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Abstract
We discuss the computation of Rado numbers for several families of nonlinear equa-
tions, including equations comprised of sums of squares, in the spirit of the recently
resolved conjecture of Erdős and Graham regarding the equation x2 + y2 = z2.
We provide (uniform) upper bounds for the 2- and 3-color Rado numbers of some
such equations, as well as Rado numbers for a variety of other well-known nonlinear
equations.

1. Introduction

Schur [42] shows that for any finite coloring of the positive integers (a function
χ : Z+ → {1, 2, . . . , r}), there will be a triple (x, y, z) such that x + y = z and
χ(x) = χ(y) = χ(z). This triple is said to be a monochromatic solution to the
equation. The least N such that this statement holds for χ : {1, 2, . . . , N} →
{1, 2, . . . , r} is called the r-color Schur number, which we will denote Sr.

It is easy to see that S2 = 5, and one might note trivially that S1 = 2. It is also
straightforward to prove that S3 = 14. The value S4 = 45 is due to Baumert &
Golomb [2], while Exoo [13] and Fredricksen [15] show that 161 ≤ S5 ≤ 316. Despite
advances in computing, the difficulty of computing S5 highlights the computational
challenges in this area.

We can associate such a quantity to any equation E , not just x + y = z, which
we will denote Rr (E). We make the definition formally as follows:

Definition 1 (Rado Number). For a positive integer r and equation E , Rr (E) is the
least number N such that any r-coloring of {1, 2, . . . , N} will yield a monochromatic
solution to E . We call this the r-color Rado number of E .
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In cases where no such N exists, we say Rr (E) = ∞ (since the minimum of the
empty set is ∞). An equation E is called r-regular if the quantity Rr (E) is finite,
and E is called regular if it is regular for all r. (In some literature, “regular” is
“partition regular.”)

Rado [34] provides necessary and sufficient conditions for homogeneous linear
equations to be regular and 2-regular. For that reason, we call these quantities
“Rado numbers.” The conditions for 2-regularity are very lax (essentially just re-
quiring that E is nontrivial).

Recently, there have been many results providing Rado numbers, mostly for the
case r = 2 and almost exclusively for linear equations [3, 19, 24, 25, 26, 27, 33, 36,
37, 39, 41].

In this paper, we will stray from the safety of linear equations (and sometimes
from 2 colors). We will provide Rado numbers for a few families of nonlinear
equations, particularly those involving sums of squares. These results are related to
a recently-proved conjecture of Erdős and Graham. We will discuss other families
of Rado numbers inspired by previous work in Diophantine Ramsey Theory.

Our results will fall into two categories – some theorems, giving bounds and
other characterizations of Rado numbers for various equation(s), will be presented
with traditional proofs. Others will be computations, exhaustively and exactly
computing Rado numbers for equation(s), often in cases where no other proof is yet
known.

These computations were performed using standard algorithms in tree-searching
and SAT-solving, and open-source implementation of such algorithms will be pro-
vided. Full certificates can be generated by these algorithms, but we often skip
this step due to size restrictions in computing resources (depending on the method,
hitting restrictions related to RAM and disk space or in the complexity of the com-
putation). More details are provided below, and for greater discussion of these
methods, see [1, 2, 21, 32].

2. Background

Consider the homogeneous linear equation with (nonzero) integer coefficients:

n∑

i=1

aixi = 0.

In [34], Rado gives the following two important theorems.

Theorem 2. A linear equation (as above) is regular if and only if there is J ⊆
{1, 2, . . . n} such that

∑
i∈J ai = 0.
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Theorem 3. A linear equation (as above, with n ≥ 3) is 2-regular if and only there
are i1, i2 such that ai1 > 0 and ai2 < 0.

Rado also gives an analogue of Theorem 2 with a criterion for systems of linear
equations. The condition in Theorem 3 is quite weak; it only rules out equations
that would have no solutions in the positive integers. Requiring n ≥ 3 rules out
equations like 3x = 2y, and it is easy to see that ax = by is 2-regular (indeed,
regular) if and only if a = b.

