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Abstract
A set A = Ah,n ⇢ [n] [ {0} is said to be an additive h-basis if each element in
{0, 1, . . . , hn} can be written as an h-sum of elements of A in at least one way.
We seek multiple representations as sums of h not necessarily distinct elements
of A, and, in this paper we make a start by restricting ourselves to h = 2. We
say that A is a truncated (↵, 2, g) additive basis if each j 2 [↵n, (2 � ↵)n] can be
represented as a 2-sum of elements of A in at least g ways. In this paper, we provide
sharp asymptotics for the event that a randomly selected set from {1, 2, . . . , n} is a
truncated (↵, 2, g) additive basis with high or low probability.

1. Introduction and Statement of Results

1.1. Balls in Boxes

We start by introducing results from the classical theory of the random allocation of
balls to boxes. We will be seeing, in the rest of the paper, how and to what extent
the results apply to situations such as ours, i.e., “representing integers as sums of
h, not necessarily distinct, integers from a random set of integers.”

Suppose that we are trying to place balls in boxes so that each box contains
at most one ball. This is the so-called “birthday problem”, and it is well-known,
e.g. [2], that if we randomly throw n balls into N boxes, then the threshold for
the property to hold with high or low probability (whp or wlp) is n =

p
N . More

precisely, if n/
p

N ! 1, then the probability that each box contains at most one
ball is asymptotically 0, and this probability is asymptotically 1 if n/

p
N ! 0.
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Here and throughout this paper, we will describe these two situations by using the
notation n �

p
N and n ⌧

p
N respectively. There is a generalization of the

birthday threshold to “at most g balls,” which we rederived in [7] using Talagrand’s
inequality [1]:

Theorem 1.1. Suppose n balls are randomly and uniformly distributed in N boxes,
and let X = Xg denote the number of boxes with at least g+1 balls. If n⌧ Ng/(g+1),
then

P(X = 0)! 1,

as n!1, and if n� Ng/(g+1), then

P(X = 0)! 0,

as n,N !1.

Theorem 1.1 exhibits a progression of thresholds, which get close to n = N as
g ! 1. It may still be the case, however, that not all boxes will have a ball in
them if n � N , which leads us to the question of the coverage of each box by at
least one ball, or Coupon Collection. It is well known that the expected waiting
time E(W ) for each of the boxes to be filled is N(lnN +�+o(1)), where � is Euler’s
constant, and that the variance of the waiting time is ⇠ N2. Together with these
facts, Chebychev’s inequality can be used to prove the following result:

Theorem 1.2. Suppose n balls are randomly and uniformly distributed in N boxes,
and let X and W denote, respectively, the number of empty boxes, and the waiting
time until each box is filled. Denote by !(1) any function of n that tends to 1 as
n!1. Then, if n = N(lnN + !(1)), we have

P(W > n) = P(X � 1)! 0,

and if n = N(lnN � !(1)), we have

P(W  n) = P(X = 0)! 0.

Various people have asked about covering each box g or more times. Generalizing
work of Erdős and Rényi [4]; and Newman and Shepp [17]; Holst [13] produced the
following definitive result:

Theorem 1.3. If balls are randomly allotted to N boxes, we let Vg denote the
waiting time until each box has at least g balls. Then, as N !1,

E(Vg) = N(lnN + (g � 1) ln lnN + � � ln(g � 1)! + o(1)),

where � denotes Euler’s constant. Normalizing by setting V ⇤
g = Vg/N � lnN � (g�

1) ln lnN + ln(g � 1)! + o(1), we have that

P(V ⇤
g  u)! exp{�e�u}.



INTEGERS: 18 (2018) 3

From Theorem 1.3, it is easy to derive the following result:

Theorem 1.4. Suppose n balls are randomly and uniformly distributed in N boxes,
and let Xg denote the number of boxes with at most g � 1 balls. If n = N(lnN +
(g � 1) ln lnN + !(1)), then

P(Xg = 0)! 1,

and if n = N(lnN + (g � 1) ln lnN � !(1)), then

P(Xg = 0)! 0

as N !1.

Of particular note is the linearity (in ln lnN) for coverings beyond the first,
showing that an additional iterated logarithmic fraction su�ces for each subse-
quent covering. We hope to show that many of these features stay intact even as
dependence is introduced into the covering scenarios. As a final note, we observe
that extremal behaviour in the “balls in boxes” example is trivial: The maximal
number of balls that may be placed in N boxes so that each contains at most one
ball is N , as is the smallest number of balls so as to guarantee at least one ball per
box.

