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Abstract
We generalize work of Erdős and Fishburn to study the structure of finite point sets
that determine few distinct triangles. Specifically, we ask for a given t, what is the
maximum number of points that can be placed in the plane to determine exactly
t distinct triangles? Denoting this quantity by F (t), we show that F (1) = 4,
F (2) = 5, and we completely characterize the optimal configurations for t = 1, 2.
We also discuss the general structure of optimal configurations and conjecture that
regular polygons are always optimal. This differs from the structure of optimal
configurations for distances, where it is conjectured that optimal configurations
always exist in the triangular lattice. We also prove that the number of distinct
triangles determined by a regular n-gon is asymptotic to n2/12; so if the conjecture
about regular n-gons being optimal is true, we identify the constant for the lower
bound of distinct triangles determined by any point configuration.

1This work was supported by NSF Grants DMS1265673, DMS1561945, and DMS1347804,
Simons Foundation Grant #360560, Williams College, and the Clare Boothe Luce program. We
also thank Paul Baird-Smith and Xiaoyu Xu for helpful conversations.
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1. Introduction

Finite point configurations are a central object of study in discrete geometry. Per-
haps the most well-known problem is the Erdős distinct distances conjecture, which
states that any set of n points in the plane determines at least Ω(n/

√
logn) distinct

distances between points. This problem, first proposed by Erdős in 1946 [2], was
essentially resolved by Guth and Katz who proved that n points determined at least
Ω(n/ logn) distinct distances [5]. Higher dimensional analogs still remain open. A
closely related question is: given a fixed positive integer k, what is the maximum
number of points that can be placed in the plane to determine exactly k distances?
Furthermore, can the optimal configurations be completely characterized? Erdős
and Fishburn [3] introduced this question in 1996 and characterized the optimal
configurations for 1 ≤ k ≤ 4. Shinohara [8] and Wei [10] have characterized the
optimal configurations for k = 5 and k = 6, respectively. Erdős also conjectured
that an optimal configuration always exists in the triangular lattice given k large
enough (see Figure 1) and this conjecture remains open.

Figure 1: Maximal configurations determining exactly k distances, for 2 ≤ k ≤ 6
[1]. For each k > 2, there is an example from the triangular lattice; it is conjectured
that this is always the case for k large enough.

As a distance is just a pair of points, distances can be phrased as the set of
2-point configurations determined by a set. Analogously, we can study the set of
3-point configurations (i.e., triangles) determined by a set. The analogue of the
Erdős distinct distance problem would ask for the minimum number of distinct
triangles determined by n points in the plane. It follows directly from Guth and
Katz’s result on the number of distinct distances that a set of n points in the plane
determines at least Ω(n2/ log(n)) distinct triangles, but Misha Rudnev [7] adapted
their argument and improved this bound to Ω(n2). It is also known that this bound
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is best possible up to the implicit constant. We study the following analogue of
Erdős and Fishburn’s question: given a fixed t, what is the maximum number of
points that can be placed in the plane to determine exactly t distinct triangles?
Our main result is the following.

Theorem 1.1. Let F (t) denote the maximum number of points that can be placed
in the plane to determine exactly t distinct triangles. Then

1. F (1) = 4 and the only configuration that achieves this is a rectangle, and

2. F (2) = 5 and the only configurations that achieve this are a square with a
point at its center and a regular pentagon.

We also make two conjectures: first, that F (3) = 6, with a regular hexagon being
a representative optimal configuration, and second, that a regular polygon always
minimizes the number of distinct triangles in an n-point set. If true, this second
conjecture determines the true leading constant for Guth and Katz’s asymptotic of
at least Ω(n2) distinct triangles for a set of n points: 1/12.

We prove Theorem 1.1 by classifying all potential arrangements of 4-point sets in
the plane and sorting them by the minimum number of distinct triangles they create.
To show part 1, we look at the 4-point sets that do not trivially determine more than
one triangle. Through elementary geometry, we eliminate all non-trivial cases that
have at least two distinct triangles except the rectangle. This immediately implies
that F (1) = 4, and the rectangle uniquely satisfies this equation. Proving part 2,
we take the 4-point sets that determine fewer than three distinct triangles, and we
examine all possible ways to add a fifth point to the set. After removing all cases
where the fifth point causes at least three distinct triangles, the only remaining
configurations are the square with a point at its center and the regular pentagon.
Thus, F (2) = 5.