Over time, a few theorems have been proved that give various Rado numbers;
including the following.

Theorem 4 ([3]). R2 (x1 + x2 + · · ·+ xm−1 = xm) = m2 −m− 1 for m ≥ 2.

Theorem 5 ([20]). R2 (ax+ ay = 2z) = a(a2+1)
2 for a > 0.

Theorem 6 ([6]). R2 (x+ y = kz) =
(
k+1
2

)
for k ≥ 4.

Theorem 7 ([40]). R3 (x+ y + c = z) = 13c+ 14 for c > 0.

The quantities in Theorem 4 are called “generalized Schur numbers” since the
equation is similar to Schur’s original x+ y = z.

It is important to note that Theorem 7 is one of very few results proving or
computing 3-color Rado numbers, which is a more formidable task considering there
is no known necessary or sufficient condition(s) for 3-regularity.

Although there is much more to be done with Rado numbers for linear equations,
we will turn our attention to nonlinear equations. We will first take a deeper look
at equations comprised of sums of squares, followed by a few additional results
regarding some other nonlinear equations that have appeared previously in the
literature, mostly without quantitative results.

Before we proceed further, it is important to note that the work in this area
spans many fields of mathematics and is a bit of a patchwork. For that reason,
definitions, terminology, notation, and other conventions may vary. In particular,
there are two significant conventions we will adopt that are not necessarily the same
as those adopted by the authors of works cited here.

First, when considering Rado numbers like R3

(
x+ y + 2z = y2

)
, we include so-

lutions like (x, y, z) = (2, 3, 2). So a coloring that assigns the integers 2 and 3 the
same color includes a monochromatic solution. Some authors require distinct values
for the variables in their equations (or other configurations). We do not normally
make this restriction, although we can (and will) extend our definitions to this
modified case where appropriate.

Second, we do not consider R2

(
x− y = n2

)
to be the same as the least integer

N such that coloring {1, 2, . . . , N} will yield two integers of the same color whose
difference is a square (a result we will explore in Section 4). We would consider
R2

(
x− y = n2

)
to be the Rado number for an equation with three variables (x, y,
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and n), all of which would need to be monochromatic in the colorings we would ex-
pect to find. There are a few results we will discuss that do not prove the regularity
of a particular equation due to variables like this n that are not required to be the
same color as the values assigned to other variables like x and y.

2.1. Computational Methodology

Erdős and Graham [12] propose determining the 2-regularity of Pythagorean triples
(solutions to x2 + y2 = z2). Interest in this problem was renewed when Graham
[18] stated that he believed it would be difficult to make this determination. How-
ever, Heule, Kullmann, & Marek [21] have computed R2

(
x2 + y2 = z2

)
= 7825,

resolving a qualitative question by providing a quantitative answer, obtained with
high-performance parallel computation.

The methods we will describe in this section were used to determine (indepen-
dently and concurrently with [21]) that R2

(
x2 + y2 = z2

)
> 7000, as well as to

determine many other Rado numbers of this type. We will focus on equations com-
prised of sums of squares, but also discuss several other nonlinear equations, once
we have described our computational methods.

Our algorithms focus on computing Rr (E) for a specific value of r and for an
equation E with no unspecified coefficients or parameters. This narrowed focus
allows us to make use of more precise, non-symbolic methods of computation. The
result is, of course, limited by the specificity of the input, but for the Rado numbers
we will compute in this paper, it is the appropriate trade-off to make.

We can proceed under a number of different paradigms. We will consider the
problem in two ways: searching an r-ary tree and the satisfiability of Boolean
clauses. These two methods are discussed at length in appendices, and at much
greater length in the first author’s Ph.D. thesis [32].

Both methods of computation focus on finding what we will call valid colorings,
which themselves provide lower bounds – and the nonexistence of valid colorings,
something harder perhaps to demonstrate, provides upper bounds.

Definition 8. For an integer n and some equation E , a coloring of {1, 2, . . . , n} is
said to be valid if it does not contain monochromatic solutions to E .