1.2. Dependence

A set A ✓ [n] is said to be a Bh set (the totality of these for all h � 2 are known as
Sidon sets) if each of the

�|A|+h�1
h

�
sums of h elements drawn with replacement from

A are distinct. A set A ✓ [n] [ {0} is said to be an h-additive basis if each j 2 [n]
can be written as the sum of h, not necessarily distinct, elements in A. Thus, a set
is a Bh set or an h-additive basis if each element in the potential sumset can be
obtained in at most one or at least one way respectively using elements of A. It is
known that maximal Sidon sets and minimal additive bases are both of order n1/h:
See [11] and [15] for Sidon sets and [6], [12], and [16] for the fact that minimal 2-
additive bases satisfy 1.463

p
n  |A|  1.871

p
n. See [9] and [10] for other results.

In [19], and [14], there are recent improvements. We are interested, however, in
random versions of these results, and we start by noting that the corresponding
balls in boxes model is as follows:

The balls are the integers randomly chosen from [n] by a process of sampling
which includes each integer (in the non-fixed-size sample) independently with prob-
ability p. However the balls do not “go into a single box”. Rather, each ball colludes
with other chosen balls, including itself, generating sums with multisets of h � 1
other balls. A ball is then placed into the box corresponding to each generated sum.
For example, if h = 2 and the integers selected in sequence are 4, 2, and 6, then
balls are placed in boxes

8(= 4 + 4),



INTEGERS: 18 (2018) 4

4(= 2 + 2), 6(= 2 + 4),

12(= 6 + 6), 8(= 6 + 2), 10(= 6 + 4),

where the numbers in the three lines indicate what occurs with integers 4, 2, and
6 respectively. There are clearly several layers of dependence in the allocation of
balls to boxes.

Three known facts in the area of thresholds for the emergence of Sidon sets and
additive bases are stated next. Theorem 1.5 below was proved in [9]:

Theorem 1.5. Consider a subset An obtained by choosing each integer in [n] in-
dependently with probability p = pn = kn

n . Then for any h � 2,

kn = o(n1/2h)) P(An is a Bh set)! 1 (n!1)

and
n1/2h = o(kn)) P(An is a Bh set)! 0 (n!1).

In [7], we find the following definition that is related to the original question of
Sidon (see [18]).

Definition 1.6. We say that A ✓ [n] satisfies the Bh[g] property for integers
h � 2; g � 1 if for all integers k, h  k  nh, k is realized in at most g ways as a
sum

a1 + a2 + . . . + ah = k

for a1  a2  . . .  ah and ai 2 A for each i.

The authors of [7] go on to generalize Theorem 1.5 as follows:

Theorem 1.7. Let A ✓ [n] be a random subset of [n] in which each element of [n]
is selected for membership in A independently with probability p := k

n . Then for
any h � 2, g � 1 we have:

k = o
⇣
n

g
h(g+1)

⌘
) P(A is Bh[g])! 1 (n!1),

and
n

g
h(g+1) = o (k)) P(A is Bh[g])! 0 (n!1).

Theorems 1.5 and 1.7 are about each integer being represented at most once or
at most g � 2 times. Their statements are included so as to draw a full parallel
between the balls in boxes results from Section 1.1. In transitioning to the case
of additive bases and Theorem 1.8 below, we first note, as in [10], that a single
input probability for integer selection will cause edge e↵ect issues. For example, for
h = 2, since the only way to represent 1 as a 2-sum is as 1+0, both 0 and 1 must be
selected in order for 1 to be represented. For this reason, we say that A ✓ [n][ {0}
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is a truncated (↵, h) additive basis if each integer in [↵n, (h�↵)n] can be written as
an h-sum of elements in A. Given this altered definition, the “each integer appears
at least once as an h-sum” analogy is not fully preserved, since we have each integer
in a range appearing at least once as an h-sum. Nonetheless, we have the following
result from [10]:

Theorem 1.8. If we choose elements of {0} [ [n] to be in A with probability

p = h

r
K log n�K log log n + An

nh�1
,

where K = K↵,h = h!(h�1)!
↵h�1 , then

P(A is a truncated (↵, h) additive basis)!

8><
>:

0
1
exp{� 2↵

h�1e�A/K}

according as An tends to �1,1 with |An| = o(log log n), or A 2 R respectively.

Even though edge e↵ects can be eliminated by considering modular additive
bases, here we continue to consider the truncated additive basis case, where the
target sumset is reduced via the parameter ↵, since we are using the same probability
p of selection. The case h = 2 is studied in greater detail in the next result, which
addresses coverage of each integer as a 2-sum in at least g di↵erent ways. This is
the main result of this paper.