2. Conjectures

In this section, we present some conjectures and investigate their consequences.

Conjecture 2.1. Any set of seven points in the plane determines at least four
distinct triangles; thus F (3) = 6.

In Figure 2 we see that the vertices of a regular hexagon determine exactly three
distinct triangles, so we know F (3) ≥ 6.

Another interesting question to ask concerns the general structure of the optimal
configurations. For example, are regular polygons always optimal? What about
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Figure 2: A regular hexagon determines three distinct triangles.

regular polygons with their centers? As we discussed in the introduction, Erdős
and Fishburn conjectured in [3] that optimal configurations for distinct distances
always exist in the triangular lattice. For triangles, we make an analogous but
qualitatively different conjecture.

Conjecture 2.2. The regular n-gon minimizes (not necessarily uniquely) the num-
ber of distinct triangles determined by an n-point set.2

If true, Conjecture 2.2 establishes the following best-possible result on the number
of distinct triangles. We offer a proof of this claim in Section 6.

Theorem 2.3. Unconditionally, the vertices of a regular n-gon determine [n2/12]
distinct triangles, where [y] denotes the nearest integer to y. Assuming Conjecture
2.2, this implies that [n2/12] is the minimum number of distinct triangles that can
be determined by a set of n points in the plane.

Remark 2.4. It is known from the work of Rudnev, expanding on a result of Guth
and Katz, that a set of n points in the plane determines at least Ω(n2) distinct
triangles, and that this bound is best possible. If true, Conjecture 2.2 establishes
the true leading constant, namely 1/12.

3. Definitions and Setup

We make precise the notion of distinct triangles.

2In [1] it was stated as an open problem, due to Brass, whether the regular n-gon minimizes
the number of distinct triangles determined by an n-point set. Given the evidence in this paper,
we go further and conjecture that it is true.
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Definition 3.1. Given a finite point set P ⊂ R2, we say that two triples (a, b, c),
(a′, b′, c′) ∈ P 3 are equivalent if there is an isometry mapping one to the other, and
we denote this as (a, b, c) ∼ (a′, b′, c′).

Definition 3.2. Given a finite point set P ⊂ R2, we denote by P 3
nc the set of

noncollinear triples (a, b, c) ∈ P 3.

Definition 3.3. Given a finite point set P ⊂ R2, we define the set of distinct
triangles determined by P as

T (P ) := P 3
nc/ ∼ . (3.1)

We prove Theorem 1.1 by enumerating cases and disposing of them one by one
via elementary geometry. We then conclude with a conjecture analogous to that of
Erdős concerning the structure of optimal configurations in general.

In the proof of Theorem 1.1, we also use the following lemma, which we prove in
Section 7.

Lemma 3.4. For a set of four noncollinear points in the plane, exactly one of the
following holds.

1. The four points are not in convex position.

2. The four points are in convex position.

(a) Three of the points are collinear.

(b) The determined quadrilateral has four distinct side lengths.

(c) The determined quadrilateral has exactly one pair of congruent sides.

i. The congruent sides are adjacent.

ii. The congruent sides are opposite.

(d) The determined quadrilateral has two distinct pairs of congruent sides.

i. The congruent sides are adjacent to each other (a kite).

ii. The congruent sides are opposite each other (a parallelogram).

(e) Three sides are congruent and the fourth is distinct.

(f) All four sides are congruent (a rhombus).

Cases 2b, 2(c)i, 2(c)ii, and 2(d)i determine at least three distinct triangles. Cases
1, 2a, and 2e determine at least two distinct triangles.
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4. Classifying Optimal 1-triangle Sets

In this section, we prove part (1) of Theorem 1.1. We show that the only four-point
configuration that determines exactly one triangle is a rectangle. This proves that
F (1) = 4 because there is no five-point configuration such that every four-point
subconfiguration is a rectangle.

By Lemma 3.4, we only need to consider the cases 2(d)ii and 2f because all of
the other cases trivially lead to at least two triangles. We consider first the case
2(d)ii, when there are two pairs of congruent sides opposite each other.

