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Abstract
We consider polynomials Pa,b,r,p (z) =

Prp
i=0 Aa,b,r (p, i) zrp�i, in which the coe�-

cients Aa,b,r (p, i) are the generalized Eulerian numbers involved in the expansion�an+b
r

�p
=
Prp

i=0 Aa,b,r (p, i)
�n+rp+i

rp

�
. The numbers Aa,b,r (p, i) and their proper-

ties were studied in a previous work. The case a = 1, b = 0, r = 1, corresponds
to the standard Eulerian polynomials P1,0,1,p (z). We give generalizations for the
known recurrences of P1,0,1,p (z). We also show some applications of polynomials
Pa,b,r,p (z), including explicit formulas for sums and alternating sums of powers of
binomial coe�cients. The main tool we use to obtain our results is the Z-transform
of sequences.

1. Introduction

Since this work is a natural continuation of the previous work [18], where we studied
generalized Eulerian numbers, the beginning has some intersections with it. Hence,
there are some comments at the beginning of this section that appear also in [18].

Eulerian numbers and polynomials have been mathematical objects of interest to
mathematicians along the years: beginning with Euler’s work [10] in the eighteenth
century, they are still considered as objects worthy of study [11, 12], including
several generalizations [15, 16, 17, 19, 24]. Within the works of L. Carlitz we find
(besides the expository work [4]) some generalizations of Eulerian numbers [7, 8],
including q-generalizations of them [3, 5, 6], among other related works [9]. Eulerian
numbers appear as coe�cients of the sequence of the so-called Eulerian polynomials
1, z + 1, z2 + 4z + 1, z3 + 11z2 + 11z + 1, . . ., considered by L. Euler ([10], pp.
485,486). We will use the notation A (p, i) for the corresponding Eulerian number
in the p-th row and i-th column of the so-called Eulerian numbers triangle, with
rows p = 1, 2, . . ., and columns i = 0, 1, 2, . . . (see Table 1).
Some shifted versions of the Table 1 appear in the literature also as Eulerian num-
bers triangle. We write Pp (z) to denote the Eulerian polynomial

Pp
i=0 A (p, i) zp�i.
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p�i 0 1 2 3 4 5 · · ·
1 0 1
2 0 1 1 · · ·
3 0 1 4 1
4 0 1 11 11 1 · · ·
5 0 1 26 66 26 1
...

...
...

...

Table 1: Eulerian numbers triangle.

Observe that Pp (z) is a (p� 1)-th degree polynomial.
In Table 2 we show some important known facts about Eulerian numbers. In the

formula for alternating row sums, Bp+1 is the (p + 1)-th Bernoulli number.

Eulerian numbers.

Explicit Formula: A (p, i) =
iP

j=0
(�1)j �p+1

j

�
(i� j)p .

Symmetry: A (p, i) = A (p, p + 1� i) .

Recurrence: A (p, i) = iA (p� 1, i) + (p + 1� i)A (p� 1, i� 1) .

Row Sums:
pP

i=0
A (p, i) = p! .

Alternating Row Sums:
pP

i=0
(�1)i A (p, i) = 2p+1(1�2p+1)Bp+1

p+1 .

Table 2: Eulerian numbers properties.

Another remarkable fact of Eulerian numbers is that they are the coe�cients
appearing when we write np as a linear combination of the binomials

�n
p

�
,
�n+1

p

�
,

. . . ,
�n+p

p

�
, which form a basis of the vector space of n-polynomials of degree not

exceeding p. This is the Worpitsky identity [23]:

np =
pX

i=0

A (p, i)
✓

n + p� i

p

◆
. (1)

In a recent work [18], we considered a generalization of Eulerian numbers (in-
spired by (1)), that includes the following situation: the function

f (n) =
✓

an + b

r

◆p

(2)
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is a rp-th degree polynomial function. For r, p 2 N, the polynomial (2) can be
written as a linear combination of the rp + 1 binomials

�n+rp�i
rp

�
, i = 0, 1, . . . , rp,

which form a basis of the vector space of n-polynomials of degree rp. The resulting
coe�cients Aa,b,r (p, i) , p 2 N, i = 0, 1, . . . , rp, are some of the generalized Eulerian
numbers (GEN, for short) we studied in [18]. That is, we have

✓
an + b

r

◆p

=
rpX

i=0

Aa,b,r (p, i)
✓

n + rp� i

rp

◆
, (3)

and Aa,b,r (p, i) = 0 for i < 0 or i > rp. In the case a = r = 1 and b = 0,
the polynomial (2) is np and the mentioned coe�cients A1,0,1 (p, i) , p 2 N, i =
0, 1, . . . , p, are the standard Eulerian numbers A (p, i), and (3) reduces to (1).

The first two elements of the p-th row in the GEN Aa,b,r (p, i) triangle (GENT,
for short) are

Aa,b,r (p, 0) =
✓

b

r

◆p

, (4)

Aa,b,r (p, 1) =
✓

a + b

r

◆p

� (rp + 1)
✓

b

r

◆p

. (5)

In particular, if 0  b < r, we have Aa,b,r (p, 0) = 0. This happens, for example,
when b = 0. The last element of the p-th row is

Aa,b,r (p, rp) =
✓

a� b + r � 1
r

◆p

. (6)

Two GENT are the following
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It turns out that the GEN A1,0,r (2, i) are squares of binomial coe�cients (see
the second row of GENT1). More precisely, for k = 0, 1, . . . , r, we have

A1,0,r (2, k + r) =
kX

j=0

(�1)j
✓

2r + 1
j

◆✓
k + r � j

r

◆2

=
✓

r

k

◆2

, (7)

(see identity (6.48) in [13]). Thus, the expansion
�n

r

�2 =
P2r

i=r A1,0,r (2, i)
�n+2r�i

2r

�
can be written as follows ✓

n

r

◆2

=
rX

k=0

✓
r

k

◆2✓n + r � k

2r

◆
, (8)

which is also a known fact (see identity (6.17) in [13]).
In [18] we obtained results for the GEN Aa,b,r (p, i) that include generalizations

of the properties of Table 2. For the reader’s convenience, we quote some of them
next.

• Explicit formula:

Aa,b,r (p, i) =
iX

j=0

(�1)j
✓

rp + 1
j

◆✓
a (i� j) + b

r

◆p

.

• Symmetries:

(a) The GEN Aa,b,r (p, i) have the symmetry

Aa,b,r (p, i) = Aa,a�b+r�1,r (p, rp� i) , i = 0, 1, . . . , rp. (9)

(b) For odd r 2 N, the GEN A2,1,r (p, i) have the symmetry

A2,1,r

✓
p, i +

r � 1
2

◆
= A2,1,r (p, rp� i) , i = 0, 1, . . . , rp� r � 1

2
. (10)
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• Recurrence: The recurrence for the GEN A1,b,r (p, i) is given by

A1,b,r (p, i) =
rX

k=0

✓
i� k + b

r � k

◆✓
rp + k � i� b

k

◆
A1,b,r (p� 1, i� k) , (11)

where i = 0, 1, . . . , rp.

• Row sums: The sum of the GEN Aa,b,r (p, i), i = 0, 1, . . . , rp, is given by
rpX

i=0

Aa,b,r (p, i) = arp (rp)!
(r!)p . (12)

• Alternating row sums:

(a) The alternating sum of GEN Aa,b,r (p, j), 0  j  rp, is given by
rpX

j=0

(�1)jAa,b,r (p, j) (13)

=
2rp+1

(r!)p

pX
ir=0

· · ·
pX

i1=0

0
@ rY

j=1

✓
p

ij

◆
(b� j + 1)p�ij

1
A⇥

⇥

0
@a

Pr
j=1 ij

⇣
1� 21+

Pr
j=1 ij

⌘
B1+

Pr
j=1 ij

1 +
Pr

j=1 ij

1
A .

(b) If p is even and r is odd, we have
rpX

i=r

(�1)i A1,0,r (p, i) = 0, (14)

and
r(p�1)X

i=0

(�1)i A1,r,r (p, i) = 0. (15)

(c) If r is odd, we have

rp� r�1
2X

i=0

(�1)i A2,1,r

✓
p, i +

r � 1
2

◆
= 0, (16)

in each of the following cases: (a) p even and r ⌘ 3 mod 4, and (b) p odd
and r ⌘ 1 mod 4. In fact, in the case r = 1 we have

pX
j=0

(�1)j A2,1,1 (p, j) = 2pEp. (17)
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In this article we consider the corresponding generalized Eulerian polynomials
(GEP, for short) in which the coe�cients are the GEN Aa,b,r (p, i), i = 0, 1, . . . , rp,
that is, polynomials Pa,b,r,p (z) =

Prp
i=0 Aa,b,r (p, i) zrp�i. The main tool we use

to study these polynomials is the Z-Transform. In Section 2, we give the defini-
tions and the properties of this transformation that we will use in the remaining
sections. It turns out that when one considers the Z-transform of the sequence
np (via the Worpitsky identity (1)), Eulerian polynomials appear in a natural way.
We use this fact to obtain, also in Section 2, some known results for the standard
Eulerian polynomials, including recurrences for these polynomials. To generalize
these results is one of the main goals of this work. In Section 3, we consider a
first step of the GEP Pa,b,r,p (z), namely, the case r = 1. That is, we consider
the GEP Pa,b,1,p (z) =

Pp
i=0 Aa,b,1 (p, i) zp�i, which appear in the Z-Transform of

the sequence (an + b)p. We obtain several kinds of recurrences for these polyno-
mials, including generalizations of the known recurrences for the standard Eulerian
polynomials. In Section 4, we consider the more general case, corresponding to
GEP Pa,b,r,p (z) =

Pp
i=0 Aa,b,r (p, i) zp�i, which appear in the Z-Transform of the

sequence
�an+b

r

�p
, r 2 N, r � 2. We obtain a recurrence for these polynomials in

the case a = 1: by using the recurrence (11) for the GEN Aa,b,r (p, i), together with
other combinatorial identities, we demonstrate that

P1,b,r,p (z) =
rX

l=0

lX
t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zr�t (1� z)r�l

(r � l)!
dr�l

dzr�l
P1,b,r,p�1 (z) .

