

RANGES OF UNITARY DIVISOR FUNCTIONS

Colin Defant¹

Department of Mathematics, University of Florida, Gainesville, Florida² Current email: cdefant@princeton.edu

Received: 6/22/17, Revised: 11/26/17, Accepted: 2/20/18, Published: 3/9/18

Abstract

For any real t, the unitary divisor function σ_t^* is the multiplicative arithmetic function defined by $\sigma_t^*(p^{\alpha}) = 1 + p^{\alpha t}$ for all primes p and positive integers α . Let $\overline{\sigma_t^*(\mathbb{N})}$ denote the topological closure of the range of σ_t^* . We calculate an explicit constant $\eta^* \approx 1.9742550$ and show that $\overline{\sigma_{-r}^*(\mathbb{N})}$ is connected if and only if $r \in (0, \eta^*]$. We end with some open problems.

1. Introduction

For each $c \in \mathbb{C}$, the divisor function σ_c is defined by $\sigma_c(n) = \sum_{d|n} d^c$. Divisor functions, especially σ_1, σ_0 , and σ_{-1} , are among the most extensively-studied arithmetic functions [2, 10, 12]. For example, two very classical number-theoretic topics are the study of perfect numbers and the study of friendly numbers. A positive integer n is said to be *perfect* if $\sigma_{-1}(n) = 2$, and n is said to be *friendly* if there exists $m \neq n$ with $\sigma_{-1}(m) = \sigma_{-1}(n)$ [14]. Motivated by the very difficult problems related to perfect and friendly numbers, Laatsch [11] studied $\sigma_{-1}(\mathbb{N})$, the range of σ_{-1} . He showed that $\sigma_{-1}(\mathbb{N})$ is a dense subset of the interval $[1, \infty)$ and asked if $\sigma_{-1}(\mathbb{N})$ is in fact equal to the set $\mathbb{Q} \cap [1, \infty)$. Weiner [16] answered this question in the negative, showing that $(\mathbb{Q} \cap [1, \infty)) \setminus \sigma_{-1}(\mathbb{N})$ is also dense in $[1, \infty)$.

The author has studied ranges of divisor functions in a variety of contexts [4, 5, 6, 7, 8]. For example, it is shown in [4] that $\mathcal{N}(c) \to \infty$ as $\Re(c) \to -\infty$, where $\mathcal{N}(c)$ denotes the number of connected components of $\overline{\sigma_c(\mathbb{N})}$. Here, the overline denotes the topological closure. In [15], Sanna develops an algorithm that can be used to calculate $\overline{\sigma_{-r}(\mathbb{N})}$ when r > 1 is real and is known with sufficient precision. In addition, he proves that $\mathcal{N}(-r)$ is finite for such r. The author [5] has since extended this result, showing that $\mathcal{N}(c)$ is finite whenever $\Re(c) \leq 0$ and $c \neq 0$. Very recently, Zubrilina [17] has obtained asymptotic estimates for $\mathcal{N}(-r)$ when

¹This work was supported by National Science Foundation grant no. 1262930.

²Current Address: Department of Mathematics, Princeton University

r > 1. She has also shown that there is no real number r such that $\mathcal{N}(r) = 4$.

In this paper, we study the close relatives of the divisor functions known as unitary divisor functions. A *unitary divisor* of an integer n is a divisor d of n such that gcd(d, n/d) = 1. The unitary divisor function σ_c^* is defined by

$$\sigma_c^*(n) = \sum_{\substack{d|n\\ \gcd(d,n/d)=1}} d^c$$

(see, for example, [1], [3], or [9]). The function σ_c^* is multiplicative and satisfies $\sigma_c^*(p^{\alpha}) = 1 + p^{\alpha c}$ for all primes p and positive integers α .

If $t \in [-1,0)$, then one may use the same argument that Laatsch employed in [11] in order to show that $\overline{\sigma_t^*(\mathbb{N})} = [1,\infty)$. In particular, $\overline{\sigma_t^*(\mathbb{N})}$ is connected if $t \in [-1,0)$. On the other hand, $\overline{\sigma_t^*(\mathbb{N})}$ is a discrete disconnected set if $t \ge 0$ (indeed, in this case, $\sigma_t(\mathbb{N}) \cap [0,s]$ is finite for every s > 0). The purpose of this paper is to prove the following theorem. Let ζ denote the Riemann zeta function.