Theorem 1.9. If we choose elements of {0} [ [n] to be in A with probability

p =

s
2
↵ log n + (g � 2) 2

↵ log log n + An

n
,

then, with |An| = o(log log n),

P(A is a truncated (↵, 2, g) basis)!

8>><
>>:

0 if An ! �1
1 if An !1
exp

n
� 2↵

(g�1)!e
�A↵/2

o
if An ! A 2 R

,

where a truncated (↵, 2, g) basis is one for which each integer in the target set
[↵n, (2� ↵)n] can be written as a 2-sum in at least g ways.

Theorem 1.9 exhibits the log log phenomenon that arose in the context of Coupon
Collection. Interestingly, though, the log log factor is present for the first covering
with a negative contribution, disappears for the second, and then reappears with
a positive sign. The paper [7] provides many more examples of this phenomenon
in a variety of covering and packing situations, specifically those that arise in the
context of combinatorial designs, permutations, and union free set families.
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2. Proof of Theorem 1.9

Let rA(j) be the number of pairs a1, a2 2 A with a1  a2 and a1 + a2 = j. We say
that j is underrepresented if and only if rA(j)  g � 1. Note that if B = [n], then
rB(j) = rB(2(n + 1)� j). Let X = Xg be the number of integers in [↵n, (2� ↵)n]
that are underrepresented. The threshold we seek to establish is for P(X = 0), and,
as in so many instances where we employ the Poisson paradigm (see, e.g., [1]), this
transition occurs at the level at which E(X) rapidly transitions from asymptotically
0 to asymptotically 1; this is because P(X = 0) ⇠ e�E(X) = e��. Towards this
end we next carefully estimate �. We have that

X =
(2�↵)nX
j=↵n

Ij ,

where Ij is the indicator of the event that the integer j is underrepresented as
defined above. By linearity of expectation,

� = E(X) =
(2�↵)nX
j=↵n

P(j is underrepresented)

⇠ 2
nX

j=↵n

P(j is underrepresented)

= 2
nX

j=↵n

g�1X
s=0

✓
bj/2c

s

◆
p2s(1� p2)bj/2c�s(1 + o(1)), (1)

where the second line in (1) is due to the fact that rB(j) = rB(2(n + 1)� j). The
last equality in (1) is more subtle. If j is odd, it can be represented as the sum of
bj/2c disjoint pairs of integers. For even j, however, the number of representations
is j/2, one of which is of the form a + a. The correct summand in the last line of
(1) is thus, for even j, (1 � p)(1 � p2)

j
2�1 for s = 0 and for s � 1 it equals (by

considering whether a is or is not selected)
✓ j

2 � 1
s� 1

◆
p2s�1(1� p2)

j
2�s +

✓ j
2 � 1

s

◆
p2s(1� p2)

j
2�1�s(1� p)

=
2s
jp

✓ j
2

s

◆
p2s(1� p2)

j
2�s +

1� p

1� p2

✓ j
2

s

◆
p2s(1� p2)

j
2�s(1 + o(1))

=
✓ j

2

s

◆
p2s(1� p2)

j
2�s(1 + o(1)),
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assuming (as we may) that p! 0 and jp!1. Whether s = 0 or s � 1, therefore,
the expression in (1) is valid. Trivially, we have

� � 2
nX

j=↵n

✓
bj/2c
g � 1

◆
p2g�2(1� p2)bj/2c�g+1, (2)

and Proposition A.2.5 (iii) in [3], which estimates the left tail of a binomial random
variable with large mean by its last term, yields

�  2
nX

j=↵n

jp2/2� gp2

jp2/2 + 1� g � p2

✓
bj/2c
g � 1

◆
p2g�2(1� p2)bj/2c�g+1

= 2
nX

j=↵n

✓
bj/2c
g � 1

◆
p2g�2(1� p2)bj/2c�g+1(1 + o(1)). (3)

In deriving (3), we need to know that jp2 !1 for j’s in the selected range. This
is something we can assume, since we are seeking a threshold at p ⇠

p
K log n/n,

and we can suppose up front, e.g., that p �
p

log log n/n. Inequalities (2) and (3)
reveal that

� ⇠ 2
nX

j=↵n

✓
bj/2c
g � 1

◆
p2g�2(1� p2)bj/2c�g+1

⇠ 2
(g � 1)!

nX
j=↵n

✓
jp2

2

◆g�1

e�jp2/2 (4)

where, in the second line of (4) we have used the facts that p ! 0 and g is finite,
and that for j’s in the specified range, we have (1�p2)bj/2c ⇠ e�jp2/2, and

�bj/2c
g�1

�
⇠

jg�1/(2g�1(g� 1)!). Since the function xg�1e�x is decreasing for x > g� 1, we see
that the summand in (4) will also be decreasing provided, e.g., that p2 � log log n

↵n ,
which we will assume. Thus

�  2
(g � 1)!