This is the most challenging result of this work: Theorem 2. Finally, in Section
5, we show some applications where the GEP studied in the previous sections are
involved. We obtain an explicit formula for some generalized telescoping sums,
and we obtain explicit formulas for some sums of powers of binomial coe�cientsPm

j=0

�aj+b
r

�p
in terms of a convolution, and also explicit formulas for the alternating

sums
Pm

j=0 (�1)j �aj+b
r

�p
.

2. Preliminaries: Z-Transform and Standard Eulerian Polynomials

The Z-transform is a map Z that takes complex sequences an = (a0, a1, . . . , an, . . .)
into complex functions Z (an) (z) or simply Z (an), given by the Laurent series
Z (an) =

P1
n=0

an
zn , defined for |z| > R, where R > 0 is the radius of convergence

of the Taylor series
P1

n=0 anzn. If Z (an) = A (z), we also say that the sequence
an is the inverse Z-transform of the complex function A (z), and we write an =
Z�1 (A (z)).

Remark 1. The references [14, 21, 22] are good examples of the fact that the
audiences for Z-transforms and for generating functions are di↵erent (though not
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disjoint), with engineers for the former and mathematicians for the latter. By taking
a look at the mentioned references, one realizes that there is some di↵erent flavor
in the language used in each theory. But plainly the mathematical information
contained in both tools is the same. However, we believe that Z-transforms give a
more gentle environment for algebraic manipulations as those we face in this work.

We will recall now some basic facts about the Z transform that we will use
throughout the work.

The sequence �n, where � is a given non-zero complex number, has Z-transform

Z (�n) =
1X

n=0

�n

zn
=

1
1� �

z

=
z

z � �
, (18)

defined for |z| > |�|. In particular, the Z-transform of the constant sequence 1 and
the alternating sequence (�1)n are

Z (1) =
z

z � 1
and Z ((�1)n) =

z

z + 1
, (19)

respectively.
Five important properties of the Z-transform:

1. Z is linear and injective.

2. Advance-shifting property. If Z (an) = A (z), and k 2 N is given, then

Z (an+k) = zk

0
@A (z)�

k�1X
j=0

aj

zj

1
A . (20)

3. Multiplication by the sequence �n. If Z (an) = A (z), then for a given � 2 C,
� 6= 0,

Z (�nan) = A
⇣ z

�

⌘
.

In particular, we have
Z ((�1)n an) = A (�z) . (21)

4. Multiplication by the sequence n. If Z (an) = A (z), then

Z (nan) = �z
d

dz
A (z) . (22)

Formula (22) implies

Z
�
n2an

�
= z2 d2

dz2
A (z) + z

d

dz
A (z) , (23)

Z
�
n3an

�
= �z3 d3

dz3
A (z)� 3z2 d2

dz2
A (z)� z

d

dz
A (z) , (24)

and so on.
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5. Convolution theorem. If Z (an) = A (z) and Z (bn) = B (z), then

Z (an ⇤ bn) = A (z)B (z) , (25)

where an⇤bn is the convolution of an with bn, defined as the sequence an⇤bn =Pn
t=0 atbn�t.

Observe that, for a given sequence an, the convolution

an ⇤ 1 =

 
nX

i=0

ai

!
= (a0, a0 + a1, a0 + a1 + a2, . . .) , (26)

is the sequence of partial sums of an. In general, the multiple convolution an ⇤k 1,
which means an ⇤1⇤1⇤ · · ·⇤1, where the sequence 1 appears k times, is the sequence
of k-th partial sums of the sequence an. For example, for k = 2 we have

an ⇤2 1 = (a0, 2a0 + a1, 3a0 + 2a1 + a2, . . .) .

If A (z) is the Z-transform of the sequence an, then the Z-transform of the
sequence an ⇤r 1 (of the r-th partial sums of an) is, according to (19) and (25),

Z (an ⇤r 1) =
✓

z

z � 1

◆r

A (z) . (27)

Let A (z) be the Z-transform of the sequence an. The sequence bn =
(0, . . . , 0, a0, a1, . . .), with k zeros at the beginning, is such that bn+k = an and
b0 = · · · = bk�1 = 0. According to (20), we have Z (bn+k) = zkZ (bn), or

Z (bn) = z�kA (z) . (28)

In particular, observe that according to (27) and (28), we have

Z�1

✓
z�k+1

z � 1
A (z)

◆
=

 
n�kX
i=0

ai

!
= (0, . . . , 0, a0, a0 + a1, a0 + a1 + a2, . . .) . (29)

From (19) and (22), we see that the Z-transform of the sequence n is

Z (n) = �z
d

dz

z

z � 1
=

z

(z � 1)2
. (30)

The same argument gives us

Z
�
n2
�

= �z
d

dz

z

(z � 1)2
=

z (z + 1)
(z � 1)3

, (31)
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Z
�
n3
�

= �z
d

dz

z (z + 1)
(z � 1)3

=
z
�
z2 + 4z + 1

�
(z � 1)4

, (32)

and so on. Also, it is immediately verifiable that

Z (2n + 1) =
z (z + 1)
(z � 1)2

. (33)

The Z-transform of the sequence
�n

r

�
, where r 2 N is given, is

Z
✓✓

n

r

◆◆
=

z

(z � 1)r+1 . (34)

The proof is an easy induction on r left to the reader.
According to the advance-shifting property (20), together with (34), we see that

for 0  k  r, the Z-transform of the sequence
�n+k

r

�
is

Z
✓✓

n + k

r

◆◆
=

zk+1

(z � 1)r+1 . (35)

Observe that, according to (26) and (34), we have

Z

0
@ nX

j=0

✓
j

r

◆1A =
z

z � 1
z

(z � 1)r+1 =
z2

(z � 1)r+2 , (36)

which gives us, by using (35), the well-known property of binomial coe�cients

nX
j=0

✓
j

r

◆
=
✓

n + 1
r + 1

◆
. (37)

Observe also that, according to the Worpitsky identity (1) and formula (35), the
Z-transform of the sequence np, where p is given, is

Z (np) =
pX

i=0

A (p, i)
zp�i+1

(z � 1)p+1 , (38)

which means that

Z (np) =
z
Pp

i=0 A (p, i) zp�i

(z � 1)p+1 =
zPp (z)

(z � 1)p+1 . (39)

That is, the numerator of Z (np) is z times the Eulerian polynomial Pp (z). By
setting P0 (z) = 1, formula (39) makes sense for all non-negative values of p, so we
have P0 (z) = P1 (z) = 1, P2 (z) = z + 1, and so on.
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According to (22) and (39), we can write

Z (np) = Z
�
nnp�1

�
= �z

d

dz

zPp�1 (z)
(z � 1)p

= �z
(z � 1)p �zP 0

p�1 (z) + Pp�1 (z)
�
� p (z � 1)p�1 zPp�1 (z)

(z � 1)2p

= z
z (1� z)P 0

p�1 (z) + (1 + (p� 1) z)Pp�1 (z)

(z � 1)p+1 . (40)

Comparing (40) with (39), we obtain that

Pp (z) = z (1� z)P 0
p�1 (z) + (1 + (p� 1) z)Pp�1 (z) , (41)

which is the well-known recurrence for Eulerian polynomials.
On the other hand, expression (39) together with (20) allow us to write, for

m 2 N, that

Z ((n + m)p) = zm

0
@ zPp (z)

(z � 1)p+1 �
m�1X
j=0

jp

zj

1
A . (42)

The linearity of the Z-transform, and (39) again, give us that

Z ((n + m)p) = Z
 

pX
k=0

✓
p

k

◆
mp�knk

!
=

pX
k=0

✓
p

k

◆
mp�k zPk (z)

(z � 1)k+1
. (43)

Thus, from (42) and (43) we have that

pX
k=0

✓
p

k

◆
mp�k zPk (z)

(z � 1)k+1
= zm

0
@ zPp (z)

(z � 1)p+1 �
m�1X
j=0

jp

zj

1
A . (44)

Formula (44) can be written as follows

pX
k=0

✓
p

k

◆
mp�k Pk (z)

(z � 1)k+1
= zm Pp (z)

(z � 1)p+1 �
m�1X
j=0

jpzm�1�j . (45)

Observe that if we set Hj = Hj (z) = Pj(z)
(z�1)j+1 , then we can write (45) as follows

(H + m)p = zmHp �
m�1X
j=0

jpzm�1�j , (46)

where the left-hand side is understood as in Umbral Calculus: it is expanded by
the binomial theorem, and the superscripts (exponents) of H are converted to sub-
scripts, that is, Hk is Hk = Pk(z)

(z�1)k+1 , k = 0, 1, . . . , p.
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In the simplest case of m = 1, formula (45) looks as follows

pX
k=0

✓
p

k

◆
Pk (z)

(z � 1)k+1
=

zPp (z)
(z � 1)p+1 , (47)

and its version of (46) is
(H + 1)p = zHp. (48)

Observe that we can write (47) as
Pp

k=0

�p
k

� Pk(z)
(z�1)k = zPp(z)

(z�1)p , so we can define

Hk by Hk = Pk(z)
(z�1)k , and formula (48) remains valid. This version of (48) appears

originally in Vandiver’s paper on Bernoulli numbers ([20], formula 12, p. 506). (In
passing, Carlitz [2] refers to (48) as “an interesting formula”.)

From (47), we immediately obtain the known recurrence

Pp (z) =
p�1X
k=0

✓
p

k

◆
(z � 1)p�1�k Pk (z) (49)

for Eulerian polynomials, which gives the polynomial Pp (z) in terms of the previous
p polynomials Pk (z), k = 0, 1, . . . , p�1, (see for example [11], formula (2.7), p. 12).
For instance, we have P2 (z) = (z � 1) + 2 = z + 1, P3 (z) = (z � 1)2 + 3 (z � 1) +
3P1 (z) = z2 + 4z + 1, and so on.