Theorem 1. Let η^* be the unique number in the interval (1,2] that satisfies the equation

$$\frac{2^{\eta^*} + 1}{2^{\eta^*}} \cdot \frac{(3^{\eta^*} + 1)^2}{3^{2\eta^*} + 1} = \frac{\zeta(\eta^*)}{\zeta(2\eta^*)}.$$
(1)

If $r \in \mathbb{R}$, then $\overline{\sigma_{-r}(\mathbb{N})}$ is connected if and only if $r \in (0, \eta^*]$.

0

Remark 1.1. In the process of proving Theorem 1, we will show that there is indeed a unique solution to the equation (1) in the interval (1, 2].

In all that follows, we assume r > 1 and study $\sigma_{-r}^*(\mathbb{N})$. We first observe that $\sigma_{-r}^*(\mathbb{N}) \subseteq [1, \zeta(r)/\zeta(2r))$. This is because if $q_1^{\beta_1} \cdots q_v^{\beta_v}$ is the prime factorization of some positive integer, then

$$\begin{split} \sigma_{-r}^*(q_1^{\beta_1}\cdots q_v^{\beta_v}) &= \prod_{i=1}^v \sigma_{-r}^*(q_i^{\beta_i}) = \prod_{i=1}^v \left(1 + q_i^{-\beta_i r}\right) \le \prod_{i=1}^v \left(1 + q_i^{-r}\right) < \prod_p \left(1 + p^{-r}\right) \\ &= \prod_p \left(\frac{1 - p^{-2r}}{1 - p^{-r}}\right) = \frac{\zeta(r)}{\zeta(2r)}. \end{split}$$

It is straightforward to show that 1 and $\zeta(r)$ are elements of $\overline{\sigma_{-r}^*(\mathbb{N})}$. Therefore, Theorem 1 tells us that $\overline{\sigma_{-r}^*(\mathbb{N})} = [1, \zeta(r)/\zeta(2r)]$ if and only if $r \in (0, \eta^*]$.

2. Proofs

In what follows, let p_i denote the *i*th prime number. Let $\nu_p(x)$ denote the exponent of the prime p appearing in the prime factorization of the integer x.

To start, we need the following technical yet simple lemma.

Lemma 1. If $s, m \in \mathbb{N}$ and $s \leq m$, then $\frac{p_s^{2r} + 1}{p_s^{2r} + p_s^r} \leq \frac{p_m^{2r} + 1}{p_m^{2r} + p_m^r}$ for all r > 1.

Proof. Fix some r > 1, and write $h(x) = \frac{x^{2r} + 1}{x^{2r} + x^r}$. Then

$$h'(x) = \frac{r}{x(x^r+1)^2} \left(x^r - 2 - \frac{1}{x^r}\right).$$

We see that h(x) is increasing when $x \ge 3$. Hence, in order to complete the proof, it suffices to show that $h(2) \le h(3)$. Let $f(s) = 2^s 3^{2s} + 2^{2s} + 2^s - (2^{2s} 3^s + 3^{2s} + 3^s)$. For $s \ge 1$, we have

$$f''(s) = 18^{s} \log^{2}(18) + 4^{s} \log^{2}(4) + 2^{s} \log^{2}(2) - 12^{s} \log^{2}(12) - 9^{s} \log^{2}(9) - 3^{s} \log^{2}(3)$$

> $18^{s} \log^{2}(18) - 12^{s} \log^{2}(12) - 9^{s} \log^{2}(9) > 18^{s} \log^{2}(18) - 2(12^{s} \log^{2}(12)).$

It is easy to verify that $18^s \log^2(18) - 2(12^s \log^2(12))$ is increasing in s for $s \ge 1$, so we obtain

$$f''(s) > 18\log^2(18) - 2(12\log^2(12)) > 0.$$

A simple calculation shows that f'(1) > 0, so it follows that f'(s) > 0 for all $s \ge 1$. Since f(1) = 0 and r > 1, we have f(r) > 0. Equivalently, $2^{2r}3^r + 3^{2r} + 3^r < 2^r3^{2r} + 2^{2r} + 2^r$. It follows that $(2^{2r} + 1)(3^{2r} + 3^r) < (2^{2r} + 2^r)(3^{2r} + 1)$. This shows that $\frac{2^{2r} + 1}{2^{2r} + 2^r} < \frac{3^{2r} + 1}{3^{2r} + 3^r}$, which completes the proof.