We use a custom-built program named RADO to compute Rado numbers with
an exhaustive search of the r-ary tree of all possible colorings using a backtrack-
ing depth-first search. However, many of the details in the implementation are
significant in making feasible these large-scale computations.

Although RADO is a highly efficient and effective implementation of depth-first-
search in the tree of all colorings, it is in the abstract nothing more than this.
The true challenges are practical: memory management, parallelization, disk usage,
and so forth. The details of implementing the depth-first search to make RADO are
described at length in Appendix A and [32]. The basics of this type of depth-first
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search, termed “backtracking,” are discussed in Baumert and Golomb [2]. Source
code for an older non-parallel version of RADO is available at

http://www.kellenmyers.org/papers/rado.zip.

A depth-first search checks all possible colorings exhaustively, building upon each
coloring whenever possible, by coloring the next largest integer, and if not, recoloring
the largest integer, working through the tree of all possible colorings branch-by-
branch. In the end, RADO provides (optionally) a certificate that is literally the
entire tree of all valid colorings, in the form of a list of all maximal valid colorings,
i.e., the branches of this tree.

We also use SAT-solvers to compute Rado numbers. Ahmed [1] describes how
finding Ramsey-theoretic quantities can be translated into problems of logical sat-
isfiability (or “SAT”).

SAT-solving is a standard type of problem in computer science, both in theory
and practice. In addition to the discussion in Appendix B and [1], there is a large
body of literature regarding satisfiability problems. The source code for the parallel
SAT-solver used (named ManySAT) can be found at

http://www.cril.univ-artois.fr/∼jabbour/manysat.htm.

SAT-solvers require us to translate our Ramsey-theoretic problem into the lan-
guage of satisfying a formal logical statement. Most SAT-solvers can provide lower
bounds in the form of one (but only one) maximum-length valid coloring. Depend-
ing on one’s perspective, it may be good or bad, but SAT-solvers may be faster at
proving upper bounds because they do not produce any concrete certificate that
could prove this upper bound (at least, not without extra work).

These two approaches have different trade-offs. Most notably, SAT-solvers per-
form more reliably when the equation in question has many variables, while RADO

performs more efficiently when the solution set is particularly dense.

3. Sums of Squares

Rather than exclusively considering the equation x2 + y2 = z2, we will approach
the more general problem, considering equations consisting of sums of squares. Let
Ea,b be the equation:

a∑

i=1

x2
i =

b∑

j=1

y2j .

We first revisit the groundbreaking result of Heule, Kullmann, & Marek.

Computation 9 ([21]). The 2-color Rado number R2

(
x2 + y2 = z2

)
is 7825.

Heuristically speaking, there are more solutions to Ea,b+1 than Ea,b in [1, N ], at
least for N sufficiently large. That is not to say that solutions to Ea,b+1 are a
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superset of those of Ea,b, which would prove this heuristic. This is just a heuristic,
a trend visible for some (but not all) values of Rr (Ea,b) we have computed. This
heuristic suggests x2 + y2 = z2 is very likely to be the equation in this class with
the largest Rado number. This also follows a more general heuristic that regardless
of the class of equation being considered, having a greater number of variables is
likely to bring down the Rado number (even though, in a practical sense, it makes
the number harder to compute).

So, to be clear, it is not entirely true that R2 (Ea′,b′) ≤ R2 (Ea,b) whenever a′ ≥ a
and b′ ≥ b, but this seems to carry some heuristic value. We will prove later that
it is true in certain cases (for example, when b′ − a′ = b− a), but also demonstrate
that it is not true in others (see the first row of Table 1).

Despite having previously formulated conjectures pessimistically, we are now
optimistic that these Rado numbers should exist, even in general for r colors:

Conjecture 1. For fixed r and a, there is B sufficiently large such that for b ≥ B,
Rr (Ea,b) is finite.

To begin, we offer the following two results:

Computation 10. The 2-color Rado number R2 (E1,3) is 105.

Computation 11. The 2-color Rado number R2 (E2,3) is 19.

Certificates for these two computations are given in Appendix C.1. We can
take results of this type and prove the 2-regularity of a subset of all possible Ea,b
according to the following theorem.

