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Abstract
For any real ¢, the unitary divisor function o} is the multiplicative arithmetic func-
tion defined by o} (p®) = 1+ p** for all primes p and positive integers a. Let o} (N)
denote the topological closure of the range of o}. We calculate an explicit constant
n* ~ 1.9742550 and show that o* (N) is connected if and only if r € (0,n*]. We
end with some open problems.

1. Introduction

For each ¢ € C, the divisor function o, is defined by oc(n) = 32, d°. Divisor
functions, especially o1, 09, and o_1, are among the most extensively-studied arith-
metic functions [2, 10, 12]. For example, two very classical number-theoretic topics
are the study of perfect numbers and the study of friendly numbers. A positive
integer n is said to be perfect if o_1(n) = 2, and n is said to be friendly if there
exists m # n with o_1(m) = o_1(n) [14]. Motivated by the very difficult problems
related to perfect and friendly numbers, Laatsch [11] studied o_1(N), the range of
o_1. He showed that o_;(N) is a dense subset of the interval [1,00) and asked if
o_1(N) is in fact equal to the set Q N [1,00). Weiner [16] answered this question in
the negative, showing that (Q N[1,00)) \ 0-1(N) is also dense in [1, 00).

The author has studied ranges of divisor functions in a variety of contexts [4, 5,
6, 7, 8]. For example, it is shown in [4] that N (c) — oo as R(¢) — —oo, where
N(c) denotes the number of connected components of o.(N). Here, the overline
denotes the topological closure. In [15], Sanna develops an algorithm that can be
used to calculate o_,(N) when r > 1 is real and is known with sufficient precision.
In addition, he proves that N (—r) is finite for such 7. The author [5] has since
extended this result, showing that A(c) is finite whenever R(c) < 0 and ¢ # 0.
Very recently, Zubrilina [17] has obtained asymptotic estimates for A'(—r) when
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r > 1. She has also shown that there is no real number r such that N'(r) = 4.

In this paper, we study the close relatives of the divisor functions known as
unitary divisor functions. A unitary divisor of an integer n is a divisor d of n such
that ged(d,n/d) = 1. The unitary divisor function o is defined by

oi(n) = Z d°
d|n
ged(d,n/d)=1

(see, for example, [1], [3], or [9]). The function ¢ is multiplicative and satisfies
o (p®) = 1+ p° for all primes p and positive integers .

If ¢ € [-1,0), then one may use the same argument that Laatsch employed in
[11] in order to show that of(N) = [1,00). In particular, o (N) is connected if
t € [-1,0). On the other hand, o} (N) is a discrete disconnected set if t > 0 (indeed,
in this case, 04(N) N [0, 5] is finite for every s > 0). The purpose of this paper is to

prove the following theorem. Let ¢ denote the Riemann zeta function.

Theorem 1. Let n* be the unique number in the interval (1,2] that satisfies the

equation
27 +1 (3" +1)* _ <(nY) 1)
2n" 321+ 1 ((2n%)

If r € R, then o_,(N) is connected if and only if r € (0,n*].

Remark 1.1. In the process of proving Theorem 1, we will show that there is
indeed a unique solution to the equation (1) in the interval (1,2].

In all that follows, we assume r > 1 and study o* . (N). We first observe that
o* (N) C [1,¢(r)/¢(2r)). This is because if ¢]* - - - g7 is the prime factorization of
some positive integer, then

o (@ gl = [Ton@) =TT (1 +a) < [T +a) <[+
i=1 i=1 P

i=1
I (1 —p-%) )
S\ 1—p" ¢(2r)
Tt is straightforward to show that 1 and ((r) are elements of o* .(N). Therefore,
Theorem 1 tells us that o*, (N) = [1,{(r)/¢(2r)] if and only if r € (0,n*].

2. Proofs

In what follows, let p; denote the i*" prime number. Let vp(x) denote the exponent
of the prime p appearing in the prime factorization of the integer x.
To start, we need the following technical yet simple lemma.
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P+l _ Pl

Lemma 1. Ifs,m € N and s <m, then = < 5
ps"+ps T Pt P

for allr > 1.

x2r + 1
Proof. Fix some r > 1, and write h(r) = ———. Then
"+ "

h’(m)—W(m’“?é).