We can write (44) as follows:

Pp (z) = (50)

1
m�1P
j=0

zj

0
@p�1X

k=0

✓
p

k

◆
mp�k (z � 1)p�1�k Pk (z) + (z � 1)p

m�1X
j=0

jpzm�j�1

1
A ,

where p � 1. That is, expression (50) is in fact a family of recurrences for Eulerian
polynomials; the case m = 1 is (49). For example, for m = 2, 3 we have the
recurrences

Pp (z) =
1

z + 1

 
p�1X
k=0

✓
p

k

◆
2p�k (z � 1)p�1�k Pk (z) + (z � 1)p

!
, (51)

and

Pp (z) =
1

z2 + z + 1

 
p�1X
k=0

✓
p

k

◆
3p�k (z � 1)p�1�k Pk (z) + (z + 2p) (z � 1)p

!
, (52)

respectively.
Expression (44) has more to o↵er: substitute z by 1

z to obtain
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pX
k=0

✓
p

k

◆
mp�k zkPk

�
1
z

�
(1� z)k+1

=
1

zm

0
@ zpPp

�
1
z

�
(1� z)p+1 �

m�1X
j=1

jpzj

1
A . (53)

Now we use the fact that zkPk

�
1
z

�
= zPk (z) for any k 2 N, and write expression

(53) modifying its left-hand side (avoiding the term k = 0 of the sum, for which the
relation zkPk

�
1
z

�
= zPk (z) is false), as follows

mpzm+zm zPp (z)
(1� z)p+1 +zm

p�1X
k=0

✓
p

k

◆
mp�k zPk (z)

(1� z)k+1
=

zPp (z)
(1� z)p+1�

m�1X
j=1

jpzj , (54)

from which we finally obtain the following closed formula for the weighted sum of
the p-th powers of the first m positive integers,

Pm
j=1 jpzj , where z 6= 0, 1 is the

weight (see [11], formula (2.8), p. 12):

mX
j=1

zjjp =
(1� zm) zPp (z)

(1� z)p+1 �
p�1X
k=0

✓
p

k

◆
mp�k zm+1Pk (z)

(1� z)k+1
. (55)

In the original work of Euler [10] we find results involving alternating sums of
powers

Pm
j=1 (�1)j jp; see also [1] for a di↵erent approach.

By using (49), we can write (55) as follows

mX
j=1

zj�1jp =
p�1X
k=0

✓
p

k

◆
(�1)p+k+1 (1� zm)�mp�kzm (1� z)

(1� z)k+2
Pk (z) . (56)

For example, we have

mX
j=1

(�1)j�1 jp =
p�1X
k=0

✓
p

k

◆
(�1)p+k+1 (1� (�1)m)� 2mp�k (�1)m

2k+2
Pk (�1) ,

or
2mX
j=1

(�1)j jp =
p�1X
k=0

✓
p

k

◆
(2m)p�k

2k+1
Pk (�1) .

By using the alternating row sums formula for Eulerian numbers (see Table 1)
we can write

2mX
j=1

(�1)j jp =
p�1X
k=0

✓
p

k

◆
(�1)k (2m)p�k

�
1� 2k+1

�
Bk+1

k + 1
.

More generally, for ⇢ 2 N given, let ! 2 C be a ⇢-th root of 1, ! 6= 1. Then,
according to (56), we have
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⇢mX
j=1

!j�1jp = �
p�1X
k=0

✓
p

k

◆
(⇢m)p�k

(1� !)k+1
Pk (!) .

For example, we have

4mX
j=1

ij�1jp = �
p�1X
k=0

✓
p

k

◆✓
1
2

+
1
2
i

◆k+1

(4m)p�k Pk (i) ,

where i =
p
�1.

3. Generalized Eulerian Polynomials I: r = 1

In this section we consider GEP of the form

Pa,b,1,p (z) =
pX

i=0

Aa,b,1 (p, i) zp�i, (57)

where the coe�cients are the GEN Aa,b,1 (p, i) =
Pi

j=0 (�1)j �p+1
j

�
(a (i� j) + b)p.

Some examples are

Pa,b,1,1 (z) = bz + a� b, (58)
Pa,b,1,2 (z) = b2z2 +

�
a2 + 2ab� 2b2

�
z + (a� b)2 ,

Pa,b,1,3 (z) = b3z3 +
�
a3 + 3a2b + 3ab2 � 3b3

�
z2

+
�
4a3 � 6ab2 + 3b3

�
z + (a� b)3 .

The case a = 1, b = 0 corresponds to the standard Eulerian polynomials
P1,0,1,1(z) = 1, P1,0,1,2 (z) = z + 1, P1,0,1,3 (z) = z2 + 4z + 1, and so on. Ob-
serve that Pa,b,1,p (z) is a p-th degree polynomial if and only if b 6= 0, otherwise
it is a (p� 1)-th degree polynomial, as in the case of the standard Eulerian poly-
nomials P1,0,1,p (z). We set Pa,b,1,0 (z) = 1, for any b 2 R. Observe also that
Pa,a,1,p (z) = apzP1,0,1,p (z).

From (4), we see that the leading coe�cient of Pa,b,1,p (z) is bp. From (6), we see
that the independent term of Pa,b,1,p (z) is

Pa,b,1,p (0) = Aa,b,1 (p, p) = (a� b)p , (59)

and then z = 0 is a zero of Pa,b,1,p (z) if and only if a = b (which is the case when the
polynomial Pa,b,1,p (z) is apz times the standard Eulerian polynomial P1,0,1,p (z), as
we noticed before).
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From (12), with r = 1, we see that the value of Pa,b,1,p (z) at z = 1 is

Pa,b,1,p (1) =
pX

i=0

Aa,b,1 (p, i) = app!, (60)

and from (13), with r = 1, we see that the value of Pa,b,1,p (z) at z = �1 is

Pa,b,1,p (�1) = (�2)p+1
pX

i=0

✓
p

i

◆
bp�iai

�
2i+1 � 1

�
Bi+1

i + 1
. (61)

According to the expansion

(an + b)p =
pX

i=0

Aa,b,1 (p, i)
✓

n + p� i

p

◆
, (62)

together with (35) and (57), it is clear that the generalized Eulerian polynomial
Pa,b,1,p (z) appears in the numerator of the Z-transform of the sequence (an + b)p,
namely

Z ((an + b)p) =
zPa,b,1,p (z)
(z � 1)p+1 . (63)

We can mimic what we did to obtain the recurrence (40) for standard Eulerian
polynomials, in order to obtain a similar formula for GEP Pa,b,1,p (z) (see also [24]).

Proposition 1. We have the following recurrence for generalized Eulerian Polyno-
mials Pa,b,1,p (z)

Pa,b,1,p (z) = (64)
az (1� z)P 0

a,b,1,p�1 (z) + (a� b + (a (p� 1) + b) z)Pa,b,1,p�1 (z) .

Proof. We use (22) and (63) to write

Z ((an + b)p)

= Z
⇣
(an + b) (an + b)p�1

⌘

= �az
d

dz

zPa,b,1,p�1 (z)
(z � 1)p + b

zPa,b,1,p�1 (z)
(z � 1)p

= �az
(z � 1)p

⇣
zP 0

a,b,1,p�1 (z) + Pa,b,1,p�1 (z)
⌘
� p (z � 1)p�1 zPa,b,1,p�1 (z)

(z � 1)2p

+b
zPa,b,1,p�1 (z)

(z � 1)p

= z
az (1� z)P 0

a,b,1,p�1 (z) + (a� b + (a (p� 1) + b) z)Pa,b,1,p�1 (z)

(z � 1)p+1 . (65)

Comparing (63) and (65) we obtain the desired conclusion (64).
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On the other hand, observe that the advance-shifting property (20) tells us that,
for any non-negative integer m,

Z ((a (n + m) + b)p) = zm

0
@Z ((an + b)p)�

m�1X
j=0

(aj + b)p z�j

1
A . (66)

That is, we have

zm

 
zPa,b,1,p (z)
(z � 1)p+1 �

m�1X
j=0

(aj + b)p z�j

1
A

= Z ((an + b + ma)p)

= Z
 

pX
k=0

✓
p

k

◆
(ma)p�k (an + b)k

!

=
pX

k=0

✓
p

k

◆
(ma)p�k zPa,b,1,k (z)

(z � 1)k+1
. (67)

We can write (67) as follows

zm Pa,b,1,p (z)
(z � 1)p+1 =

pX
k=0

✓
p

k

◆
(ma)p�k Pa,b,1,k (z)

(z � 1)k+1
+

m�1X
j=0

(aj + b)p zm�1�j , (68)

and again, as in (45), we have the following version: set Hj = Hj(z) =
Pa,b,1,j(z)/(z � 1)j+1. Then we can write (68) as follows

zmHp = (H + ma)p +
m�1X
j=0

(aj + b)p zm�1�j , (69)

where (H + ma)p is expanded by the binomial theorem, and the exponents of H are
converted to subscripts. In particular, when m = 1, formula (68) is the following

zPa,b,1,p (z)
(z � 1)p+1 =

pX
k=0

✓
p

k

◆
Pa,b,1,k (z)
(z � 1)k+1

ap�k + bp, (70)

and its version (69) is

zHp = (H + a)p + bp. (71)

Thus, (71) is a generalization of Vandiver’s formula (47), which is the case a = 1,
b = 0 of (69), with Hj = P1,0,1,j (z) / (z � 1)j .
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By writing (70) as follows

Pa,b,1,p(z) = (72)

1
m�1P
j=0

zj

0
@p�1X

k=0

✓
p

k

◆
(ma)p�k(z � 1)p�1�kPa,b,1,k(z) + (z � 1)p

m�1X
j=0

(aj + b)pzm�1�j

1
A

we see that this is an infinite m-family of recurrences for the GEP Pa,b,1,p (z). The
cases m = 1 and m = 2 of (72) are as follows:

Pa,b,1,p (z) =
p�1X
k=0

✓
p

k

◆
ap�k (z � 1)p�k�1 Pa,b,1,k (z) + bp (z � 1)p , (73)

Pa,b,1,p (z) = (74)

1
z + 1

 
p�1X
k=0

✓
p

k

◆
(2a)p�k (z � 1)p�1�k Pa,b,1,k (z) + (z � 1)p (bpz + (a + b)p)

!
.

Observe that the symmetry relation Aa,b,1 (p, i) = Aa,a�b,1 (p, p� i) (see (9)),
allows us to write

Pa,a�b,1,p (z) =
pX

i=0

Aa,a�b,1 (p, i) zp�i

=
pX

i=0

Aa,a�b,1 (p, p� i) zi

=
pX

i=0

Aa,b,1 (p, i) zi.