Theorem 12. For some constant c there is a constant M such that for any a and
b with a ≤ b ≤ ca, R2 (Ea,b) < M .

We will prove this theorem for c = 13
12 and M = 9. However, we formulate the

theorem in general because both the statement of the theorem and the proof are
amenable to adaptation, producing better bounds for c (covering more (a, b) pairs)
at the cost of a greater uniform bound M on those Rado numbers. (Skipping ahead
to Table 1 might lead us to believe that M = 9 is the best possible.)

Proof. Consider the following family of subsets of [9]:

{1, 2, 6}, {1, 3, 4}, {1, 3, 8}, {2, 3, 4}, {2, 3, 6}, {3, 4, 5},
{3, 5, 8}, {3, 6, 9}, {4, 6, 8}, {1, 3, 5, 6}, {1, 4, 5, 6},
{2, 5, 8, 9}, {3, 5, 6, 7}, {1, 2, 4, 5, 9}, {1, 2, 4, 7, 9}.

Each of these sets corresponds to a solution to an equation of the form Ea′,a′+1.
It is trivial to check that no coloring of [9] avoids at least one of these sets being
monochromatic.
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In any case, given any coloring of [9], let S be the monochromatic set above
(under this coloring). For any a ≤ b ≤ a′+1

a′ a, S can be used to construct a solution
to Ea,b by repeating solutions to Ea′,a′+1 until the number of unused variables on
each side is the same. Any remaining variables can be assigned to any value in S.
This process works precisely when b ≤ a′+1

a′ a. The inequality guarantees that this
process will not exhaust the variables prematurely.

The worst case (a′ greatest) is a′ = 12, which means the theorem, with M = 9,
holds for c = 13

12 .

The proof presented here is meant to be a concise, simplified argument to prove
the theorem (with these particular values of c and M). However, we present the
argument at greater length, and with slight modification, in Appendix D. In that
appendix, we will motivate the method of proof and explain how it can be repro-
duced for various values of c and M using the same methods.

We are able to compute many other values of R2 (Ea,b) and offer a number of
data for R2 (Ea,b) in Table 1.

b= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

a=1 1 7825 105 37 23 18 20 20 15 16 20 23 17 21 26 17 23 28 25 29
2 1 19 10 8 12 12 7 11 9 15 11 11 12 11 13 14 11 14 13
3 1 10 9 6 9 9 7 9 9 7 9 9 10 9 9 8 9 12
4 1 9 9 6 9 9 7 9 9 5 9 9 5 9 9 8 9
5 1 9 9 6 9 9 7 9 9 5 9 9 5 9 9 4
6 1 9 9 5 9 9 5 9 9 5 9 9 5 9 9
7 1 9 9 5 9 9 5 9 9 5 9 9 5 9
8 1 9 9 5 9 9 5 9 9 5 9 9 5
9 1 9 9 5 9 9 5 9 9 5 9 9
10 1 9 9 5 9 9 5 9 9 5 9
11 1 9 9 5 9 9 5 9 9 5
12 1 9 9 5 9 9 5 9 9
13 1 9 9 5 9 9 5 9
14 1 9 9 5 9 9 5
15 1 9 9 5 9 9
16 1 9 9 5 9
17 1 9 9 5
18 1 9 9
19 1 9
20 1

Table 1: Table of 2-color Rado numbers for sums of squares.

In this table, we see patterns along diagonals (for fixed values of b − a). The
numbers along these diagonals appear to be (non-strictly) decreasing. This partially
confirms our heuristic, and is also easily proved by applying the core idea of Theorem
12.

Lemma 1. For b− a = b′ − a′ and a′ > a, Rr (Ea,b) ≥ Rr (Ea′,b′).

Proof. Consider any r-coloring of [1, Rr (Ea,b)]. There must be a monochromatic
solution S to Ea,b therein. From S, form a solution S′ to Ea′,b′ by assigning the
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values to all xi and yi that occur in both equations according to S, and assigning
any value from S to the remaining xi and yi (which are equal in number, since
b− a = b′ − a′).

Computation 13. The 3-color Rado number R3 (E3,4) is 32.