We see that h(x) is increasing when x > 3. Hence, in order to complete the proof,
it suffices to show that h(2) < h(3). Let f(s) = 2532% 4225 425 — (22535 + 325 + 3°).
For s > 1, we have

f"(s) = 18°1log?(18) + 4% log®(4) + 2° log?(2) — 12° log?(12) — 9° log®(9) — 3° log®(3)

> 18° log?(18) — 12° log?(12) — 9°log?(9) > 18°log?(18) — 2(12° log?(12)).

It is easy to verify that 18°log?(18) — 2(12° log?(12)) is increasing in s for s > 1, so
we obtain
f"(s) > 181log?(18) — 2(121log*(12)) > 0.

A simple calculation shows that f/(1) > 0, so it follows that f’(s) > 0 for all s > 1.

Since f(1) = 0 and r > 1, we have f(r) > 0. Equivalently, 22"3" + 32" + 3" <

2132 4 921 4 o7 Tt follows that (227 + 1)(32" +37) < (22" +27)(3%" +1). This shows
22r+1 341

that 2%+ or < 3 30 which completes the proof. U

The following theorem replaces the question of whether or not o* .(N) is con-
nected with a question concerning infinitely many inequalities. The advantage in
doing this is that we will further reduce this problem to the consideration of a fi-
nite list of inequalities in Theorem 3. Recall from the introduction that o* (N) is
connected if and only if it is equal to the interval [1,¢(r)/¢(2r)].

Theorem 2. Ifr > 1, then o* . (N) = [1,{(r)/{(2r)) if and only if
2r T 0
R 1
Pm T Pm - 14—
pir+1 7 ( " )

for all positive integers m.

. +
Proof. First, suppose that pm Pin < ( > for all positive integers m.
i=m+1 i

2r +1 —
We will show that the range of logo* . is dense in [0,log ({(r)/¢(2r))), which will
then imply that the range of ¢* . is dense in [1,{(r)/{(2r)). Fix some

€ (0,1og (¢(r)/¢(2r))) -
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We will construct a sequence (C;)$2, of elements of the range of logo*, that con-
verges to x. First, let Cy = 0. For each positive integer n, if Cp,_1 < x, let
C, =Cph_1 +log (1 + D, (’"r), where «,, is the smallest positive integer that satis-
fies C,,_1 + log (1 +p70"”) <z If Cp_q =z, simply set C,, = C,,_1 = z. For each
n €N, C, €logo* (N). Indeed, if C,, # C,_1, then

Cn = ZIOg (1+p; ") =log (H (1 +pi_aﬂ)> =logo™, (Hp?) )
=1 i=1

i=1
If, however, C,, = C,,_1 = x, then we may let [ be the smallest positive integer such
that C; = x and show, in the same manner as above, that

l
C,=C;=logo", (prh) .
i=1

Let us write v = lim C,,. Note that v exists and that v < x because the sequence

n—oo

(C;)$2, is nondecreasing and bounded above by x. If we can show that v = z, then
we will be done. Therefore, let us assume instead that v < x.
We have C,, = C,,_1 + log(1 —I—p_a”) for all positive integers n. Write D,, =

log(1+p;,") —log(1l+ p,*") and E, ZD As

i=1

x—i—nh_)n;o E, > V—i-nh_{& E, = nh_,néo<0”+E") = nh_)n;o (Z log (1 +p; ) + ZD1>

= nlggozglog(l +p; ") =log (C(r)/¢(2r)),
we have lim E, > log(((r)/{(2r)) — xz. Therefore, we may let m be the smallest
positive integer such that E,, > log (¢(r)/¢(2r)) —z. If o, = 1 and m > 1, then
D,, = 0. This forces E,,_1 = E,, > log ({(r)/{(2r)) — z, contradicting the mini-
mality of m. If a,, = 1 and m = 1, then 0 = E,, > log (¢(r)/¢{(2r)) — x, which is
also a contradiction since we originally chose x < log(¢(r)/¢(2r)). Consequently,
@ > 1. Due to the way we defined C), and «,,, we have

Crner + log (1 n p;(a’"_l)r> >z

Hence,
log (1 +p;(am’1)r) log (1 +p*°""r) >z — Cp.
Using our original assumption that ZT—:p{” < ( — ), we have
1=m-+1 (

() < 5 (o) ()

1=m-+1
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amr+pm
Pt +1 )7

r—C,, < log (1 +p;(“’”71)’") —log (14 p,*m") = log (
Thus,
P + P _ D™ + P
Qr + 1 %LmT +1

Rewriting this inequality, we get p2" + p(o""H) < P2 + p&m”. Dividing through by
poam” yields pg_o"”)r +p,, <1 —|—p(m3 @m)” which is impossible since a,, > 2. This
contradiction proves that v = x, so o* .(N) = [1,(r)/{(2r)].