The following theorem replaces the question of whether or not $\overline{\sigma_{-r}^*(\mathbb{N})}$ is connected with a question concerning infinitely many inequalities. The advantage in doing this is that we will further reduce this problem to the consideration of a finite list of inequalities in Theorem 3. Recall from the introduction that $\overline{\sigma_{-r}^*(\mathbb{N})}$ is connected if and only if it is equal to the interval $[1, \zeta(r)/\zeta(2r)]$.

Theorem 2. If r > 1, then $\overline{\sigma^*_{-r}(\mathbb{N})} = [1, \zeta(r)/\zeta(2r))$ if and only if

$$\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \le \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r} \right)$$

for all positive integers m.

Proof. First, suppose that $\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \leq \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r}\right)$ for all positive integers m. We will show that the range of $\log \sigma_{-r}^*$ is dense in $[0, \log (\zeta(r)/\zeta(2r)))$, which will then imply that the range of σ_{-r}^* is dense in $[1, \zeta(r)/\zeta(2r))$. Fix some

$$x \in (0, \log\left(\zeta(r)/\zeta(2r)\right)).$$

We will construct a sequence $(C_i)_{i=1}^{\infty}$ of elements of the range of $\log \sigma_{-r}^*$ that converges to x. First, let $C_0 = 0$. For each positive integer n, if $C_{n-1} < x$, let $C_n = C_{n-1} + \log(1 + p_n^{-\alpha_n r})$, where α_n is the smallest positive integer that satisfies $C_{n-1} + \log(1 + p_n^{-\alpha_n r}) \leq x$. If $C_{n-1} = x$, simply set $C_n = C_{n-1} = x$. For each $n \in \mathbb{N}, C_n \in \log \sigma_{-r}^*(\mathbb{N})$. Indeed, if $C_n \neq C_{n-1}$, then

$$C_n = \sum_{i=1}^n \log\left(1 + p_i^{-\alpha_i r}\right) = \log\left(\prod_{i=1}^n \left(1 + p_i^{-\alpha_i r}\right)\right) = \log\sigma_{-r}^*\left(\prod_{i=1}^n p_i^{\alpha_i}\right).$$

If, however, $C_n = C_{n-1} = x$, then we may let l be the smallest positive integer such that $C_l = x$ and show, in the same manner as above, that

$$C_n = C_l = \log \sigma_{-r}^* \left(\prod_{i=1}^l p_i^{\alpha_i}\right).$$

Let us write $\gamma = \lim_{n \to \infty} C_n$. Note that γ exists and that $\gamma \leq x$ because the sequence $(C_i)_{i=1}^{\infty}$ is nondecreasing and bounded above by x. If we can show that $\gamma = x$, then we will be done. Therefore, let us assume instead that $\gamma < x$.

We have $C_n = C_{n-1} + \log(1 + p_n^{-\alpha_n r})$ for all positive integers n. Write $D_n = \log(1 + p_n^{-r}) - \log(1 + p_n^{-\alpha_n r})$ and $E_n = \sum_{i=1}^n D_i$. As

$$x + \lim_{n \to \infty} E_n > \gamma + \lim_{n \to \infty} E_n = \lim_{n \to \infty} (C_n + E_n) = \lim_{n \to \infty} \left(\sum_{i=1}^n \log\left(1 + p_i^{-\alpha_i r}\right) + \sum_{i=1}^n D_i \right)$$
$$= \lim_{n \to \infty} \sum_{i=1}^n \log\left(1 + p_i^{-r}\right) = \log\left(\zeta(r)/\zeta(2r)\right),$$

we have $\lim_{n\to\infty} E_n > \log (\zeta(r)/\zeta(2r)) - x$. Therefore, we may let m be the smallest positive integer such that $E_m > \log (\zeta(r)/\zeta(2r)) - x$. If $\alpha_m = 1$ and m > 1, then $D_m = 0$. This forces $E_{m-1} = E_m > \log (\zeta(r)/\zeta(2r)) - x$, contradicting the minimality of m. If $\alpha_m = 1$ and m = 1, then $0 = E_m > \log (\zeta(r)/\zeta(2r)) - x$, which is also a contradiction since we originally chose $x < \log(\zeta(r)/\zeta(2r))$. Consequently, $\alpha_m > 1$. Due to the way we defined C_m and α_m , we have

$$C_{m-1} + \log\left(1 + p_n^{-(\alpha_m - 1)r}\right) > x.$$

Hence,

$$\log\left(1 + p_n^{-(\alpha_m - 1)r}\right) - \log\left(1 + p_n^{-\alpha_m r}\right) > x - C_m.$$