Like Computation 10, this was a significant computation to perform. The cer-
tificate for this computation is discussed in Appendix C.1. At this time, R3 (E2,3)
and R3 (E1,2) are unknown, although we are optimistic that like R2 (E1,2), they will
be found eventually. We can obtain from this any number of corollaries, either for
specific known Rado numbers or a more general corollary true for any such quantity.

Corollary 1. Theorem 12 holds with 3 colors for c = 4/3 and M = 32.

Corollary 2. Theorem 12 holds with r colors for c = (a+1)/a andM = Rr (Ea,a+1).

We will now consider a subfamily of these equations, E1,k. We can provide the
following table, which verifies exceptions to our heuristic: Increasing a or b will
decrease Rr (Ea,b) in many, but not all, cases. In fact, as k grows, we eventually see
an up-tick, because fixing a = 1 and letting b = k grow is not at all in the spirit of
our heuristic. Indeed, we note that R2 (E1,k) is bounded below, trivially, by

√
k.

k = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
N = 7825 105 37 23 18 20 20 15 16 20 23 17 21 26 17 23

k = 18 19 20 21 22 23 24 25 26 27 28 29 30
N = 28 25 29 29 26 36 32 27 38 33 35 41 36

Table 2: 2-color Rado numbers for x2
1 + · · ·+ x2

k = z2

This is now entry A250026 in the Online Encyclopedia of Integer Sequences
(OEIS). These become difficult to compute using RADO for larger values of k due to
the increasing number of variables.

Note that the family E1,k provides the worst possible case for Theorem 12 (in
the sense that it requires the value c = k), even though for k sufficiently large
it seems clear that we should be able to prove that R2 (E1,k) is finite (but with
no bound uniform with respect to k). The authors expect that the methods of
additive combinatorics or ergodic theory will be effective and hope that a proof is
forthcoming.

3.1. Primitive Pythagorean Triples

In this section, we consider the set of primitive Pythagorean triples.

Definition 14. A primitive Pythagorean triple is a solution (x, y, z) to the equation
x2 + y2 = z2 where gcd(x, y, z) = 1.
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Figure 1: 2-color Rado numbers for x2
1 + · · ·+ x2

k = z2, with k > 2

Initially, we considered whether there may be a relationship between the regu-
larity of the set of primitive triples and that of the set of all triples. However, while
it has been proved that R2

(
x2 + y2 = z2

)
is finite, it is easy to prove the following.

Theorem 15. The set of primitive Pythagorean triples is not 2-regular.

Although we have not explicitly defined what this means, since this set is not
strictly the set of solutions to an equation, we believe the definition is clear. To
remove any confusion, this theorem asserts that there is a 2-coloring of the positive
integers that includes no monochromatic primitive Pythagorean triple. (We provide
such a coloring as proof.)

This theorem is offered mostly as an aside that we hope is of interest to those
who may have wondered whether R2

(
x2 + y2 = z2

)
could be related to some other

quantity associated to primitive triples.

Proof. Consider a coloring where any integer that occurs as z in a primitive triple
x2 + y2 = z2 is colored red, and all other integers are blue. There are clearly no
blue primitive triples because the z value of any such triple is red.

On the other hand, if we have a red triple, all three must occur as z values, say
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that z21 + z22 = z23 . These zi must be parametrized as:

z1 = m2
1 + n2

1,

z2 = m2
2 + n2

2,

z3 = m2
3 + n2

3,

z1 = 2m3n3,

z2 = m2
3 − n2

3,

where each (mi, ni) pair is coprime and not both odd. (This is the standard
parametrization of primitive triples.) Modulo 4, this gives:

m2
1 + n2

1 ≡ 2m3n3 (mod 4),

m2
2 + n2

2 ≡ m2
3 − n2

3 (mod 4),

which is easily verified as unsatisfiable. One need only check 8 possibilities for each
pair (a total of 83 = 512 possibilities). Moreover, the first of the two congruences
is itself unsatisfiable (one need only check 64 possibilities to confirm this). More
directly, we note that since one of m3 and n3 must be even, 2m3n3 ≡ 0 (mod 4).
Because 0 and 1 are the only squares modulo 4, this would require that any solution
would have m2

1 ≡ n2
2 ≡ 0 (mod 4). This implies m1 and n1 are both even.