Proof of case 2(d)ii: two pairs of opposite congruent sides. Since two pairs of op-
posite sides are congruent, the quadrilateral must be a parallelogram (Figure 3).
We claim △ABC and △BCD are congruent if and only if ABCD is a rectangle.
They share side BC and AB = CD, so △ABC ∼= △BCD if and only if BD = AC,
which happens if and only if ABCD is a rectangle.

A

B C

D

Figure 3: A quadrilateral with two pairs of opposite congruent sides. If ABCD is
a rectangle, then it determines only one triangle, but if ABCD is not a rectangle,
then △ABC and △BCD are distinct.

Proof of case 2f: four congruent sides. Any quadrilateral with four sides congruent
is a rhombus, and a rhombus is a parallelogram. So, by the argument in case 2(d)ii,
a rhombus determines two distinct triangles if and only if it is not a square. Thus,
we have shown that the only four-point configuration that determines one triangle
is a rectangle. This completes the proof of part (1) of Theorem 1.1.

5. Classifying Optimal 2-triangle Sets

In this section, we prove part (2) of Theorem 1.1. As in the proof of part (1), we
show that the only possible configurations determining exactly two triangles are
the square with its center and the regular pentagon. We consider the possible four-
point configurations enumerated in Lemma 3.4, and we show that the addition of a
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fifth point to any of them (unless it creates one of the two claimed configurations)
necessarily determines a third triangle. Moreover, adding a sixth point to either of
the demonstrated optimal configurations also must determine a third triangle. By
Lemma 3.4, the only cases we need to consider are 1, 2a, 2(d)ii, 2e, and 2f because
the other four point configurations already contain more than two distinct triangles.

Proof of case 1: not in convex position. Using the notation of Figure 4, if △ABC
is not equilateral, or if △ABC is equilateral but D is not the center of △ABC, then
there are already three distinct triangles, so no more work is needed.

If △ABC is equilateral and D is its center, we show that the addition of a fifth
point anywhere necessarily determines a new triangle. When we add a fifth point
E, it will necessarily determine a triangle with AB (Figure 4). If △EAB is not
congruent to △ABC or △ABD, we’re done, so assume it’s congruent to one of
those. Either way, △ECB will be distinct from the other two, so we have three
distinct triangles, so this case is done.

A B

C

D

E′

E

Figure 4: Possibilities for adding a fifth point to a non-convex set.

Proof of case 2a: three collinear points. With the notation of Figure 5, if D does
not lie on the perpendicular bisector of AB, then △ACD, △BCD, and △ABD are
all distinct, so no more work is needed. Also note that if a fifth point E is added to
the interior of △ABD, it creates a non-convex four-point subconfiguration, so the
previous case applies to show that there are at least three distinct triangles. Thus
we assume the fifth point E is added outside △ABD.
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If D lies on the perpendicular bisector of AB but DC ̸= AB, the addition of a
fifth point E will create a triangle with AC. Triangle △EAC can’t be congruent to
△ABD because AC is shorter than any side of △ABD, so to avoid a third triangle
we must have △EAC ∼= △ACD. There are three choices for E that satisfy this
(Figure 5), but either way, △EAC, △EAB, and △EDB are all distinct.

If D lies on the perpendicular bisector of AB and DC = AB, then the same
argument from above still applies; however, in this case, choosing E to form the
square ADBE leaves us with only two triangles, but the other two choices for E
give us three (see Figure 5), so this case is done.

A B
C

D

EE′

E′′

Figure 5: Addition of a fifth point when three points are collinear. If DC ̸= AC,
then any choice of E forces a third triangle. If, on the other hand, DC = AC, then
choosing E creates a square with its center but E′ and E′′ still generate a third
triangle.

Proof of case 2(d)ii: two pairs of opposite congruent sides. This case has two sub-
cases.