Thus, Pa,a�b,1,p(z) is the reciprocal polynomial of Pa,b,1,p(z) =
pP

i=0
Aa,b,1(p, i)zp�i.

In other words, we have

Pa,a�b,1,p (z) = zpPa,b,1,p

�
z�1
�
. (75)

From

zPa,a�b,1,p (z)
(z � 1)p+1 = Z ((a (n + 1)� b)p) = z

 
zPa,�b,1,p (z)
(z � 1)p+1 � (�b)p

!
,
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we see that

Pa,a�b,1,p (z) = zPa,�b,1,p (z)� (�b)p (z � 1)p+1 .

In particular, we have that Pa,a,1,p (z) = zPa,0,1,p (z) = apzP1,0,1,p (z) (as we no-
ticed before), and that P1,1,1,p (z) = zP1,0,1,p (z) = zpP1,0,1,p

�
z�1
�

is the reciprocal
polynomial of P1,0,1,p (z). Observe that, by using (75), we can write (63) as follows

Z ((an + b)p) =
zp+1Pa,a�b,1,p

�
z�1
�

(z � 1)p+1 . (76)

Thus, proceeding as in (65) and using again (75), we can obtain “mixed” recurrences
such as

Pa,b,1,p (z) = (77)
a (z � 1) zp�2P 0

a,a�b,1,p�1

�
z�1
�

+ (ap + bz (z � 1))Pa,b,1,p�1 (z) ,

which gives us, in particular, the following recurrences involving the standard Eu-
lerian polynomials P1,0,1,p (z) and their reciprocal polynomials P1,1,1,p (z):

P1,0,1,p (z) = (z � 1) zp�2P 0
1,1,1,p�1

�
z�1
�

+ pP1,0,1,p�1 (z) ,

P1,1,1,p (z) = (z � 1) zp�2P 0
1,0,1,p�1

�
z�1
�

+ (p + z (z � 1))P1,1,1,p�1 (z) .

Next, we explore the relation among GEP Pa,b,1,p (z) for di↵erent values of the
parameters a, b. The main result is given in the following proposition.

Proposition 2. Let a, b, c, d be given complex numbers, a, c 6= 0. The generalized
Eulerian polynomial Pa,b,1,p (z) can be written in terms of the generalized Eulerian
polynomials Pc,d,1,k (z), k = 0, 1, . . . , p, according to

Pa,b,1,p (z) = zm
pX

k=0

✓
p

k

◆⇣a

c

⌘k
✓✓

b� am� ad

c

◆
(z � 1)

◆p�k

Pc,d,1,k (z)

� (z � 1)p+1
m�1X
j=0

(b� a (m� j))p zm�1�j , (78)

where m is a given non-negative integer.
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Proof. We have

zPa,b,1,p (z)
(z � 1)p+1 = Z ((an + b)p)

=
⇣a

c

⌘p
Z
✓✓

c (n + m) + d +
bc� ad

a
� cm

◆p◆

=
⇣a

c

⌘p
Z
 

pX
k=0

✓
p

k

◆✓
bc� ad

a
� cm

◆p�k

(c (n + m) + d)k

!

=
⇣a

c

⌘p
pX

k=0

✓
p

k

◆✓
bc� ad

a
� cm

◆p�k

zm

0
@zPc,d,1,k (z)

(z � 1)k+1
�

m�1X
j=0

(cj + d)k z�j

1
A

=
pX

k=0

✓
p

k

◆⇣a

c

⌘k
✓

b� am� ad

c

◆p�k

zm zPc,d,1,k (z)
(z � 1)k+1

�
pX

k=0

✓
p

k

◆⇣a

c

⌘k
✓

b� am� ad

c

◆p�k m�1X
j=0

(cj + d)k zm�j

=
pX

k=0

✓
p

k

◆⇣a

c

⌘k
✓

b� am� ad

c

◆p�k

zm zPc,d,1,k (z)
(z � 1)k+1

�
m�1X
j=0

(b� a (m� j))p zm�j ,

from which the conclusion (78) follows.

Note that (78) implies Pa,b,1,p (1) =
�

a
c

�p
Pc,d,1,p (1), that is, cp

pP
i=0

Aa,b,1 (p, i) =

ap
pP

i=0
Ac,d,1 (p, i). We already knew this: the complete story is cp

Pp
i=0 Aa,b,1 (p, i) =

ap
Pp

i=0 Ac,d,1 (p, i) = apcpp!, and is a consequence of (12).
The simplest case m = 0, from (78), looks as follows

Pa,b,1,p (z) =
pX

k=0

✓
p

k

◆⇣a

c

⌘k
✓✓

b� ad

c

◆
(z � 1)

◆p�k

Pc,d,1,k (z) . (79)

If we set c = 2, d = 1 and z = �1, we can use (17) to obtain from (79) that

Pa,b,1,p (�1) = (�1)p
pX

k=0

✓
p

k

◆
ak (2b� a)p�k Ek. (80)

Compare (80) with (61).
Two particular cases of (78) are the following:
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1. Set c = 1, d = 0 in (78) to obtain

Pa,b,1,p (z) (81)

=zm
pX

k=0

✓
p

k

◆
ak ((b� am) (z � 1))p�k P1,0,1,k (z)

� (z � 1)p+1
m�1X
j=0

(b� a (m� j))p zm�1�j ,

which shows that the GEP Pa,b,1,p (z) can be written in terms of the standard
Eulerian polynomials P1,0,1,k (z), k = 0, 1, . . . , p. For example, with m = 0, 1,
we have

Pa,b,1,p (z) =
pX

k=0

✓
p

k

◆
ak (b (z � 1))p�k P1,0,1,k (z) ,

Pa,b,1,p (z) = z
pX

k=0

✓
p

k

◆
ak ((b� a) (z � 1))p�k P1,0,1,k (z)�(z � 1)p+1 (b� a)p .

(See formula (36) in [24].)

2. Set a = 1, b = 0 in (78), and rename c, d as a, b to obtain

P1,0,1,p (z) (82)

=a�pzm
pX

k=0

✓
p

k

◆
(� (b + am) (z � 1))p�k Pa,b,1,k (z)

� (z � 1)p+1
m�1X
j=0

(j �m)p zm�1�j ,

which shows that the standard Eulerian polynomial P1,0,1,p (z) can be written
in terms of the GEP Pa,b,1,k (z), k = 0, 1, . . . , p. For example, with m = 0, 1,
we have

P1,0,1,p (z) = a�p
pX

k=0

✓
p

k

◆
(�b (z � 1))p�k Pa,b,1,k (z) ,

= a�pz
pX

k=0

✓
p

k

◆
(� (b + a) (z � 1))p�k Pa,b,1,k (z) + (1� z)p+1 .

From formula (78) we can obtain two new families of recurrences for the GEP
(besides the known family of recurrences (72)). We show them together in the
following corollary.
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Corollary 1. For any given m 2 N, we have the following recurrences for the
generalized Eulerian polynomial Pa,b,1,p (z):

Pa,b,1,p (z) = (83)

1
m�1P
j=0

zj

0
@(z � 1)p

m�1X
j=0

(aj + b)p zm�1�j

+
p�1X
k=0

✓
p

k

◆
(am)p�k (z � 1)p�1�k Pa,b,1,k (z)

!
,

Pa,b,1,p (z) = (84)

1
m�1P
j=0

zj

0
@(z � 1)p

m�1X
j=0

(b� a (m� j))p zm�1�j

�zm
p�1X
k=0

✓
p

k

◆
(�am)p�k (z � 1)p�1�k Pa,b,1,k (z)

!
,

Pa,b,1,p (z) = apP1,0,1,p (z) (85)

+
p�1X
k=0

✓
p

k

◆
(z � 1)p�k

⇣
ap (�m)p�k P1,0,1,k (z)� (�am� b)p�k Pa,b,1,k (z)

⌘
.

Proof. Expression (83) is the already known recurrence (72). Let us prove (84) and
(85). Observe that the polynomial

pX
k=0

✓
p

k

◆⇣a

c

⌘k
✓✓

b� am� ad

c

◆
(z � 1)

◆p�k

Pc,d,1,k (z) , (86)

of the right-hand side of (78), does not depend on c or d. That is, we have

pX
k=0

✓
p

k

◆⇣a

c

⌘k
✓✓

b� am� ad

c

◆
(z � 1)

◆p�k

Pc,d,1,k (z)

=
pX

k=0

✓
p

k

◆
ak ((b� am) (z � 1))p�k P1,0,1,k (z) (87)

=
pX

k=0

✓
p

k

◆
(�am (z � 1))p�k Pa,b,1,k (z) (88)
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corresponding to (86) with c = 1 and d = 0, and (86) with c = a and d = b,
respectively.

By using (88) we can write (78) as

Pa,b,1,p (z) =zm
pX

k=0

✓
p

k

◆
(�am (z � 1))p�k Pa,b,1,k (z) (89)

� (z � 1)p+1
m�1X
j=0

(b� a (m� j))p zm�1�j ,

from which (84) follows. On the other hand, expression (87) can be written as

Pc,d,1,p (z) =cpP1,0,1,p (z) (90)

+
p�1X
k=0

✓
p

k

◆✓
z � 1

a

◆p�k

⇥

⇥
⇣
cp (b� am)p�k P1,0,1,k (z)� (bc� acm� ad)p�k Pc,d,1,k (z)

⌘
,

and then the polynomial

p�1X
k=0

✓
p

k

◆✓
z � 1

a

◆p�k⇣
cp (b� am)p�k P1,0,1,k (z)� (bc� acm� ad)p�k Pc,d,1,k (z)

⌘
,

(91)
from the right-hand side of (90), does not depend on a or b. Then we have, from
(91) with a = 1 and b = 0, that

p�1X
k=0

✓
p

k

◆✓
z � 1

a

◆p�k

⇥

⇥
⇣
cp (b� am)p�k P1,0,1,k (z)� (bc� acm� ad)p�k Pc,d,1,k (z)

⌘

=
p�1X
k=0

✓
p

k

◆
(z � 1)p�k

⇣
cp (�m)p�k P1,0,1,k (z)� (�cm� d)p�k Pc,d,1,k (z)

⌘
. (92)

Thus, expression (92) allows us to write (90) as follows:

Pc,d,1,p (z) = cpP1,0,1,p (z) (93)

+
p�1X
k=0

✓
p

k

◆
(z � 1)p�k

⇣
cp (�m)p�k P1,0,1,k (z)� (�cm� d)p�k Pc,d,1,k (z)

⌘
.