3.2. Closely Related Equations

Before closing this section, we consider a few equations within the family ax2+by2 =
cz2, for positive constants a, b, c. Besides cases where a + b = c, we presume that
computing Rado numbers for ax2 + by2 = cz2 would be as hard computing that of
x2 + y2 = z2. We can offer the following lower bounds.

Computation 16. For 3 ≤ k ≤ 20, R2

(
x2 + y2 = kz2

)
> 5000.

These lower bounds can almost certainly be improved, but in order to compute
them quickly and state the theorem succinctly, we offer this as a starting point. We
might expect that as k increases, the Rado number generally increases, so one may
want to start with k = 3 somewhere higher than 7825.

We now consider the equation Ek to be x2 + y2 + kz2 = w2, inspired in part
by our desire to understand the previous families, and by the approach taken to
understand Rado numbers for linear equations, where this form (one new coefficient,
one variable on the right-hand side) seems to be the most tractable.

We first present the following computations, which were relatively intensive but
very much tractable using the RADO package.

Computation 17. The 2-color Rado numbers for x2 + y2 + kz2 = w2 are as
presented in Table 3.
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k 1 2 3 4 5 6 7 8 9 10 11 12
R2 (Ek) 105 37 40 41 55 85 43 68 77 84 70 77

Table 3: 2-color Rado numbers for Ek, R2

(
x2 + y2 + kz2 = w2

)

This table could be extended using the RADO package, except that k = 13 is
extremely difficult to compute (but not k = 14). This phenomenon was discussed
in [32]. These data are interesting because it is not at all clear how k affects R2 (Ek)
or the amount of computing power required to compute it.

For some variety, we also offer the following:

Computation 18. The 2-color Rado number R2

(
x2 + y2 = z2 + 2w2

)
is 33.

The certificate for this computation is discussed in Appendix C.1.

We will discuss a variety of other nonlinear equations the next section, but we
will note that Luperi Baglini & Di Nasso [8] prove the regularity of the equation
x1x2+y1y2 = z2 (for any number of colors), which we believe represents the current
result closest to proving the regularity of x2 + y2 = z2 – which could, by extension,
help us prove that many other equations Ea,b are regular as well (using the methods
of Theorem 12 or otherwise).

4. Other Nonlinear Equations

Despite being mostly unexplored, there are a few results that speak to the regularity
of nonlinear equations. We start with a seminal result proved independently by
Furstenberg [16] and Sárközy [38]:

Theorem 19. For any r-coloring of Z+ there is n ∈ Z+ such that the equation
x− y = n2 has a monochromatic solution (x, y).

This type of property is frequently also called regularity or partition regularity,
but it has a slightly different meaning (due to the introduction of a parameter n
that may depend on the coloring). This is sometimes (e.g. Luperi Baglini [31])
called “partial (partition) regularity,” which we agree fits well.

There are other results of this type, including Frantzikinakis & Host [14], where
a similar result is proved for 9x2+16y2 = n2 and certain other quadratic equations,
using the machinery of Fourier analysis.

We can verify the theorem for r = 2 by simply computing R2

(
x− y = z2

)
= 9,

which would be larger than what we could call the 2-color Furstenberg-Sarközy
number, FS2, since the latter relaxes the monochromatic conditions to only x and
y. We offer several of these Furstenberg-Sarközy numbers and some of the corre-
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sponding Rado numbers. We have only been able to verify that the 5-color number
is greater than 181.

r 1 2 3 4 5
FSr 2 5 29 58 181+

Rr

(
x− y = z2

)
2 9 204 800+

Table 4: Furstenberg-Sarközy numbers

The certificates for the third column (3 colors) are discussed in Appendix C.2.
It is important to note that in Csikvári, K. Gyarmati, and A. Sárközy [7], it is also
shown that x− y = z2 is not regular, so the bottom row will eventually fail to yield
finite values.