Subcase A: non-rectangle. Using the notation of Figure 6, if we add a fifth
point E on line AB, then we have five points with three collinear, so we have three
distinct triangles by case 5. So assume E does not lie on line AB. Then △EAB
will be created. If △EAB is distinct from both △ABC and △ABD, then we also
have three distinct triangles, so assume otherwise. The only ways this can happen
are enumerated in Figure 6. In Figure 6a, point E creates three collinear points
(EAD), point E′ creates a non-convex subconfiguration (ACBE′), and point E′′

creates three collinear points (CDE′′). Thus in any case there will be three distinct
triangles. In Figure 6b, point E′ creates three collinear points (CBE′) and point
E′′ also creates three collinear points (DE′′C). Point E creates a kite ADBE if
AD ̸= DB, and if AD = DB, then CBE must be collinear, so in this case also, we
have three distinct triangles no matter what.
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Subcase B: non-square rectangle: If the fifth point is added inside the rectan-
gle, then we get either a non-convex configuration or a configuration with three
collinear points (Figure 7a). So assume that the fifth point is added outside the
rectangle. Using the notation of Figure 7b, to add a fifth point E without creating
three distinct triangles there are three potential possibilities.

1. △EAB ∼= △ABC. In this case, we get three collinear points, so we have three
triangles.

2. △E′AD ∼= △ABC. Here, DCE are collinear, so we have three triangles.

3. △E′′DC ∼= △E′′CB ̸∼= △ABC. In this case, E′′DAB will form a kite, so we
have three triangles.

A B

D
C

E E′

E′′

(a) Possibilities for E so that
△EAB ∼= △ABC. Any one of these
choices creates a 4-point subconfig-
uration determining at least 3 dis-
tinct triangles.

A B

D C

E E′

E′′

(b) Possibilities for E so that
△EAB ∼= △ABD. Here also, any
choice creates a bad 4-point subcon-
figuration.

Figure 6: Possible additions of a fifth point when two pairs of opposite sides are
congruent.

So we see both subcases yield at least three triangles, so the proof of case 2(d)ii
is complete.

Proof of case 2e: three congruent sides. Using the notation of Figure 8, if the quad-
rilateral ABCD is not a trapezoid, then in particular AC ̸= BD. Then we claim
△ABD, △BDC, and △ABC are all distinct. Triangle △ABC ≁= △ABD because
AC ̸= BD. If △ABC ∼= △BDC, then AB = BD and CD = AC, but this is
impossible because then there would be two isoceles triangles based on AD.
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A

B C

D

E

(a) Any way to place a fifth point
inside a rectangle results in at least
3 distinct triangles.

A
B

D C

E

E′

E′′

(b) Any way to place a fifth point
outside a rectangle also results in at
least 3 distinct triangles.

Figure 7: Any way to add a fifth point to a rectangle results in at least 3 distinct
triangles.

So we can assume ABCD is a trapezoid. When we add a fifth point E, △EAD is
created (Figure 8). As in case 2(d)ii, we must have △EAD ∼= △ABD or △EAD ∼=
△ACD. Suppose △EAD ∼= △ABD (Figure 8a). In the figure, point E creates a
non-convex configuration EABD and point E′ creates three collinear points E′DC.
For point E′′, if E′′C is a new distance then we obviously have a new triangle. If
E′′C = DC, then E′′DC is a new triangle. If E′′C = AC, then E′′DAC is a kite,
so we have three triangles. If E′′C = BC, then ABCE′′D is a regular pentagon,
and this is one of our claimed optimal configurations.

Now suppose that △EAD ∼= △ACD (Figure 8b). Point E in the figure makes
EACD either a kite, a non-convex congfiguration, or a configuration with three
collinear points, depending on the length of DC. In any case, we have at least three
triangles. Point E′ makes three collinear points E′AB. For point E′′, if E′′C is
a new distance, we have a new triangle. If E′′C = AD, then ADE′′C is a non-
rhombus parallelogram, so we have three triangles. If E′′C = AC, then DE′′C is
a new triangle. Finally, if E′′C = DC, then DE′′C is also a new triangle. This
shows that the only way to add a fifth point to a trapezoid configuration without
generating a third triangle is to create a regular pentagon, which concludes the
proof of case 2e.

Proof of case 2f: four congruent sides. There are two subcases: the four points form
either a non-square rhombus or a square.