Rename c, d as a, b to obtain (85).
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Observe that (85) makes sense for m = 0, giving the recurrence

Pa,b,1,p (z) = apP1,0,1,p (z)�
p�1X
k=0

✓
p

k

◆
(b (1� z))p�k Pa,b,1,k (z) .

When a = 1, b = 0, formula (83) becomes the known family of recurrences (50) for
the standard Eulerian polynomials, and (85) becomes a trivial formula. However,
formula (84) gives a new family of recurrences for the standard Eulerian polynomials
P1,0,1,p (z), namely

P1,0,1,p (z) = (94)

1
m�1P
j=0

zj

0
@(z � 1)p

m�1X
j=0

(� (m� j))p zm�1�j

�zm
p�1X
k=0

✓
p

k

◆
(�m)p�k (z � 1)p�1�k P1,0,1,k (z)

!
.

For example, the case m = 1 of (94) is

P1,0,1,p (z) = (�1)p (z � 1)p � z
p�1X
k=0

✓
p

k

◆
(�1)p�k (z � 1)p�1�k P1,0,1,k (z) . (95)

Compare with (49).

4. Generalized Eulerian Polynomials II: r > 1

In this section we consider the GEP

Pa,b,r,p (z) =
rpX

i=0

Aa,b,r (p, i) zrp�i, (96)

in which the coe�cients are the GEN

Aa,b,r (p, i) =
iX

j=0

(�1)j
✓

rp + 1
j

◆✓
a (i� j) + b

r

◆p

, (97)

involved in the expansion (3), where r > 1.
The leading coe�cient of the polynomial Pa,b,r,p (z) is

�b
r

�p
(see (4)), and then, if

b � r, the polynomial Pa,b,r,p (z) has degree rp. If b = 0, the degree of Pa,0,r,p (z) is
r (p� 1) (this is the case of the GEP P1,0,r,p (z)). If b = 0 , we set P1,0,r,1 (z) = 1.
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Observe that the polynomial P1,0,r,2 (z) can be written, by using (7), as follows

P1,0,r,2 (z) =
rX

k=0

✓
r

k

◆2

zr�k. (98)

From the expansion (3), we see at once that the GEP Pa,b,r,p (z) appear in the
numerator of the Z-transform of the sequence

�an+b
r

�p
. In fact, we have

Z
✓✓

an + b

r

◆p◆
=

zPa,b,r,p (z)
(z � 1)rp+1 . (99)

The reciprocal polynomial of Pa,b,r,p (z) is Pa,a�b+r�1,r,p (z). That is, we have

zrpPa,b,r,p

�
z�1
�

= Pa,a�b+r�1,r,p (z) . (100)

In fact, by using (9), we have that

zrpPa,b,r,p

�
z�1
�

= zrp
rpX

i=0

Aa,b,r (p, i)
�
z�1
�rp�i

=
rpX

i=0

Aa,a�b+r�1,r (p, rp� i) zi

=
rpX

i=0

Aa,a�b+r�1,r (p, i) zrp�i

= Pa,a�b+r�1,r,p (z) ,

which proves our claim (100).
We would like to obtain a recurrence for GEP Pa,b,r,p (z) that generalizes the

recurrence (64), corresponding to the case r = 1, which in turn generalizes the
known recurrence (41) for the standard Eulerian polynomials. As we will see next,
this is a very di�cult task. However, we will see also that there is a particular case
with a nice formula for that recurrence.

Let us consider first the case r = 2. Beginning with the Z-transform of the
sequence

�an+b
2

�p
, namely formula (99) with r = 2,

Z
✓✓

an + b

2

◆p◆
=

zPa,b,2,p (z)
(z � 1)2p+1 , (101)

we will mimic the procedure we used to obtain the recurrence (64). First we write�an+b
2

�p
as
�an+b

2

��an+b
2

�p�1
. Then we expand

�an+b
2

�
as 1

2a2n2 + a
�
b� 1

2

�
n +

1
2b (b� 1). Next we use (30) and (31) to obtain
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Z
✓✓

an + b

2

◆p◆
(102)

= Z
 ✓

1
2
a2n2 + a

✓
b� 1

2

◆
n +

1
2
b (b� 1)

◆✓
an + b

2

◆p�1
!

=
1
2
a2Z

 
n2

✓
an + b

2

◆p�1
!

+ a

✓
b� 1

2

◆
Z
 

n

✓
an + b

2

◆p�1
!

+
1
2
b (b� 1)Z

 ✓
an + b

2

◆p�1
!

=
1
2
a2

 
z2 d2

dz2

zPa,b,2,p�1 (z)
(z � 1)2p�1 + z

d

dz

zPa,b,2,p�1 (z)
(z � 1)2p�1

!

�az

✓
b� 1

2

◆
d

dz

zPa,b,2,p�1 (z)
(z � 1)2p�1 +

1
2
b (b� 1)

zPa,b,2,p�1 (z)
(z � 1)2p�1 .

Now we have to do some algebraic work (that we omit), and finally we get, from
(101) and (102), the desired recurrence for the GEP Pa,b,2,p (z):

P a,b,2,p (z) = (103)
1
2
a2z2 (z � 1)2 P 00

a,b,2,p�1 (z)

� a

2
z (z � 1) (3a� 2b + 1 + (a (4p� 5) + 2b� 1) z)P 0

a,b,2,p�1 (z)

+
✓✓

b + 2a (p� 1)
2

◆
z2 +

�
a2 (6p� 5) + a (1� 2b) (2p� 3) + 2b (1� b)

� z

2

+
✓

b� a

2

◆◆
Pa,b,2,p�1 (z) .

For example, if a = 2, b = 1, the recurrence (103) for the GEP P2,1,2,p (z) is

P2,1,2,p (z) = 2z2 (z � 1)2 P 00
2,1,2,p�1 (z) (104)

�z (z � 1) (5 + (8p� 9) z)P 0
2,1,2,p�1 (z)

+
✓✓

4p� 3
2

◆
z2 + (10p� 7) z + 1

◆
P2,1,2,p�1 (z) .

Observe that, by taking P2,1,2,0 (z) = 1, the right-hand side of (104) makes sense
with p = 1:

2z2 (z � 1)2 (1)00 � z (z � 1) (5� z) (1)0 + (3z + 1) (1) = 3z + 1,

which is the polynomial P2,1,2,1 (z). With p = 2, we use the polynomial P2,1,2,1 (z) =
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3z + 1 in the right-hand side of (104), to obtain that

2z2 (z � 1)2 (3z + 1)00 � z (z � 1) (5 + 7z) (3z + 1)0 +
�
10z2 + 13z + 1

�
(3z + 1)

= 9z3 + 55z2 + 31z + 1,

which is the polynomial P2,1,2,2 (z). With p = 3, we use P2,1,2,2 (z) = 9z3 + 55z2 +
31z + 1 in the right-hand side of (104), to obtain that

2z2 (z � 1)2
�
9z3 + 55z2 + 31z + 1

�00�z (z � 1) (5 + 15z)
�
9z3 + 55z2 + 31z + 1

�0
+
�
36z2 + 23z + 1

� �
9z3 + 55z2 + 31z + 1

�
=27z5 + 811z4 + 2828z3 + 1884z2 + 209z + 1.

which is the polynomial P2,1,2,3 (z), and so on.
If we pursue a general recurrence for the GEP Pa,b,r,p (z), for any r 2 N, the next

step should be to repeat, in the case r = 3, the procedure of the cases r = 1 and
r = 2. Then, we would hopefully be able to figure out the form of the recurrence
in the general case, in order to have a conjecture for the desired recurrence, and
finally, of course, to prove the conjecture. But this seems likely to be impossible,
except if the parameter a is equal to 1. In this case, formula (103) can be written
as follows:

P1,b,2,p (z) = (105)
1
2
z2 (z � 1)2 P 00

1,b,2,p�1 (z)� z (z � 1) (2� b + (2p + b� 3) z)P 0
1,b,2,p�1 (z)

+
✓✓

b + 2 (p� 1)
2

◆
z2 � (b� 2) (b + 2p� 2) z +

✓
b� 1

2

◆◆
P1,b,2,p�1 (z) ,

and we were able to identify that (105) is the case r = 2 of

P1,b,r,p (z) = (106)
rX

l=0

lX
t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zr�t (1� z)r�l

(r � l)!
dr�l

dzr�l
P1,b,r,p�1 (z) .

Observe that the case r = 1 of (106) is

P1,b,1,p (z) = z (1� z)P 0
1,b,1,p�1 (z) + (1� b + (p� 1 + b) z)P1,b,1,p�1 (z) ,

which is formula (64) with a = 1.
The rest of this section is devoted to proving the recurrence (106). We begin

with two lemmas containing some combinatorial identities that have some interest
on their own.