To prove the converse, suppose there exists some positive integer m such that

+
i=m-+1 pl
We may write this inequality as
27" + 1 0 —1
s (1) o
PR AP o Py
Fix a positive integer N. If v, (N) =1 for all s € {1,2,...,m}, then

i) 01008

K2

s=1 s i=m-+1

On the other hand, if v, (N) # 1 for some s € {1,2,...,m}, then o*, (pZPs(N)) <

1
1+ —=. This implies that
pZr

S

. 1\ & 1 ((r) 1+p7®  ((r) p¥+1
N — I I — ) = =
o= M) <1+p§"> paley <1+p§’) C(2r) 1+ps"  C(2r) p3r+p§

i#S

in this case. Using Lemma 1, we have

((r) pm+1
~ ((2r) pE +pm

As N was arbitrary, we have shown that there is no element of the range of o*, in

the interval )
Cr) pZ+1 C(r) 1 1\~
<<<2r> v o AL (”pz> ) '

1=m-+1

ol (N) <

This interval is a gap in the range of o* . because of the inequality (2). O]
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As mentioned above, we wish to reduce the task of checking the infinite collection
of inequalities given in Theorem 2 to that of checking finitely many inequalities. We
do so in Theorem 3, the proof of which requires the following lemma.

Lemma 2. If j € N\ {1,2,3,4,6,9}, then 72 < /2.

pj

=2}

Proof. In [13], it is shown that p; o< 2 <« Y2 for all j > 10. We easily verify the
J
cases j = 5,7,8 by hand. U

ot

Theorem 3. Ifr € (1,3], then o*,(N) = [1,((r)/¢(2r)] if and only if
Por + P ﬁ <1+ 1)
p%‘ +1 - i=m+1 p’T
for allm € {1,2,3,4,6,9}.

Proof. Let

- B 1)

so that the inequality p"; . m <L H ( ) is equivalent to F(m,r) <
+ i=m-+1
¢(r)

¢(2r)

for all m € N. Therefore, assume that r

i

for all

Let r € (1,3]. By Theorem 2, it suffices to show that if F(m,r) <

¢(r)
¢(2r)

is such that F(m,r) < (C((;r)) for all m € {1,2,3,4,6,9}.
We will show that F(m + 1,7) > F(m,r) for all m € N\ {1,2,3,4,6,9}. This

¢(r)
¢(2r)’

) for all integers m > 10. Furthermore, we
¢(r) ()

¢(2r) = (@)
which will complete the proof.
Let m € N\{1,2,3,4,6,9}. By Lemma 2, Pmt1 V/2 < {/2. This shows that

m

Pr1 < 2ph,, implying that 2p27 > pl pr . Therefore,

m € {1,2,3,4,6,9}, then F(m,r) <

will show that (F(m,7))5°_1, is an increasing sequence. As lim F(m,r) =
m—00

¢(r)

it will then follow that F(m,r) <

will see that F(5,7) < F(6,r) <

and F(7,r) < F(8,r) < F(9,r) <

Pra 1 (- DEan +1)
207 + 2> PPyt o — Pyt — o pet] .
Dt Pim+1 Prnt1
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p;z+1
(P2 + (& +1)

Multiplying each side of this inequality by and adding 1 to

each side, we get

2pr, 1 pro—1
1 + m+ 1 + m ,
p?yﬁrl +1 P +1

which we may write as
(Prsr + 1) _ por 41
pg‘rf—&-l +1 P 4+1

Finally, we get

m—+1 r 2 m
1 1

F(m+1 7") pm+1 +pm+1 H <1+ r) %17—%)1_‘[(14'__7‘)
Pori1 + D; O o D;

Now, let

2r r s

Dy + D 1
" (r) =log [ P~ 2m ) — § log (1+—=).
Vm(r) Og(p?qiﬂ) Og( +p*)

i=m-+1 ?