Erdős, Sárközy, and Sós [11], and later Khalfalah and Szémeredi [28], provide a
number of generalizations of this sort of result, where they examine x − y = f(n)
or x + y = f(n) and look for monochromatic x and y that satisfy the equation for
one or even infinitely many values of n (but without regard to the color of n).

4.1. Reciprocal Schur Numbers

In 1991, Brown and Rödl [5] and Lefmann [29] proved independently that the equa-
tion 1

x + 1
y = 1

z is regular. (See also Graham [17].)

Brown and Rödl prove a stronger result, that the equation is regular even if we
ignore solutions in which some of the variables are the same, e.g. (x, y, z) = (4, 4, 2).
We will discuss this distinction more in the next section.

It is useful to note that 1
x + 1

y = 1
z is, equivalently, a quadratic polynomial

xz + yz = xy. In addition to the proofs by Brown & Rödl and Lefmann, Luperi
Baglini proves the following theorem.

Theorem 20 ([31]). If P (x, y, z) is a degree d homogeneous polynomial and

P (x, y, z) = 0 is regular, then so is Q(x, y, z) = xdydzdP
(

1
x ,

1
y ,

1
z

)
= 0.

(This is proved for any number of variables, but we present it with three.) Luperi
Baglini notes that this is another way of proving the regularity of this reciprocal
equation (and generalizations originally included in both of the papers from 1991).
Setting P (x, y, z) = x+y−z yields Q(x, y, z) = xz+yz−xy, and likewise Theorem
4 gives a generalization with more variables.

We have been able to quantify this result by computing the following.

Computation 21. The 2-color Rado number R2 (yz + xz = xy) = R2

(
1
x + 1

y = 1
z

)

is 60. Furthermore, R2

(
1
x + 1

y + 1
z = 1

w

)
is 40. With 5 variables it is 48, and with

6 variables it is 39.



INTEGERS: 18B (2018) 13

The certificate for this computation with three variables is discussed in Appendix
C.3.

In the past, e.g. [32], we have called these Rödl numbers, although they might
better be called Brown-Rödl-Lefmann numbers. For the time being, we will call
them reciprocal Schur numbers instead, especially in light of Luperi Baglini linking
them to the generalized Schur numbers in Theorem 4 via Theorem 20.

We also offer the following with a greater number of colors. The certificate for
this computation is discussed in Appendix C.3.

Computation 22. The 3-color reciprocal Schur number R3

(
1
x + 1

y = 1
z

)
is 3276.

We are only able to bound the 4-color number from below:

R4

(
1

x
+

1

y
=

1

z

)
> 87, 000.

4.2. Hindman Numbers

Hindman [22, 23] discusses the question of finding sets whose sums and products are
monochromatic. Taking this idea and applying it to any number of more specific
statements provides us several equations (and systems of equations) that are regular.
For example, we have confirmed the following.

Theorem 23. For any 2-coloring of Z+, there are monochromatic x, y, z, w such
that x+ y = zand xy = w.

The full weight of Hindman’s results is much greater, and slightly different, prov-
ing for instance this much stronger result.

Theorem 24 ([22]). For any r-coloring of Z+, there is an infinite set A such that
all nonempty finite sums of A are monochromatic. Moreover, there is an infinite B
such that its nonempty finite products are monochromatic in the same color as the
sums of A.

It is useful to note that in order to compute Rado numbers for systems of non-
linear equations, particularly polynomials, it is no different than computing a single
Rado number. If we want the r-coloring of [N ] to satisfy the equations E1 and E2
we can write Ei as fEi = 0 and find Rr

(
(fE1)

2 + (fE2)
2 = 0

)
.

So in Theorem 23, we might be interested in R2

(
(x+ y − z)2 + (xy − w)2 = 0

)
.

Although it is not explicit in previous statements of Theorem 23, we should note
carefully that it is fairly clear in the existing literature that this theorem usually
includes the stronger condition that all of x, y, z, w are distinct.

