constant C > 0. The symbol f(x) ⇣ g(x) means that f(x) ⌧ g(x)
and g(x) ⌧ f(x). The symbol bxc stands for the greatest integer that is less than
or equal to x and the symbol a|b means a divides b.
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2. Proof of Theorem 1

Proof. Without loss of generality, we can assume that A, A + a1, A + a2 are three
consecutive divisors of n. From (1), we have

a2b1 � b2a1

b1b2
=

a2 � a1

B
.

Let D := (a2 � a1)b1 � (b2 � b1)a1 � 1. Then

B =
b2b1(a2 � a1)

D
=

b2(a1(b2 � b1) + D)
D

=
1
D

a1b2(b2 � b1) + b2.

Case 1: a2 = b2. From AB = (A + a2)(B � b2), we have a2 = B � A > 0. Now
A < A + a1 < A + a2 = B and A + a2 = B > B � b1 > B � b2 = A. Since we
assume that A, A + a1, A + a2 are three consecutive divisors of n, we must have
A + a1 = B � b1 =: M say. So

n = M2 = (M + (a2 � a1))(M � (b2 � b1))

which implies
(a2 � a1)(b2 � b1) = ((a2 � a1)� (b2 � b1))M.

As the left-hand side is positive, the right hand side must be at least M . Therefore,

(C � 1)2 � (a2 � a1)(b2 � b1) = ((a2 � a1)� (b2 � b1))M � M

which implies A,B  (C � 1)2 + (C � 1)  C(C � 1)2/4 when C � 5.

Now if C = 4, then 1  a1 < a2  4 and 1  b1 < b2  4. So

n = M2 = (M + 3)(M � 2) or (M + 3)(M � 1) or (M + 2)(M � 1)

which implies M = 6 or M = 2. One can check directly for n = 36 or n = 4 that
the statement of Theorem 1 holds true.

Case 2: a2 = b2 + d for d > 0. We have

n = AB = (A + a2)(B � (a2 � d)) (3)

which implies a2B � (a2 � d)A = a2(a2 � d). So a2|dA and we write dA = a2A0.
Substituting this into (3), we have A0B = (A0+d)(B�(a2�d)). After some algebra,
dB � (a2 � d)A0 = d(a2 � d) which implies a2 � d|dB. We write dB = (a2 � d)B0.
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Hence A0dB = (A0 + d)(dB � d(a2 � d)) which gives A0B0 = (A0 + d)(B0 � d) and
B0 = A0 + d after some algebra. Therefore, the three factorizations are

n =
ha2A0

d

ih (a2 � d)(A0 + d)
d

i
=

ha2A0

d
+ h

ih (a2 � d)(A0 + d)
d

� k
i

=
ha2(A0 + d)

d

ih (a2 � d)A0

d

i

for some 0 < h < a2 and 0 < k < a2� d. From the second factorization of n above,
we get

h
(a2 � d)(A0 + d)

d
� k

a2A0

d
� hk = 0.

After some algebra, we arrive at

h((a2 � d)� k) = A0
⇣a2(k � h)

d
+ h

⌘
. (4)

As the left hand side is positive, we must have h  k or k < h < a2k/(a2 � d).

For h  k, we have A0  (a2 � d)� k which implies

A =
a2A0

d
 a2(a2 � d� 1)  C(C � 1)2

4

for C � 4. Similarly,

B =
(a2 � d)(A0 + d)

d
 C(C � 1)2

4

for C � 4.

For k < h < a2k/(a2 � d), we consider the following two subcases:

Subcase 1: d = 2. Then h = k + 1. Hence A0(h� a2/2) = h(a2 � 1� h). When
a2 is odd and h = (a2 + 1)/2, A0 = (a2 � 3)(a2 + 1)/2. Otherwise h � a2/2 is at
least one and A0  (a2 � 1)2/4. In any case, we have

A =
a2A0

2
 C(C � 1)2

4
.

Similarly,

B =
(a2 � 2)(A0 + 2)

2
 C(C � 1)2

4
for C � 3.

Subcase 2: d = 3. Then h = k + 1 or h = k + 2. Hence,

A0
⇣
h� a2

3

⌘
= h(a2 � 2� h) or A0

⇣
h� 2a2

3

⌘
= h(a2 � 1� h).
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When h = (a2 + 1)/3 is an integer, A0 = (a2 + 1)(2a2 � 7)/3 and

A =
a2A0

3
=

a2(a2 + 1)(2a2 � 7)
9

 C(C � 1)2

4
.

Similarly,

B =
(a2 � 3)(A0 + 3)

3
 C(C � 1)2

4
for C � 3.

When h = (2a2 + 1)/3 is an integer, A0 = (2a2 + 1)(a2 � 4)/3 and

A =
a2A0

3
=

a2(a2 � 4)(2a2 + 1)
9

 C(C � 1)2

4
.

Similarly,

B =
(a2 � 3)(A0 + 3)

3
 C(C � 1)2

4
for C � 3.

For the other situations, we have h� a2/3 � 2/3 or h� 2a2/3 � 2/3. Then

A0  3h(a2 � 1� h)
2

 3(C � 1)2

8
and A =

a2A0

3
 C(C � 1)2

4
.