1X
j=↵n

✓
jp2

2

◆g�1

e�jp2/2

 4
p2(g � 1)!

Z 1

↵np2/2
xg�1e�xdx + o(1)

⇠ 4
p2(g � 1)!

✓
↵np2

2

◆g�1

exp{�↵np2/2}, (5)
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where the last line of (5) follows from the simplest asymptotic estimate (i.e., without
error terms) of the incomplete gamma function. Next, we return to (4) and see that

� � 4
p2(g � 1)!

Z np2/2

↵np2/2
xg�1e�xdx

=
4

p2(g � 1)!

Z 1

↵np2/2
xg�1e�xdx� 4

p2(g � 1)!

Z 1

np2/2
xg�1e�xdx

⇠ 4
p2(g � 1)!

 ✓
↵np2

2

◆g�1

exp{�↵np2/2}�
✓

np2

2

◆g�1

exp{�np2/2}
!

=
4

p2(g � 1)!

✓
↵np2

2

◆g�1

exp{�↵np2/2}
 

1�
✓

1
↵

◆g�1

e�(1�↵)np2/2

!

⇠ 4
p2(g � 1)!

✓
↵np2

2

◆g�1

exp{�↵np2/2}. (6)

Combining (5) and (6) we get

Lemma 2.1.

� ⇠ 4
p2(g � 1)!

✓
↵np2

2

◆g�1

exp{�↵np2/2}.

It follows, via a careful calculation, that with

p =

s
2
↵ log n + (g � 2) 2

↵ log log n + An

n
,

� ⇠ 2↵
(g � 1)!

e�↵An/2,

so that �! 0 if An !1, and �!1 if An ! �1. In the former case we have

P(X � 1)  E(X)! 0,

which establishes the first part of the theorem.
The next (and critical) phase of the proof is to show that P(X = 0) ⇡ e��.

We will exhibit this by using the Stein-Chen method of Poisson approximation
(specifically Corollary 2.C.4 in [3]), which will yield that

dTV(L(X),Po(�)) = sup
A✓Z+

������P(X 2 A)�
X
j2A

e���j

j!

������! 0

for a range of p’s that encompasses our threshold. (In the above L(Z) denotes the
distribution of Z, Po(�) the Poisson distribution with parameter �, and dTV the
usual total variation distance.) Setting A = {0} will complete the proof.
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To apply Corollary 2.C.4 in [3], we must show that the variables {Ij : ↵n  j 
(2 � ↵)n} are positively related. Here we make use of Theorem 2.E of [3]. Let Xi

be the indicator for the event i 62 A. Fix a j 2 [↵n, (2�↵)n]. For any i 2 {0}[ [n],
if Xi increases from 0 to 1, then i went from being chosen to be put into A to
being not chosen. In this case, j is at least as likely to be underrepresented as it
was before, so Ij cannot decrease. Thus {Ij : ↵n  j  (2� ↵)n} is a collection of
increasing functions of the independent random variables {Xi : i 2 {0} [ [n]}, and
so the variables {Ij : ↵n  j  (2� ↵)n} are positively related by Theorem 2.E in
[3]. Corollary 2.C.4 then gives

dTV(L(X),Po(�))  1� e��

�

0
@V ar(X)� � + 2

X
j

P2(Ij = 1)

1
A

 1
�

0
@X

j

P2(Ij = 1) +
X

j

X
`

{E(IjI`)� E(Ij)E(I`)}

1
A

= T1 + T2, say. (7)

Starting with T1,

T1  1
�

max
j

P(Ij = 1)
X

j

P(Ij = 1)

= P(I↵n = 1)

=
g�1X
j=0

✓
b↵n/2c

j

◆
p2j(1� p2)b↵n/2c�j


✓
b↵n/2c
g � 1

◆
p2g�2(1� p2)b↵n/2c�g+1(1 + o(1))

 1
(g � 1)!

✓
↵np2

2

◆g�1

e�↵np2/2(1 + o(1))

! 0 (8)

provided that np2 ! 1, which we may assume without any loss. Clearly the
correlation term T2 will dictate the closeness of the Poisson approximation. Our
first lemma shows that while computing P(IjI` = 1), it su�ces to consider the case
where the sumsets for j and ` are disjoint.