If the four points form a non-square rhombus, then the argument presented in
case 2(d)ii for a non-rectangle parallelogram also applies to show that the addition
of a fifth point anywhere generates a third triangle (see Figure 6).
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A B

D

C

E

E′

E′′

(a) Options for adding a fifth point
E so that △EAD ∼= △ABD.
Adding E or E′ will create a third
triangle, and adding E′′ will cre-
ate a third triangle if and only if
DC ̸= AC. If DC = AC, E′′ is the
fifth vertex of a regular pentagon.

A B

D
C

E

E′

E′′

(b) Options for adding a fifth point
E so that △EAD ∼= △ACD. E and
E′ both generate a third triangle,
and E′′ generates a third triangle if
D ̸= AC. If DC = AC, then E′′

and C are the same point.

Figure 8: Possible additions of a fifth point when three sides are congruent.

If the four points form a square, we must show that the addition of a fifth
point anywhere but the center results in a configuration determining at least three
triangles. If the fifth point is on the interior of the square but not in the center,
then it creates a non-convex configuration (Figure 9a).

If the fifth point E is added outside the square, to avoid three distinct triangles,
we must place it so that either △EBC ∼= △BCD or △EBC ∼= △EBA (see Figure
9b). If △EBC ∼= △BCD, then ECD are collinear, so there are at least three
triangles. If △EBC ∼= △EBA, then we have a non-convex configuration, so there
are at least three distinct triangles in this case also.

This shows that the addition of a fifth point to a square anywhere but the center
generates at least three distinct triangles, and this completes the proof of case 2f.

6. Proof of Theorem 2.3

Proof. We show that the vertices of a regular n-gon determine [n2/12] distinct tri-
angles. Conditional on Conjecture 2.2, this completes the proof. Label the vertices
of a regular n-gon {P0, . . . , Pn−1}. By the symmetry of the configuration, every
congruence class of a triangle has a member with P0 as a vertex, so when counting
triangles we can just count triangles incident on P0. To form a triangle, we just
have to pick two other vertices, Pa and Pb, and we can assume a < b. By symme-
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D

A B

C

E

(a) Addition of a fifth point inside
the square but not at the center.
ABCE is a non-convex configura-
tion, so we get three distinct trian-
gles.

A B

CD E

E′

(b) Options for adding a fifth point
to E to the outside of a square. Ei-
ther option generates three distinct
triangles.

Figure 9: Options for adding a fifth point to a square. Any choice except for
the center of the square will result in a configuration with at least three distinct
triangles.

try, △P0PaPb will be distinct from △P0Pa′Pb′ if and only if {a − 0, b − a, n − b}
and {a′ − 0, b′ − a′, n − b′} are not the same set (see Figure 10). Thus, there is a
bijection between the distinct triangles determined by the regular n-gon and the
ways to write n as a sum of three positive integers. Using a result from the theory
of integer partitions (see [6]), this quantity is equal to [n2/12], so this completes the
proof.

However, we can also get this quantity explicitly, without using Honsberger’s
result. We denote the number of ways to write n as a sum of three positive integers
as p(n, 3). Since the order of a partition does not matter, we view this quantity
as the number of ways to pick two elements k < l from {1, . . . , n} such that k ≥
l− k ≥ n− l > 0. Note that k can be any of the elements ⌈n/3⌉ , . . . , n− 2. Once k
is chosen, l can be any of the elements k + ⌈(n− k)/2⌉ , . . . ,min(2k, n − 1). Note
2k is the minimum when k ≤ ⌊n/2⌋, and n− 1 is the minimum otherwise. Thus the
number of choices is given by

p(n, 3) =
⌊n/2⌋∑

k=⌈n/3⌉

2k∑

l=k+⌈(n−k)/2⌉

1 +
n−2∑

k=⌊n/2⌋+1

n−1∑

l=k+⌈(n−k)/2⌉

1

=

n/2∑

k=n/3

2k∑

l=k+(n−k)/2

1 +
n−2∑

k=(n+2)/2

n−1∑

l=k+(n−k)/2

1 + O(n)
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P0 P1

P8

P7

P5

P6

P4

P3

P2

Figure 10: Illustrating the bijection described in the proof of Theorem
2.3 with n = 9. Note that triangles △P0P4P7 and △P0P3P5 represent
the same partition of 9 ({4− 0, 7− 4, 9− 7} = {3− 0, 5− 3, 9− 5} = {4, 3, 2}).
Thus they are congruent; however, △P0P6P8 represents a different partition
({6− 0, 8− 6, 9− 8} = {6, 2, 1}), so it is a different triangle.