Similarly,

B =
(a2 � 3)(A0 + 3)

3
 C(C � 1)2

4
for C � 2.

Subcase 3: d � 4. Let a2 = (1 + �)a1  C and b2 = (1 + ✓)b1  C � d. Thus,

b1 
C � d

1 + ✓
, a1 

C

1 + ✓
, and b2 � b1 = ✓b1 

✓(C � d)
1 + ✓

.

Note that D = (�� ✓)a1b1 � 1. Therefore,

B =
1
D

a1b2(b2 � b1) + b2 
C

1 + ✓
(C � d)

✓(C � d)
1 + ✓

+ C =
✓

(1 + ✓)2
C(C � d)2 + C.

It remains to note that ✓/(1 + ✓)2 has maximum value 1/4 when ✓ = 1. This gives

B  C(C � 4)2/4 + C  C(C � 1)2/4

for C � 3. Similarly,

A =
a1a2(b2 � b1)

D
 C

1 + ✓
C

✓(C � d)
1 + ✓

=
✓

(1 + ✓)2
C2(C � d)
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which gives
A  C2(C � 4)/4  C(C � 1)2/4

for C � 3.

Case 3: a2 + d = b2 for d > 0. This follows by symmetry from case 2.

Combining the above cases, we see that the optimal situations come from Case
(2), Subcase (1), and we have the first part of Theorem 1. Moreover, this upper
bound can be attained exactly when a2 = 2N +1 = C, A = (2N�1)(N +1)(N�1)
and B = (2N + 1)N2. Then

n =[(2N � 1)(N � 1)(N + 1)] · [(2N + 1)N2]
=[(2N � 1)(N � 1)(N + 1) + (N � 1)] · [(2N + 1)N2 �N ]
=[(2N � 1)(N � 1)(N + 1) + (2N � 1)] · [(2N + 1)N2 � (2N + 1)].

Putting these n’s aside, the next biggest upper bound comes from Case (2), Subcase
(3), which gives the last part of Theorem 1.

3. Proof of Corollary 1

Proof. Suppose (x1, y1), (x2, y2) and (x3, y3) are three integer lattice points on the
hyperbola xy = n with x1 < x2 < x3. Then

n = AB = (A + a1)(B � b1) = (A + a2)(B � b2)

where A = x1, B = y1, a1 = x2 � x1, b1 = y1 � y2, a2 = x3 � x1, b2 = y1 � y3. Let
C = max(a2, b2).

Suppose C = 2. Then n = AB = (A + 1)(B � 1) = (A + 2)(B � 2) which is
impossible.

Suppose C = 3. Then either (i) n = AB = (A + 1)(B� b1) = (A + 3)(B� b2) or
(ii) n = AB = (A + 2)(B � b1) = (A + 3)(B � b2) for some 1  b1 < b2  3.

In case (i), we have B = b1A + b1. This, together with AB = (A + 3)(B � b2),
gives (b2 � b1)(A + 3) = 2b1A. Since b2  3, we must have b1 = 1 and then b2 = 2
and A = 3. Hence, n = 12 and one can check that

C � 22/3n1/6 + (3� 6
p

192)

with equality holding when C = 3. Note that 3� 6
p

192 = 0.598126...
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In case (ii), we have B = b1(A + 2)/2. This together with AB = (A + 3)(B� b2)
gives 3b1(A + 1) = 2b2(A + 3). One can check that none of the choices for 1  b1 <
b2  3 is possible.

Thus, it remains to consider the case when C � 4. Theorem 1 tells us that

n = AB 
⇣C(C � 1)2

4

⌘2
,

so 4
p

n  C(C � 1)2. Now (C � 2/3)3 �C(C � 1)2 = C/3� 8/27 > 0 since C � 1.
So 4

p
n  C(C � 1)2 < (C � 2/3)3 and

22/3n1/6 +
2
3

< C = max(x3 � x1, y1 � y3),

which gives the first half of Corollary 1. The second half of Corollary 1 follows from
the case when C = 2N + 1 in Theorem 1. Recall

n = (N � 1)N2(N + 1)(2N � 1)(2N + 1)

where
n = [(2N � 1)(N � 1)(N + 1)] · [(2N + 1)N2] =: x1 · y1,

n = [(2N � 1)(N � 1)(N + 1) + (N � 1)] · [(2N + 1)N2 �N ] =: x2 · y2,

and

n = [(2N � 1)(N � 1)(N + 1) + (2N � 1)] · [(2N + 1)N2 � (2N + 1)] =: x3 · y3.

Then max(x3�x1, y1�y3) = 2N+1 = C, and 16n = (C+1)C(C�1)2(C�2)(C�3).
For any t, we have

16n� (C � t)6 =(C + 1)C(C � 1)2(C � 2)(C � 3)� (C � t)6

=6(t� 1)C5 � (15t2 � 10)C4 + 20t3C3 � (15t4 + 11)C2 + (6t5 + 6)C � t6.

If t = 1 + ✏, for su�ciently large C (hence su�ciently large N) the above quantity
is greater than zero. Hence 16n > (C � t)6 which implies 22/3n1/6 + 1 + ✏ > C =
max(x3 � x1, y3 � y1). This gives the second half of Corollary 1.
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de Bordeaux 12 (2000), 87–92.
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