Lemma 1. Let i,↵, r, s, be given non-negative integers, 0  s  r. We have the
identity

rX
t=0

(�1)t
✓

t

s

◆✓
i

t

◆✓
↵� t

r � t

◆
= (�1)s

✓
i

s

◆✓
↵� i

r � s

◆
. (107)
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Proof. We proceed by induction on i. The case i = 0 is clear: both sides are equal
to
�↵

r

�
. Indeed, in the case i = 1 it is also easy to see that the left-hand side�0

s

��↵
r

�
�
�1

s

��↵�1
r�1

�
is equal to (�1)s �1

s

��↵�1
r�s

�
. If (107) is true for a given i 2 N, let

us prove that it is true for i + 1. We have

rX
t=0

(�1)t
✓

t

s

◆✓
i + 1

t

◆✓
↵� t

r � t

◆

=
rX

t=0

(�1)t
✓

t

s

◆✓
i

t

◆✓
↵� t

r � t

◆
+

rX
t=1

(�1)t
✓

t

s

◆✓
i

t� 1

◆✓
↵� t

r � t

◆

= (�1)s
✓

i

s

◆✓
↵� i

r � s

◆
+

r�1X
t=0

(�1)t+1
✓

t + 1
s

◆✓
i

t

◆✓
↵� t� 1
r � t� 1

◆

= (�1)s
✓

i

s

◆✓
↵� i

r � s

◆
+

r�1X
t=0

(�1)t+1
✓

t

s

◆✓
i

t

◆✓
↵� t� 1
r � t� 1

◆

+
r�1X
t=0

(�1)t+1
✓

t

s� 1

◆✓
i

t

◆✓
↵� t� 1
r � t� 1

◆

= (�1)s
✓

i

s

◆✓
↵� i

r � s

◆
� (�1)s

✓
i

s

◆✓
↵� 1� i

r � 1� s

◆

� (�1)s+1
✓

i

s� 1

◆✓
↵� 1� i

r � s

◆

= (�1)s
✓

i

s

◆✓✓
↵� i

r � s

◆
�
✓

↵� 1� i

r � 1� s

◆◆
+ (�1)s

✓
i

s� 1

◆✓
↵� 1� i

r � s

◆

= (�1)s
✓

i

s

◆✓
↵� i� 1

r � s

◆
+ (�1)s

✓
i

s� 1

◆✓
↵� 1� i

r � s

◆

= (�1)s
✓✓

i

s

◆
+
✓

i

s� 1

◆◆✓
↵� i� 1

r � s

◆

= (�1)s
✓

i + 1
s

◆✓
↵� i� 1

r � s

◆
,

as desired.

Lemma 2. Let i,↵, r, s,m, be given non-negative integers, 0  s  r. We have the
identity

rX
t=0

tX
l=0

(�1)t
✓

l

t� s

◆✓
m

t� l

◆✓
i�m

l

◆✓
↵� l �m

r � t

◆
= (�1)s

✓
i

s

◆✓
↵� i

r � s

◆
. (108)

Proof. We proceed by induction on m. For m = 0 the result is true by (107). If
it is true for m 2 N, let us prove that it is also true for m + 1. First, note that
the induction hypothesis with ↵, i, r and s replaced by ↵� 1, i� 1, r� 1 and s� 1,
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respectively, says that

r�1X
t=0

tX
l=0

(�1)t
✓

l

t� s + 1

◆✓
m

t� l

◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � 1� t

◆

= (�1)s�1
✓

i� 1
s� 1

◆✓
↵� i

r � s

◆
,

or

rX
t=1

t�1X
l=0

(�1)t
✓

l

t� s

◆✓
m

t� l � 1

◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � t

◆

= (�1)s
✓

i� 1
s� 1

◆✓
↵� i

r � s

◆
.

This can be written as

rX
t=0

tX
l=0

(�1)t
✓

l

t� s

◆✓
m

t� l � 1

◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � t

◆
(109)

= (�1)s
✓

i� 1
s� 1

◆✓
↵� i

r � s

◆
.

Then, by using the induction hypothesis and (109), we have

rX
t=0

tX
l=0

(�1)t
✓

l

t� s

◆✓
m + 1
t� l

◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � t

◆

=
rX

t=0

tX
l=0

(�1)t
✓

l

t� s

◆✓✓
m

t� l

◆
+
✓

m

t� l � 1

◆◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � t

◆

=
rX

t=0

tX
l=0

(�1)t
✓

l

t� s

◆✓
m

t� l

◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � t

◆

+
rX

t=0

tX
l=0

(�1)t
✓

l

t� s

◆✓
m

t� l � 1

◆✓
i�m� 1

l

◆✓
↵� l �m� 1

r � t

◆

=(�1)s
✓

i� 1
s

◆✓
↵� i

r � s

◆
+ (�1)s

✓
i� 1
s� 1

◆✓
↵� i

r � s

◆

=(�1)s
✓

i

s

◆✓
↵� i

r � s

◆
,

as desired.

After interchanging indices and replacing i and s by ↵� i and r�s, respectively,
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expression (108) can be written as follows
rX

l=0

r�lX
t=0

(�1)t
✓

l

s� t

◆✓
m

r � l � t

◆✓
↵� i�m

l

◆✓
↵� l �m

t

◆
(110)

= (�1)s
✓

i

s

◆✓
↵� i

r � s

◆
.

This is the formula we will use in the proof of the main result of this section
(Theorem 2 below). We mention in passing the nice identity

↵�r+sX
i=s

rX
t=0

tX
l=0

(�1)s+t
✓

l

t� s

◆✓
m

t� l

◆✓
i�m

l

◆✓
↵� l �m

r � t

◆
=
✓

↵ + 1
r + 1

◆
, (111)

(valid for any s = 0, 1, . . . , r, and any non-negative integers ↵, r,m), obtained from
(108) together with

↵�r+sX
i=s

✓
i

s

◆✓
↵� i

r � s

◆
=
✓

↵ + 1
r + 1

◆
, (112)

which is identity (3.3) of [13].
Expressions (110) and (111) are, in fact, infinite families of identities. For exam-

ple, if in (110) we set m = 0, m = ↵, and m = r, we obtain the identities
rX

l=0

(�1)r�l
✓

l

s� r + l

◆✓
↵� i

l

◆✓
↵� l

r � l

◆

=
rX

l=0

r�lX
t=0

(�1)l
✓

l

s� t

◆✓
↵

r � l � t

◆✓
i + l � 1

l

◆✓
l + t� 1

t

◆

=
rX

l=0

r�lX
t=0

(�1)t
✓

l

s� t

◆✓
r

l + t

◆✓
↵� i� r

l

◆✓
↵� l � r

t

◆

= (�1)s
✓

i

s

◆✓
↵� i

r � s

◆
,

respectively. Some of the identities contained in (111) are
↵�r+sX

i=s

rX
t=0

(�1)s+t
✓

l

t� s

◆✓
i

t

◆✓
↵� t

r � t

◆

=
↵�r+sX

i=s

rX
t=0

tX
l=0

(�1)s+r
✓

l

t� s

◆✓
↵

t� l

◆✓
i� ↵

l

◆✓
l + r � t� 1

r � t

◆

=
↵X

i=r

rX
l=0

✓
m

r � l

◆✓
i�m

l

◆

=
✓

↵ + 1
r + 1

◆
.
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Now we are ready to prove the main result of this section, namely, recurrence
(106), stated in the following theorem. We again write the corresponding formula
(106) to be demonstrated.

Theorem 2. We have the following recurrence for the generalized Eulerian poly-
nomials P1,b,r,p (z):

P1,b,r,p (z) = (113)
rX

l=0

lX
t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zr�t (1� z)r�l

(r � l)!
dr�l

dzr�l
P1,b,r,p�1 (z) .

Proof. If p = 1, formula (113) is clearly true, so we can suppose that p > 1. We
want to show that

rpX
i=0

iX
j=0

(�1)j
✓

rp + 1
j

◆✓
i� j + b

r

◆p

zrp�i (114)

=
rX

l=0

 
lX

t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zl�t

!
1

(r � l)!
zr�l (1� z)r�l

⇥ dr�l

dzr�l

r(p�1)X
i=0

iX
j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1

zr(p�1)�i.

Beginning with the right-hand side of (114) we have

rX
l=0

 
lX

t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zl�t

!
1

(r � l)!
zr�l (1� z)r�l

⇥ dr�l

dzr�l

r(p�1)X
i=0

iX
j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1

zr(p�1)�i

=
rX

l=0

 
lX

t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zl�t

!
(1� z)r�l

⇥
r(p�1)X

i=0

0
@ iX

j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1
1
A✓r (p� 1)� i

r � l

◆
zr(p�1)�i

=
r(p�1)X

i=0

0
@ iX

j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1

zrp�i

1
A

⇥
rX

l=0

 
lX

t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
z�t

!✓
r (p� 1)� i

r � l

◆
(1� z)r�l z�(r�l).

(115)



INTEGERS: 18 (2018) 30

Observe that

rX
l=0

 
lX

t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
z�t

!✓
r (p� 1)� i

r � l

◆
(1� z)r�l z�(r�l)

=
rX

l=0

 
r�lX
t=0

✓
r � b

t

◆✓
rp� r � l + b

r � l � t

◆
z�t

!✓
r (p� 1)� i

l

◆
(1� z)l z�l

=
rX

l=0

 
r�lX
t=0

✓
r � b

t

◆✓
r (p� 1)� l + b

r � t� l

◆!✓
r (p� 1)� i

l

◆
z�l�t

lX
k=0

✓
l

k

◆
(�z)k

=z�r
rX

l=0

r�lX
t=0

lX
k=0

(�1)k
✓

l

k

◆✓
r � b

r � l � t

◆✓
r (p� 1)� l + b

t

◆✓
r (p� 1)� i

l

◆
zk+t

=z�r
rX

s=0

(�1)s
rX

l=0

r�lX
t=0

(�1)t
✓

l

s� t

◆✓
r � b

r � l � t

◆✓
r (p� 1)� l + b

t

◆
⇥

⇥
✓

r (p� 1)� i

l

◆
zs, (116)

where in the last step we substituted k+t with s. In (110) set ↵ = rp and m = r�b,
and replace i by i + b, to obtain

rX
l=0

r�lX
t=0

(�1)t

✓
l

s� t

◆✓
r � b

r � l � t

◆✓
r (p� 1)� i

l

◆✓
r (p� 1)� l + b

t

◆

= (�1)s
✓

i + b

s

◆✓
rp� i� b

r � s

◆
. (117)

Thus, the right-hand side of (114) can be written, according to (115), (116) and
(117), as follows:

rX
l=0

 
lX

t=0

✓
r � b

t

◆✓
rp� 2r + l + b

l � t

◆
zl�t

!
1

(r � l)!
zr�l (1� z)r�l (118)

⇥ dr�l

dzr�l

r(p�1)X
i=0

iX
j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1

zr(p�1)�i

=
r(p�1)X

i=0

0
@ iX

j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1

zrp�i

1
A⇥

⇥
rX

s=0

✓
i + b

s

◆✓
rp� i� b

r � s

◆
zs�r.



INTEGERS: 18 (2018) 31

To end the proof, according to (114) and (118), we have to show that the following
polynomial identity is true:

rpX
i=0

iX
j=0

(�1)j
✓

rp + 1
j

◆✓
i� j + b

r

◆p

zrp�i = (119)

r(p�1)X
i=0

0
@ iX

j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� j + b

r

◆p�1

zrp�i

1
A⇥

⇥
rX

s=0

✓
i + b

s

◆✓
rp� i� b

r � s

◆
zs�r.