Equivalently, V,,,(r) = log(F(m,r)) — log <—CC((2T)) >, where F' is the function defined
r
in the proof of Theorem 3. Observe that

2r r 0
D + P

Om T Om || 1+
po+1 7 ( pz)

i=m-+1
m+6 2r T
1 —2pr —
if and only if V,,(r) < 0. If we let J,,,(r) = E P — 2Pm then

it (D0 L)

we have

m+6
D gy = Pl = 1 = 1295 logpn, _ i P} logpi
or-" (P +1)2(p3r + 1) o )2

T 7'_14_1227'1 -
It is not difficult to verify that Pin (P = 1) Y Pin) Qng > —1forallreL,2]
(Ph, +1)2(p7; + 1)

and m € {1,2,3,4,6,9}. Therefore, when r € [1,2] and m € {1,2,3,4,6,9}, we
have

) m~+6 m+6

p; logp;
1 =T S
aTJ ( ) 1 Z (p;f+1)2 - 1 Z

i=m-+1 1=m-+1

1 )
Ogrpz > _7.
p;
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1
Numerical calculations show that Jy,(r) > 100 for all m € {1,2,3,4,6,9} and

n
re{1+m.nE{O,l,Q,...,QSOO}}.

Because each function .J,,, is continuous in r for r € [1,2], we see that
1 1
In(r) > 355 =7 (2800> =0
for all r € [1,2] and m € {1,2,3,4,6,9}.
We introduced the functions J,,, so that we could write

O ) = i logp;  (ph — 20}, —1)1log P

_ - > (1 Im >0
or Pl +1 (Pp, + 1) (02 +1) (logPr).Jn(r)

i=m-+1
for all m € {1,2,3,4,6,9} and r € [1,2]. A quick numerical calculation shows
that V5(1.5) < 0 < V%(2), so the function V3 has exactly one root, which we will
call n*, in the interval (1,2]. Further calculations show that V,(2) < 0 for all
m € {1,3,4,6,9}. Hence, V,,(r) <0 for all m € {1,2,3,4,6,9} and r € (1,1*]. By
Theorem 3, this means that if r» € (1,2], then o* (N)[1,¢(r)/¢(2r)] if and only if
r<n*.

Next, note that

0 ( ):ilogpi (321 —2.3" —1)log3 (321 —2.3" —1)log 3

a2

J— > J—
i+l (Br+1)B +1) (3r+1)B +1)
(32" +1)log3 - log 3
B3 +1)@B"+1) = 32+1
for all r € [2,3]. Let A= {2—|— &: ne {071,2,...,400}}. With a computer
program, one may verify that V5(r) > 0.003 for all r € A. Because V5 is continuous,

1
this shows that Va(r) > 0.003 — 1.1(—) > 0 for all » € [2,3]. Consequently,

400
o, (N) # [1,{(r)/¢(2r)) if r € [2,3].

We are now in a position to prove Theorem 1. Note that the equation defining
7* in the statement of this theorem is simply a rearrangement of the equation
Va(n*) = 0. Therefore, we have shown that the theorem is true for r € (1,3].
In order to prove the theorem for r > 3, it suffices (by Theorem 3) to show that

> — >—1.1

F(l,r)>f((272) for all r > 3. If r > 3, then
. . . r r r+1 1 1
Py QHD? a2l 202 i 1 e o
’ 22r 4 1 22r 41 22r 4 1 1+2%
R T G i O el MM )

C2r) - ¢(2r) Eh)
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3. Future Directions

Let N*(¢) denote the number of connected components of of(N). It would be
interesting to obtain analogues of Zubrilina’s results [17] by finding asymptotic
estimates for N*(—r) as r — co. Let

Er = {t e R: N*(t) = m).

Theorem 1 tells us that Ef = [—n*,0). The sets E}, are the natural unitary
analogues of the sets E,, defined in [5, Section 4]. Continuing the analogy, we say a
positive integer m is a unitary Zubrilina number if EX = () (the name comes from
Zubrilina’s result that Fy = §). We do not have any specific examples of unitary
Zubrilina numbers, but we still make the following conjectures.

Conjecture 1. There are infinitely many unitary Zubrilina numbers.
Conjecture 2. For r > 1, N*(—r) is monotonically increasing as a function of r.

Note that Conjecture 2 implies that the sets E, are intervals.

Acknowledgements. The author thanks the referee for carefully reading the
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