Using our original assumption that $\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \le \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r}\right)$, we have

$$\log\left(\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1}\right) \le \sum_{i=m+1}^{\infty} \log\left(1 + \frac{1}{p_i^r}\right) = \log\left(\frac{\zeta(r)}{\zeta(2r)}\right) - E_m - C_m$$

$$< x - C_m < \log\left(1 + p_n^{-(\alpha_m - 1)r}\right) - \log\left(1 + p_n^{-\alpha_m r}\right) = \log\left(\frac{p_m^{\alpha_m r} + p_m^r}{p_m^{\alpha_m r} + 1}\right)$$

Thus,

$$\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} < \frac{p_m^{\alpha_m r} + p_m^r}{p_m^{\alpha_m r} + 1}$$

Rewriting this inequality, we get $p_m^{2r} + p_m^{(\alpha_m+1)r} < p_m^{3r} + p_m^{\alpha_m r}$. Dividing through by $p_m^{\alpha_m r}$ yields $p_m^{(2-\alpha_m)r} + p_m^r < 1 + p_m^{(3-\alpha_m)r}$, which is impossible since $\alpha_m \ge 2$. This contradiction proves that $\gamma = x$, so $\overline{\sigma_{-r}^*(\mathbb{N})} = [1, \zeta(r)/\zeta(2r)]$.

To prove the converse, suppose there exists some positive integer m such that

$$\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} > \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r} \right).$$

We may write this inequality as

$$\frac{p_m^{2r} + 1}{p_m^{2r} + p_m^r} < \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r} \right)^{-1}.$$
(2)

Fix a positive integer N. If $\nu_{p_s}(N) = 1$ for all $s \in \{1, 2, \dots, m\}$, then

$$\sigma_{-r}^*(N) \ge \prod_{s=1}^m \left(1 + \frac{1}{p_s^r}\right) = \frac{\zeta(r)}{\zeta(2r)} \prod_{i=m+1}^\infty \left(1 + \frac{1}{p_i^r}\right)^{-1}.$$

On the other hand, if $\nu_{p_s}(N) \neq 1$ for some $s \in \{1, 2, ..., m\}$, then $\sigma_{-r}^*\left(p_s^{\nu_{p_s}(N)}\right) \leq 1 + \frac{1}{p_s^{2r}}$. This implies that

$$\sigma_{-r}^*(N) \le \left(1 + \frac{1}{p_s^{2r}}\right) \prod_{\substack{i=1\\i \ne s}}^{\infty} \left(1 + \frac{1}{p_i^r}\right) = \frac{\zeta(r)}{\zeta(2r)} \frac{1 + p_s^{-2r}}{1 + p_s^{-r}} = \frac{\zeta(r)}{\zeta(2r)} \frac{p_s^{2r} + 1}{p_s^{2r} + p_s^r}$$

in this case. Using Lemma 1, we have

$$\sigma_{-r}^*(N) \le \frac{\zeta(r)}{\zeta(2r)} \frac{p_m^{2r} + 1}{p_m^{2r} + p_m^r}.$$

As N was arbitrary, we have shown that there is no element of the range of σ_{-r}^* in the interval

$$\left(\frac{\zeta(r)}{\zeta(2r)}\frac{p_m^{2r}+1}{p_m^{2r}+p_m^r},\frac{\zeta(r)}{\zeta(2r)}\prod_{i=m+1}^{\infty}\left(1+\frac{1}{p_i^r}\right)^{-1}\right).$$

This interval is a gap in the range of σ_{-r}^* because of the inequality (2).

As mentioned above, we wish to reduce the task of checking the infinite collection of inequalities given in Theorem 2 to that of checking finitely many inequalities. We do so in Theorem 3, the proof of which requires the following lemma.

Lemma 2. If $j \in \mathbb{N} \setminus \{1, 2, 3, 4, 6, 9\}$, then $\frac{p_{j+1}}{p_j} < \sqrt[3]{2}$.

Proof. In [13], it is shown that $\frac{p_{j+1}}{p_j} \le \frac{6}{5} < \sqrt[3]{2}$ for all $j \ge 10$. We easily verify the cases j = 5, 7, 8 by hand.