Let us change the sum of indices i + s by the new index i (which runs from 0 up
to rp). Expression (119) is then written as follows

rpX
i=0

iX
j=0

(�1)j
✓

rp + 1
j

◆✓
i� j + b

r

◆p

zrp�i = (120)

rpX
i=0

rX
s=0

i�sX
j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� s� j + b

r

◆p�1

⇥

⇥
✓

i� s + b

r � s

◆✓
rp� i + s� b

s

◆
zrp�i.

Plainly, expression (120) is true if and only if, for i = 0, 1, . . . , rp, we have that

iX
j=0

(�1)j
✓

rp + 1
j

◆✓
i� j + b

r

◆p

= (121)

rX
s=0

i�sX
j=0

(�1)j
✓

r (p� 1) + 1
j

◆✓
i� s� j + b

r

◆p�1✓i� s + b

r � s

◆✓
rp� i + s� b

s

◆
.

But (121) is precisely the recurrence (11) for the GEN A1,b,r (p, i). Thus, the proof
is complete.

As an example, let us consider the case r = 3, b = 0. The coe�cients of the
GEP P1,0,3,p (z), are the GEN A1,0,3 (p, i) (see GENT1 in Section 1). In this case
the recurrence (113) can be written as follows:
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P1,0,3,p (z) =
z3 (1� z)3

6
d3

dz3
P1,0,3,p�1 (z) (122)

+ ((3p� 5) z + 3)
z2 (1� z)2

2
d2

dz2
P1,0,3,p�1 (z)

+
✓✓

3p� 4
2

◆
z2 + 3 (3p� 4) z + 3

◆
z (1� z)

d

dz
P1,0,3,p�1 (z)

+
✓✓

3p� 3
3

◆
z3 + 3

✓
3p� 3

2

◆
z2 + 3

✓
3p� 3

1

◆
z + 1

◆
P1,0,3,p�1 (z) .

If we set p = 3 in the right-hand side of (122), and use the polynomial P1,0,3,2 (z) =
z3 + 9z2 + 9z + 1, we obtain

z3 (1� z)3

6
(6) + (4z + 3)

z2 (1� z)2

2
(6z + 18)

+
✓✓

5
2

◆
z2 + 15z + 3

◆
z (1� z)

�
3z2 + 18z + 9

�

+
✓✓

6
3

◆
z3 + 3

✓
6
2

◆
z2 + 3

✓
6
1

◆
z + 1

◆�
z3 + 9z2 + 9z + 1

�
= z6 + 54z5 + 405z4 + 760z3 + 405z2 + 54z + 1,

which is P1,0,3,p (z).
Observe that, by using expression (98) for P1,0,r,2 (z) together with the recurrence

(113), we can write the following explicit formula for the GEP P1,0,r,3 (z):

P1,0,r,3 (z) =
rX

l=0

lX
i=0

rX
k=0

✓
r

i

◆✓
r + l

l � i

◆✓
r � k

r � l

◆✓
r

k

◆2

(1� z)r�l zr+l�k�i. (123)

5. Some Applications

We present two applications: (1) General telescoping sums, in which the GEP
Pa,b,1,p (z) (studied in Section 3) are involved, and (2) Sums and alternating sums
of powers of binomial coe�cients, in which the GEP Pa,b,r,p (z) (studied in Section
4) are involved.

5.1. General Telescoping Sums

The main result in this subsection is the following:
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Proposition 3. Let m be a given positive integer, and let !k, k = 0, 1, . . . ,m� 1,
be the m-th roots of 1, namely !k = exp 2⇡ik

m . The sequence (an + b)p can be written
as an m-telescoping sum according to

(an + b)p =
m�1X
k=0

↵k!n
k (124)

+
n�1X
t=0

 
m�1X
k=0

�k!n�1�t
k

!
((a (t + m) + b)p � (at + b)p) ,

where

↵k = lim
z!!k

(z � !k)
Pm�1

j=0 (aj + b)p zm�1�j

zm � 1
, (125)

�k = lim
z!!k

z � !k

zm � 1
. (126)

Proof. Substitute (72) in (63) to obtain

Z((an + b)p) = (127)

z

zm � 1

m�1X
j=0

(aj + b)p zm�1�j

| {z }
(A)

+
1

zm � 1

p�1X
k=0

✓
p

k

◆
(ma)p�k zPa,b,1,k (z)

(z � 1)k+1

| {z }
(B)

.

Since zm � 1 =
Qm�1

k=0 (z � !k), we can expand in partial fractions the rational

function
Pm�1

j=0 (aj+b)pzm�1�j

zm�1 to obtain

1
zm � 1

m�1X
j=0

(aj + b)p zm�1�j =
m�1X
k=0

↵k

z � !k
,

where ↵k is given in (125). Then, expression (A) can be written as follows

z

zm � 1

m�1X
j=0

(aj + b)p zm�1�j =
m�1X
k=0

↵k
z

z � !k
= Z

 
m�1X
k=0

↵k!n
k

!
. (128)

Similarly, we have the partial fraction decomposition

1
zm � 1

=
m�1X
k=0

�k

z � !k
, (129)

where �k is given in (126). Then

1
zm � 1

=
1
z

m�1X
k=0

�k
z

z � !k
=

1
z
Z
 

m�1X
k=0

�k!n
k

!
.
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Thus, expression (B) can be written as follows

1
zm � 1

p�1X
k=0

✓
p

k

◆
(ma)p�k zPa,b,1,k (z)

(z � 1)k+1

=
1
z
Z
 

m�1X
k=0

�k!n
k

!
Z
 

pX
k=0

✓
p

k

◆
(ma)p�k (an + b)k � (an + b)p

!

=
1
z

m�1X
k=0

�kZ (!n
k )Z ((a (n + m) + b)p � (an + b)p) . (130)

The Convolution theorem (25), together with (28), give us from (130) that ex-
pression (B) is

1
zm � 1

p�1X
k=0

✓
p

k

◆
(ma)p�k zPa,b,1,k (z)

(z � 1)k+1

= Z
 

n�1X
t=0

 
m�1X
k=0

�k!n�1�t
k

!
((a (t + m) + b)p � (at + b)p)

!
. (131)

Finally, the desired conclusion (124) comes from (127), (128) and (131).

There is a di↵erent form of writing the term (B) in (127). Observe that

1
zm � 1

p�1X
k=0

✓
p

k

◆
(ma)p�k zPa,b,1,k (z)

(z � 1)k+1

= z�m

 
m�1Y
k=0

z

z � !k

! 
pX

k=0

✓
p

k

◆
(ma)p�k zPa,b,1,k (z)

(z � 1)k+1
� zPa,b,1,p (z)

(z � 1)p+1

!

= z�m

 
m�1Y
k=0

Z (!n
k )

!
Z ((a (n + m) + b)p � (an + b)p) . (132)

The product
⇣Qm�1

k=0 Z (!n
k )
⌘
Z ((a (n + m) + b)p � (an + b)p) is the Z-transform

of the convolution

!n
m�1 ⇤ · · · ⇤ !n

1 ⇤ !n
0 ⇤ ((a (n + m) + b)p � (an + b)p) , (133)

and, according to (28), the factor z�m in (132) produces an “m-delay” in the
sequence (133). Thus we can write the term (B) in (127) as follows

n�mX
jm=0

· · ·
j3X

j2=0

j2X
j1=0

!n�jm
m�1 · · ·!j3�j2

1 !j2�j1
0 ((a (j1 + m) + b)p � (aj1 + b)p) .
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That is, formula (124) from Proposition 3 can be written as follows:

(an + b)p =
m�1X
k=0

↵k!n
k + (134)

n�mX
jm=0

· · ·
j3X

j2=0

j2X
j1=0

!n�jm
m�1 · · ·!j3�j2

1 !j2�j1
0 ((a (j1 + m) + b)p � (aj1 + b)p) ,

where ↵k is as in Proposition 3.
In the case m = 1, expression (128) is simply z

z�1bp = bpZ (1), and expression
(131) is

1
z � 1

p�1X
k=0

✓
p

k

◆
ap�k zPa,b,1,k (z)

(z � 1)k+1
= Z

 
n�1X
t=0

((a (t + 1) + b)p � (at + b)p)

!
.

Thus, formula (124) is in this case

(an + b)p = bp +
n�1X
t=0

((a (t + 1) + b)p � (at + b)p) , (135)

which is the standard telescoping sum of the sequence (an + b)p.
When m = 2, formula (124) can be written as follows:

(an + b)p =
bp + (a + b)p

2
+

bp � (a + b)p

2
(�1)n (136)

+
1
2

n�1X
t=0

⇣
1 + (�1)n�t

⌘
((a (t + 2) + b)p � (at + b)p) ,

and the convolution version (134) can be written as follows:

(an + b)p =
bp + (a + b)p

2
+

bp � (a + b)p

2
(�1)n (137)

+
n�2X
j2=0

j2X
j1=0

(�1)n�j2 ((a (j1 + 2) + b)p � (aj1 + b)p) .