Lemma 2.2. For some constant K, we have that for each j, `,

P(IjI` = 1)  P(Ij = 1)P(I` = 1)
✓

1 +
K

np

◆
.
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Proof. We let Aj,`,r,s denote the event that integers j, ` are represented r and s times
respectively. Likewise, let Bj,`,r,s denote the event that integers j, ` are represented
in r and s entirely disjoint ways. We have that

P(IjI` = 1) =
g�1X

r,s=0

P(Aj,`,r,s)

=
g�1X

r,s=0

P(Bj,`,r,s) +
g�1X

r,s=0

P(BC
j,`,r,s). (9)

We first calculate the contribution to (9) of the disjoint case:
g�1X

r,s=0

P(Bj,`,r,s)

=
g�1X
r=0

✓
bj/2c

r

◆
p2r(1� p2)bj/2c�r

g�1X
s=0

✓
b`/2c �D

s

◆
p2s(1� p2)b`/2c�D�s(1� p)D


g�1X
r=0

✓
bj/2c

r

◆
p2r(1� p2)bj/2c�r

g�1X
s=0

✓
b`/2c

s

◆
p2s(1� p2)b`/2c�s

✓
1� p

1� p2

◆D

 P(Ij = 1)P(I` = 1). (10)

In the above array, we have denoted by D the number of pairs of integers, one or
both of whose components overlap with the set of pairs of chosen integers that add
to j, where 0  D  2r. We must not choose the second of the two integers that
give a sum of `; this explains the (1� p)D term.

We next turn to
Pg�1

r,s=0 P(BC
j,`,r,s), and see that

g�1X
r,s=0

P(BC
j,`,r,s) =

g�1X
r=0

✓
bj/2c

r

◆
p2r(1� p2)bj/2c�r

g�1X
s=0

D^sX
t=1

✓
D

t

◆
pt(1� p)D�t ⇥

✓
b`/2c �D

s� t

◆
p2s�2t(1� p2)b`/2c�s�D+t

=
g�1X
r=0

✓
bj/2c

r

◆
p2r(1� p2)bj/2c�r

g�1X
s=0

p2s(1� p2)b`/2c�s ⇥

D^sX
t=1

✓
D

t

◆✓
b`/2c �D

s� t

◆
(1� p)D�t(1� p2)t�D

pt


g�1X
r=0

✓
bj/2c

r

◆
p2r(1� p2)bj/2c�r

g�1X
s=0

p2s(1� p2)b`/2c�s ⇥

D^sX
t=1

�D
t

��b`/2c�D
s�t

�
pt

. (11)
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Consider the summand

'(t) =

�D
t

��b`/2c�D
s�t

�
pt

,

which is the t-th term in the final sum in (11). We have

'(t + 1)
'(t)

=
(D � t)(s� t)

(t + 1)p (b`/2c �D � s + t + 1)
 1,

since pb`/2c ! 1, and consequently '(t + 1)  '(t). Thus, by (11)
g�1X

r,s=0

P(BC
j,`,r,s)  O

✓
P(Ij = 1)P(I` = 1)

np

◆
.

Equation (10) thus yields, for some constant K,

P(IjI` = 1)  P(Ij = 1)P(I` = 1)
✓

1 +
K

np

◆
.

This proves Lemma 2.2.

Returning to (7), using (8), we see that for another constant L,

dTV(L(X),Po(�))  L

✓
↵np2

2

◆g�1

e�↵np2/2 +
K

�np

X
j

P(Ij = 1)
X

`

P(I` = 1)

= L

✓
↵np2

2

◆g�1

e�↵np2/2 +
K�

np
. (12)

Thus X may be approximated by a Poisson random variable provided that np2 !1
and �⌧ np. The first condition may be seen to hold if, e.g.,

p�
r

log log n

n
,

and the second if the � given by Lemma 2.1 is (roughly speaking) of order smaller
than np ⇠

p
n log n. We have thus established Theorem 1.9 for a range of p’s that

spans part of the �! 0 and �!1 regimes; the full theorem, including the delicate
behavior at the threshold, follows easily by monotonicity (e.g., if � is even larger
than np then it is even less likely that P(X = 0), so that this quantity tends to zero
as well).

3. Open Question

Establishing an analog of Theorem 1.9 for h � 3 would, of course, be of great
interest. Combating the fact that h sums are not disjoint is the main technical
hurdle we would need to overcome.
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