Theorem 3. If $r \in (1,3]$, then $\overline{\sigma^*_{-r}(\mathbb{N})} = [1,\zeta(r)/\zeta(2r)]$ if and only if

$$\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \le \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r} \right)$$

for all $m \in \{1, 2, 3, 4, 6, 9\}$.

Proof. Let

$$F(m,r) = \frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \prod_{i=1}^m \left(1 + \frac{1}{p_i^r}\right)$$

so that the inequality $\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \leq \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r}\right)$ is equivalent to $F(m, r) \leq \frac{\zeta(r)}{\zeta(2r)}$. Let $r \in (1,3]$. By Theorem 2, it suffices to show that if $F(m, r) \leq \frac{\zeta(r)}{\zeta(2r)}$ for all

 $m \in \{1, 2, 3, 4, 6, 9\}$, then $F(m, r) \leq \frac{\zeta(r)}{\zeta(2r)}$ for all $m \in \mathbb{N}$. Therefore, assume that r is such that $F(m, r) \leq \frac{\zeta(r)}{\zeta(2r)}$ for all $m \in \{1, 2, 3, 4, 6, 9\}$.

We will show that F(m+1,r) > F(m,r) for all $m \in \mathbb{N} \setminus \{1,2,3,4,6,9\}$. This will show that $(F(m,r))_{m=10}^{\infty}$ is an increasing sequence. As $\lim_{m\to\infty} F(m,r) = \frac{\zeta(r)}{\zeta(2r)}$, it will then follow that $F(m,r) < \frac{\zeta(r)}{\zeta(2r)}$ for all integers $m \ge 10$. Furthermore, we will see that $F(5,r) < F(6,r) \le \frac{\zeta(r)}{\zeta(2r)}$ and $F(7,r) < F(8,r) < F(9,r) \le \frac{\zeta(r)}{\zeta(2r)}$, which will complete the proof.

Let $m \in \mathbb{N} \setminus \{1, 2, 3, 4, 6, 9\}$. By Lemma 2, $\frac{p_{m+1}}{p_m} < \sqrt[3]{2} \leq \sqrt[r]{2}$. This shows that $p_{m+1}^r < 2p_m^r$, implying that $2p_m^{2r} > p_m^r p_{m+1}^r$. Therefore,

$$2p_m^{2r} + 2 > p_m^r p_{m+1}^r + \frac{p_m^r}{p_{m+1}^r} - p_{m+1}^r - \frac{1}{p_{m+1}^r} = \frac{(p_m^r - 1)(p_{m+1}^{2r} + 1)}{p_{m+1}^r}$$

Multiplying each side of this inequality by $\frac{p_{m+1}^r}{(p_{m+1}^{2r}+1)(p_m^{2r}+1)}$ and adding 1 to each side, we get

$$1+\frac{2p_{m+1}^r}{p_{m+1}^{2r}+1}>1+\frac{p_m^r-1}{p_m^{2r}+1},$$

which we may write as

$$\frac{(p_{m+1}^r+1)^2}{p_{m+1}^{2r}+1} > \frac{p_m^{2r}+p_m^r}{p_m^{2r}+1}.$$

Finally, we get

$$F(m+1,r) = \frac{p_{m+1}^{2r} + p_{m+1}^r}{p_{m+1}^{2r} + 1} \prod_{i=1}^{m+1} \left(1 + \frac{1}{p_i^r}\right) = \frac{(p_{m+1}^r + 1)^2}{p_{m+1}^{2r} + 1} \prod_{i=1}^m \left(1 + \frac{1}{p_i^r}\right)$$
$$> \frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \prod_{i=1}^m \left(1 + \frac{1}{p_i^r}\right) = F(m,r).$$

Now, let

$$V_m(r) = \log\left(\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1}\right) - \sum_{i=m+1}^{\infty} \log\left(1 + \frac{1}{p_i^r}\right).$$