=

n/2∑

k=n/3

(3k/2− n/2 + 1) +
n−2∑

k=(n+2)/2

(n/2− k/2) + O(n)

=
3

4

(
n2

4
− n2

9

)
− n2

12
+

n2

4
− 1

4

(
n2 − n2

4

)
+ O(n)

=
n2

12
+ O(n), (6.1)

and this completes the proof.

7. Proof of Lemma 3.4

Proof of case 1: not in convex position. In this case, the four points form a triangle
with one point in the interior (Figure 11). Triangle △ABD is contained in △ABC,
so they must be distinct.

Proof of case 2a: three collinear points. Say point C lies on AB and D does not
(Figure 12). Then △ACD is contained in △ABD, so they are distinct.

Proof of case 2b: no congruent sides. Say the four points form quadrilateralABCD
(Figure 13). We have △ABD ≁= △CBD because AB, AD, BC, and CD are all
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A

B

C

D

Figure 11: Four points not in convex position; △ABC and △ABD are distinct.

A

B

D

C

Figure 12: Four points containing three collinear points; △ACD and △ABD are
distinct.

distinct. We claim △ABC is distinct from both of these. Triangle △ABC shares
AB with △ABD, and BC ̸= AD, so if they are congruent then we must have
BC = BD and AC = AD. This is impossible because then △CBD and △CAD
would both be isoceles triangles with CD as base, which is impossible unless one
contains the other, which is not the case here. Thus △ABC ≁= ABD. A similar
argument shows that △ABC ≁= △CBD, so we have three distinct triangles.

A

B
C

D

Figure 13: A quadrilateral with all distinct side lengths; △ABC, △ABD, and
△CBD are all distinct.

Proof of case 2(c)i: one pair of adjacent congruent sides. Let the points form quad-
rilateral ABCD and suppose AB = AD (Figure 14). Triangle △ABD ≁= △BCD
because △ABD is isoceles but △BCD is not. Also, by the same argument as in
part 2b, we see that △ABC is distinct from both of these, so there are at least
three distinct triangles.
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A B

D

C

Figure 14: Quadrilateral with one pair of adjacent congruent sides (shown in bold);
△ABD, △BCD, and △ABC are all distinct.

Proof of case 2(c)ii: one pair of opposite congruent sides. SupposeAB = CD (Fig-
ure 15). Triangle △ABC ≁= △DBC because they have two sides congruent to each
other and the third is not. We now claim that △ACD is distinct from both of these.
Triangle △ACD ̸∼= △BCD by the same isoceles triangle argument from parts 2b
and 2(c)i. If △ACD ∼= △ABC, then BC must equal AD. But that would force AB
to be parallel to CD, which would force AC = BD, a contradiction. Thus there
are at least three distinct triangles.

A B

C

D

Figure 15: Quadrilateral with one pair of opposite congruent sides; △ACD, △BCD,
and △ABC are all distinct.

Proof of case 2(d)i: two pairs of adjacent congruent sides. Say AB = AD and
BC = CD and assume without loss of generality that AC > BD (Figure 16).
Triangle △ABD ̸∼= △BCD because AB ̸= BC. We claim that there is another
triangle distinct from both of these. First note that it is impossible to have both
AC = CD = BC and BD = AD = AB. Because of this, the triangles △ABD,
△BCD, and △ACD are necessarily distinct, so there are at least three distinct
triangles.

Proof of case 2e: three congruent sides.

Say AD = AB = BC (Figure 17). Triangle △ABC ≁= △ADC because they have
two sides congruent with each other and one side not congruent, and thus there are
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A

C

BD

Figure 16: Quadrilateral with two pairs of adjacent congruent sides. Independently
of the lengths of AC and BD, the triangles △ABD, △BCD, and △ACD are all
distinct.

A B

D C

Figure 17: Quadrilateral with three congruent sides; △ABC and △ADC are dis-
tinct.

at least two distinct triangles.
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