For m = 3, formula (124) can be written as

(an + b)p = (138)
bp + (a + b)p + (2a + b)p

3
+

2bp � (a + b)p � (2a + b)p

3
cos

2n⇡

3

+
(a + b)p � (2a + b)p

p
3

sin
2n⇡

3

+
1
3

n�1X
t=0

✓
1� cos

2 (n� 1� t)⇡

3
�
p

3 sin
2 (n� 1� t)⇡

3

◆
⇥

⇥ ((a (t + 3) + b)p � (at + b)p) .
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5.2. Sums of Powers of Binomial Coe�cients

Plainly, expansion (3) together with (37), gives us at once that

nX
j=0

✓
aj + b

r

◆p

=
rpX

i=0

Aa,b,r (p, i)
✓

n + 1 + rp� i

rp + 1

◆
. (139)

It turns out that, in some cases, the right-hand side of (139) can be written as
the convolution of the odd positive integers sequence 2n + 1 with a polynomial.
This is, for example, the case a = 1, b = 0, r odd, p even. In fact, formula (14) tells
us that the GEP P1,0,r,p (z) =

Prp
i=0 A1,0,r (p, i) zrp�i (which is a r (p� 1)-th degree

polynomial), with r odd and p even, is such that P1,0,r,p (�1) = 0. That is, we can
write P1,0,r,p (z) = (z + 1) Qr(p�1)�1 (z), where Qr(p�1)�1 (z) is a (r (p� 1)� 1)-th
degree polynomial. Indeed, it is not di�cult to obtain the explicit factorization

P1,0,r,p (z) = (z + 1)
rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k zrp�1�k. (140)

Thus, formula (99) gives us that

Z

0
@ nX

j=0

✓
j

r

◆p
1
A =

z

z � 1
zP1,0,r,p (z)
(z � 1)rp+1

=
z2

(z � 1)rp+1 (z + 1)
rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k zrp�1�k

=
z (z + 1)
(z � 1)2

rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k zrp�k

(z � 1)rp . (141)

From (141), together with (25), (33), and (35), we see that for r odd and p even,
the sum

Pn
j=0

�j
r

�p
can be written as the convolution

nX
j=0

✓
j

r

◆p

= (2n + 1) ⇤
rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k
✓

n + rp� 1� k

rp� 1

◆
. (142)

Moreover, observe that

rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k
✓

n + rp� 1� k

rp� 1

◆
= 0,

for n = 0, 1, . . . , r � 1. Thus, we can write

rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k
✓

n + rp� 1� k

rp� 1

◆
=
✓

n

r

◆
Sr(p�1)�1 (n) ,
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where Sr(p�1)�1 (n) is a (r (p� 1)� 1)-th degree n-polynomial.
Summarizing, for r odd and p even, we have

nX
j=0

✓
j

r

◆p

= (2n + 1) ⇤
✓

n

r

◆
Sr(p�1)�1 (n) ,

where the polynomial Sr(p�1)�1 (n) is given by

Sr(p�1)�1 (n) =
✓

n

r

◆�1 rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k
✓

n + rp� 1� k

rp� 1

◆
.

As we will see in the following examples, the polynomial Sr(p�1)�1 (n) has a nice
form when we write it in powers of n� s, where r = 2s + 1. When r = 1, we have
the following formula for sums of even powers of integers

nX
j=0

j2p = (2n + 1) ⇤ nS2p�2 (n) ,

where p 2 N and S2p�2 (n) = n�1
P2p�1

k=1

Pk
i=0 A1,0,1 (2p, i) (�1)i+k �n+2p�1�k

2p�1

�
.

Concrete examples are

nX
k=0

k2 = (2n + 1) ⇤ n,

nX
k=0

k4 = (2n + 1) ⇤ n
�
2n2 � 1

�
,

nX
k=0

k6 = (2n + 1) ⇤ n
�
3n4 � 5n2 + 3

�
.

Some examples of (142) with r = 3 are

nX
k=0

✓
k

3

◆2

=
1
2

(2n + 1) ⇤
✓

n

3

◆⇣
(n� 1)2 � 2

⌘
,

nX
k=0

✓
k

3

◆4

=
1
72

(2n + 1) ⇤
✓

n

3

◆
⇥

⇥
⇣
2 (n� 1)8 � 23 (n� 1)6 + 157 (n� 1)4 � 604 (n� 1)2 + 936

⌘
,
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and with r = 5
nX

k=0

✓
k

5

◆2

=
1
4!

(2n + 1) ⇤
✓

n

5

◆⇣
(n� 2)4 � 9 (n� 2)2 + 24

⌘
,

nX
k=0

✓
k

5

◆4

=
1

345600
(2n + 1) ⇤

✓
n

5

◆
⇥

⇥

0
@ 2 (n� 2)14 � 83 (n� 2)12 + 2209 (n� 2)10

�44389 (n� 2)8 + 648681 (n� 2)6 � 6375828 (n� 2)4

+36988608 (n� 2)2 � 93657600

1
A .

Let us now consider alternating sums of powers of binomial coe�cients. Observe
that, by using (3), (21) and (37), we can write

Z
 

nX
k=0

(�1)k
✓

k

r

◆p
!

=
z

z � 1
�zP1,0,r,p (�z)
(�z � 1)rp+1 = (�1)rp z2P1,0,r,p (�z)

(z � 1) (z + 1)rp+1 .

If r is odd and p is even, we have, using (140), that

Z
 

nX
k=0

(�1)k
✓

k

r

◆p
!

= (�1)rp
z2 (�z + 1)

rp�1P
k=r

kP
i=0

A1,0,r (p, i) (�1)i+k (�z)rp�1�k

(z � 1) (z + 1)rp+1

=
rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k (�z)rp+1�k

(�z � 1)rp+1 ,

from which we conclude that

nX
j=0

(�1)k+n
✓

k

r

◆p

=
rp�1X
k=r

kX
i=0

A1,0,r (p, i) (�1)i+k
✓

n + rp� k

rp

◆
. (143)
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Some examples are

nX
k=0

(�1)k+n k2 =
✓

n + 1
2

◆
,

nX
k=0

(�1)k+n k4 =
✓

n + 3
4

◆
+ 10

✓
n + 2

4

◆
+
✓

n + 1
4

◆
,

nX
k=0

(�1)k+n
✓

k

3

◆2

=
✓

n + 3
6

◆
+ 8
✓

n + 2
6

◆
+
✓

n + 1
6

◆
,

nX
k=0

(�1)k+n
✓

k

5

◆2

=
✓

n + 5
10

◆
+ 24

✓
n + 4
10

◆
+ 76

✓
n + 3
10

◆

+24
✓

n + 2
10

◆
+
✓

n + 1
10

◆
.

Similar discussions, beginning with the alternating sums (15) or (16) replacing
(14), yield the corresponding formulas for sums of powers of binomial coe�cients.

Related to (15), for r odd and p even, we have

nX
k=0

✓
k + r

r

◆p

= (2n + 1) ⇤
r(p�1)�1X

k=0

kX
i=0

A1,r,r (p, i) (�1)i+k
✓

n + rp� 1� k

rp� 1

◆
.

Related to (16), for r ⌘ 1 mod 4 and p odd, or r ⌘ 3 mod 4 and p even, we
have

nX
k=r

✓
2k + 1

r

◆p

=

(2n + 1) ⇤
rp�1�br/2cX

k=0

k+(r�1)/2X
i=0

A2,1,r (p, i) (�1)i+k+(r�1)/2
✓

n + rp� 1� k � br/2c
rp� 1

◆
.

A di↵erent approach to the alternating sums of powers, including more general
weighted sums, begins with the advance-shifting property of the Z-transform (20)
(see (66) and (67)). Using (20) and (99), we can write

zPa,am+b,r,p (z)
(z � 1)rp+1 = Z

✓✓
a (n + m) + b

r

◆p◆

= zm

0
@Z

✓✓
an + b

r

◆p◆
�

m�1X
j=0

�aj+b
r

�p
zj

1
A

= zm

0
@zPa,b,r,p (z)

(z � 1)rp+1 �
m�1X
j=0

�aj+b
r

�p
zj

1
A ,
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from where we get
m�1X
k=0

�ak+b
r

�p
zk

=
zPa,b,r,p (z)
(z � 1)rp+1 � z�m zPa,am+b,r,p (z)

(z � 1)rp+1 ,

or, replacing z by z�1,
m�1X
k=0

zk

✓
ak + b

r

◆p

=
zrpPa,b,r,p

�
z�1
�

(1� z)rp+1 � zm zrpPa,am+b,r,p

�
z�1
�

(1� z)rp+1 . (144)

Further, by using (100) we can write (144) as follows
m�1X
k=0

zk

✓
ak + b

r

◆p

=
Pa,a�b+r�1,r,p (z)

(1� z)rp+1 � zm Pa,a(1�m)�b+r�1,r,p (z)
(1� z)rp+1 ,

and finally, replacing b by a� b + r � 1 we get
m�1X
k=0

zk

✓
ak + a� b + r � 1

r

◆p

=
Pa,b,r,p (z)
(1� z)rp+1 � zm Pa,b�am,r,p (z)

(1� z)rp+1 . (145)

Formula (145) gives us the value of the weighted sum of the left-hand side, where
z 2 C, z 6= 0, 1 is the weight, in terms of the GEP Pa,b,r,p (z) and Pa,b�am,r,p (z).

If we set a = 1, b = 0, z = �1, we get from (144) and (145) that
m�1X
k=0

(�1)k
✓

k

r

◆p

=
(�1)rp P1,0,r,p (�1)

2rp+1
� (�1)m (�1)rp P1,m,r,p (�1)

2rp+1
,

and
m�1X
k=0

(�1)k
✓

k + r

r

◆p

=
P1,0,r,p (�1)

2rp+1
� (�1)m P1,�m,r,p (�1)

2rp+1
,

respectively. For r odd and p even we have P1,0,r,p (�1) = 0, and then we obtain
the following alternating sums of powers of binomial coe�cients

m�1X
k=0

(�1)k+m
✓

k

r

◆p

= � 1
2rp+1

P1,m,r,p (�1) ,

and
m�1X
k=0

(�1)k+m
✓

k + r

r

◆p

= � 1
2rp+1

P1,�m,r,p (�1) ,

in terms of the value of the GEP P1,m,r,p (z) or P1,m,r,p (z) at z = �1. Explicitly,
we have, for r odd and p even:

m�1X
k=0

(�1)k+m
✓

k

r

◆p

= � 1
2rp+1

rpX
i=0

A1,m,r (p, i) (�1)i

= � 1
2rp+1

rpX
i=0

iX
j=0

(�1)j+i
✓

rp + 1
j

◆✓
i� j + m

r

◆p

,
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(compare with (143)), and

m�1X
k=0

(�1)k+m
✓

k + r

r

◆p

= � 1
2rp+1

rpX
i=0

A1,�m,r (p, i) (�1)i

= � 1
2rp+1

rpX
i=0

iX
j=0

(�1)j+i
✓

rp + 1
j

◆✓
i� j �m

r

◆p

.
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Notes in Mathematics 138, Springer, 1970.

[13] H. W. Gould, Combinatorial Identities, Morgantown, W. Va. 1972.

[14] U. Graf, Applied Laplace Transforms and z-Transforms for Scientists and Engineers: A
Computational Approach Using a Mathematica Package, Birkhäuser, 2004.
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