Equivalently, $V_m(r) = \log(F(m, r)) - \log\left(\frac{\zeta(r)}{\zeta(2r)}\right)$, where F is the function defined in the proof of Theorem 3. Observe that

$$\frac{p_m^{2r} + p_m^r}{p_m^{2r} + 1} \le \prod_{i=m+1}^{\infty} \left(1 + \frac{1}{p_i^r} \right)$$

if and only if $V_m(r) \leq 0$. If we let $J_m(r) = \sum_{i=m+1}^{m+6} \frac{1}{p_i^r + 1} - \frac{p_m^{2r} - 2p_m^r - 1}{(p_m^r + 1)(p_m^{2r} + 1)}$, then we have

$$\frac{\partial}{\partial r}J_m(r) = \frac{p_m^r((p_m^r - 1)^4 - 12p_m^{2r})\log p_m}{(p_m^r + 1)^2(p_m^{2r} + 1)^2} - \sum_{i=m+1}^{m+6} \frac{p_i^r\log p_i}{(p_i^r + 1)^2}$$

It is not difficult to verify that $\frac{p_m^r((p_m^r-1)^4-12p_m^{2r})\log p_m}{(p_m^r+1)^2(p_m^{2r}+1)^2} \ge -1$ for all $r \in [1,2]$ and $m \in \{1,2,3,4,6,9\}$. Therefore, when $r \in [1,2]$ and $m \in \{1,2,3,4,6,9\}$, we have

$$\frac{\partial}{\partial r}J_m(r) \ge -1 - \sum_{i=m+1}^{m+6} \frac{p_i^r \log p_i}{(p_i^r + 1)^2} \ge -1 - \sum_{i=m+1}^{m+6} \frac{\log p_i}{p_i^r} > -7.$$

Numerical calculations show that $J_m(r) > \frac{1}{400}$ for all $m \in \{1, 2, 3, 4, 6, 9\}$ and

$$r \in \left\{ 1 + \frac{n}{2800} \colon n \in \{0, 1, 2, \dots, 2800\} \right\}$$

Because each function J_m is continuous in r for $r \in [1, 2]$, we see that

$$J_m(r) > \frac{1}{400} - 7\left(\frac{1}{2800}\right) = 0$$

for all $r \in [1, 2]$ and $m \in \{1, 2, 3, 4, 6, 9\}$.

We introduced the functions J_m so that we could write

$$\frac{\partial}{\partial r}V_m(r) = \sum_{i=m+1}^{\infty} \frac{\log p_i}{p_i^r + 1} - \frac{(p_m^{2r} - 2p_m^r - 1)\log p_m}{(p_m^r + 1)(p_m^{2r} + 1)} > (\log p_m)J_m(r) > 0$$

for all $m \in \{1, 2, 3, 4, 6, 9\}$ and $r \in [1, 2]$. A quick numerical calculation shows that $V_2(1.5) < 0 < V_2(2)$, so the function V_2 has exactly one root, which we will call η^* , in the interval (1, 2]. Further calculations show that $V_m(2) < 0$ for all $m \in \{1, 3, 4, 6, 9\}$. Hence, $V_m(r) \leq 0$ for all $m \in \{1, 2, 3, 4, 6, 9\}$ and $r \in (1, \eta^*]$. By Theorem 3, this means that if $r \in (1, 2]$, then $\overline{\sigma^*_{-r}(\mathbb{N})}[1, \zeta(r)/\zeta(2r)]$ if and only if $r \leq \eta^*$.

Next, note that

$$\frac{\partial}{\partial r} V_2(r) = \sum_{i=3}^{\infty} \frac{\log p_i}{p_i^r + 1} - \frac{(3^{2r} - 2 \cdot 3^r - 1)\log 3}{(3^{2r} + 1)(3^r + 1)} > -\frac{(3^{2r} - 2 \cdot 3^r - 1)\log 3}{(3^{2r} + 1)(3^r + 1)} > -\frac{(3^{2r} + 1)\log 3}{(3^{2r} + 1)(3^r + 1)} \ge -\frac{\log 3}{3^2 + 1} > -1.1$$

for all $r \in [2,3]$. Let $A = \left\{2 + \frac{n}{400} : n \in \{0, 1, 2, \dots, 400\}\right\}$. With a computer program, one may verify that $V_2(r) > 0.003$ for all $r \in A$. Because V_2 is continuous, this shows that $V_2(r) > 0.003 - 1.1\left(\frac{1}{400}\right) > 0$ for all $r \in [2,3]$. Consequently, $\overline{\sigma_{-r}^*(\mathbb{N})} \neq [1, \zeta(r)/\zeta(2r))$ if $r \in [2,3]$.

We are now in a position to prove Theorem 1. Note that the equation defining η^* in the statement of this theorem is simply a rearrangement of the equation $V_2(\eta^*) = 0$. Therefore, we have shown that the theorem is true for $r \in (1,3]$. In order to prove the theorem for r > 3, it suffices (by Theorem 3) to show that $F(1,r) > \frac{\zeta(r)}{\zeta(2r)}$ for all r > 3. If r > 3, then

$$F(1,r) = \frac{(2^r+1)^2}{2^{2r}+1} = \frac{2^{2r}+2^{r+1}+1}{2^{2r}+1} > \frac{2^{2r}+2^r+\frac{2^{r+1}}{r-1}}{2^{2r}+1} = \frac{1+\frac{1}{2^r}+\frac{1}{(r-1)2^{r-1}}}{1+\frac{1}{2^{2r}}}$$
$$> \frac{1+\frac{1}{2^r}+\frac{1}{(r-1)2^{r-1}}}{\zeta(2r)} = \frac{1+\frac{1}{2^r}+\int_2^\infty x^{-r}dx}{\zeta(2r)} > \frac{\zeta(r)}{\zeta(2r)}.$$

3. Future Directions

Let $\mathcal{N}^*(t)$ denote the number of connected components of $\overline{\sigma_t^*(\mathbb{N})}$. It would be interesting to obtain analogues of Zubrilina's results [17] by finding asymptotic estimates for $\mathcal{N}^*(-r)$ as $r \to \infty$. Let

$$E_m^* = \{t \in \mathbb{R} \colon \mathcal{N}^*(t) = m\}.$$

Theorem 1 tells us that $E_1^* = [-\eta^*, 0)$. The sets E_m^* are the natural unitary analogues of the sets E_m defined in [5, Section 4]. Continuing the analogy, we say a positive integer *m* is a *unitary Zubrilina number* if $E_m^* = \emptyset$ (the name comes from Zubrilina's result that $E_4 = \emptyset$). We do not have any specific examples of unitary Zubrilina numbers, but we still make the following conjectures.

Conjecture 1. There are infinitely many unitary Zubrilina numbers.

Conjecture 2. For r > 1, $\mathcal{N}^*(-r)$ is monotonically increasing as a function of r.

Note that Conjecture 2 implies that the sets E_m^* are intervals.

Acknowledgements. The author thanks the referee for carefully reading the manuscript and providing very helpful suggestions.

References

- K. Alladi, On arithmetic functions and divisors of higher order, J. Austral. Math. Soc. Ser. A. 23 (1997), 9–27.
- [2] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
- [3] E. Cohen, Arithmetical functions associated with the unitary divisors of an integer, Math. Z. 74 (1960), 66–80.
- [4] C. Defant, Complex divisor functions, Anal. Geom. Number Theory 1 (2016), 22-48.
- [5] C. Defant, Connected components of complex divisor functions, arXiv:1711.04244.
- [6] C. Defant, On ranges of variants of the divisor functions that are dense, Int. J. Number Theory 11 (2015), 1905–1912.
- [7] C. Defant, On the density of ranges of generalized divisor functions, Notes on Number Theory and Discrete Mathematics 21 (2015), 80–87.
- [8] C. Defant, On the density of ranges of generalized divisor functions with restricted domains, Unif. Distrib. Theory 10 (2015), 19–33.
- [9] R. K. Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981.

- [10] G. H. Hardy, P. V. Seshu Aiyar, and B. M. Wilson, Collected Papers of Srinivasa Ramanujan, Cambridge: University Press, 1927.
- [11] R. Laatsch, Measuring the abundancy of integers, Math. Mag. 59 (1986), 84–92.
- [12] D. S. Mitrinović, J. Sándor, and B. Crstici, Handbook of Number Theory, Mathematics and its Applications, Vol. 351, Chapter III, Kluwer Academic Publishers Group, Dordrecht, 1996.
- [13] J. Nagura, On the interval containing at least one prime number, Proc. Japan Acad. 28 (1952), 177–181.
- [14] P. Pollack and C. Pomerance, Some problems of Erdös on the sum-of-divisors function. Trans. Amer. Math. Soc. 3 (2016), 1–26.
- [15] C. Sanna, On the closure of the image of the generalized divisor function, Unif. Distrib. Theory 12 (2017), 77–90.
- [16] P. A. Weiner, The abundancy ratio, a measure of perfection, Math. Mag. 73 (2000), 307–310.
- [17] N. Zubrilina, On the number of connected components of ranges of divisor functions, arXiv:1711.02871.