Hindman’s theorem has been strengthened in certain cases so that one may take
A = B, with some restrictions to the coloring, and we proceed with some quanti-
tative exploration regarding a proposition that is an unproven, stronger version of
Hindman’s theorem.
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Proposition 1. For any r-coloring of Z+ there is an infinite set A such that all
nonempty finite sums and products of A are monochromatic.

Please note carefully, although similar to Theorem 23, we will proceed as if this
proposition is true. We do not conjecture that it is true (or false), nor do we offer
proof. Instead, it is the model – an infinitary statement (like Schur’s theorem on the
integers Z+) that we will investigate quantitatively. The proposition is amenable to
a computational approach (despite being not proved or even conjectured) and we
will proceed from there.

We can define Hr, for a fixed number of colors r, as the least N for which
Theorem 23 (but with r colors) holds on {1, 2, . . . , N} instead of Z+. Hindman [22]
communicates that Graham has proved a result about these numbers (by computer).
However, the lower bound for this example is demonstrated by two color classes:

Red = {1, 3, 5, 8, 12, 14, 16, 18, 20, 22, 24, . . . , 250},
Blue = {2, 4, 6, 7, 9, 10, 11, 13, 15, 17, 19, . . . , 251}.

Without our careful note above, we might immediately balk at 2 and 4 be-
ing blue, since (x, y, z, w) = (2, 2, 4, 4) is a solution! But, as we noted, Graham
and others implicitly assume that this is not a solution we are considering – that
none of the variables can be equal. This discrepancy is confirmed by computing
R2

(
(x+ y − z)2 + (xy − w)2 = 0

)
, which is 39, not 252.

The certificate for H2 = 39 is discussed in Appendix C.4.

So we can instead define H ′
r to be the injective Hindman number, a sort of Rado

number, defined informally as:

H ′
r = Rr (x+ y = z and xy = w and x ̸= y) .

Graham’s proposition should, indeed, be a statement about H ′
2:

Computation 25 ([22]). The 2-color Hindman number is H ′
2 = 252.

It is trivial to note that Hr ≤ H ′
r, so we know H2 ≤ 252 based on Graham’s

result (indeed, it is 39). For three colors, we have only been able to determine that:

100, 000 < H3 ≤ H ′
3.

For this reason, we mostly focus on two colors for further computation. We
can define Hr(m) and H ′

r(m) to be the corresponding quantities for the following
system:

x1 + · · ·+ xm−1 = xm

x1 · · · · · xm−1 = z

This simplifies significantly what Hindman’s results could inspire, since [22] dis-
cusses sets of integers and all of their (nonempty) sums and products. However, we
are able to compute some other such quantities.
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Computation 26. The 2-color 4-variable generalized Hindman number H2(4) is
450. Furthermore, H2(5) = 11, 000, H2(6) = 62, 500, and H ′

2(4) = 23, 100.

We summarize our results in Table 5.

m 3 4 5 6
H2(m) 39 450 11,000 62,500
H ′

2(m) 252 23,100

Table 5: Generalized Hindman numbers

We believe that these computations demonstrate that Hindman numbers are
interesting. We offer the following conjecture in hopes that these numbers are
indeed well defined, in the spirit of Hindman’s original theorem.

Conjecture 2. For any r-coloring of Z+ and any integer m, there are monochro-
matic x1, x2, . . . , xm, z such that x1 + · · ·+ xm−1 = xm and x1 · · · · · xm−1 = z.

Note that this does not follow from Theorem 24, and indeed, even Theorem
23 does not follow from Theorem 24. The trouble is that Theorem 24 does not
necessarily have A = B (as stated). While we can prove or confirm Theorem 23 by
computing the value H2, and we could likewise prove special cases of the conjecture
for each value of m, none of these follow from Theorem 24. It is our hope that
this computation is encouraging, and that perhaps by focusing only on the total
sum/product of A and B (respectively), one can prove a weaker version of 24 with
A = B (as Conjecture 2 or something similar).

We also propose that one could expand this definition to include all finite sums
and products of some x1, . . . , xm, which we would call “strong”’ Hindman numbers,
with or without the condition that the xi be distinct. We would denote these H∗

r (m)
and H∗′

r (m), but unfortunately we can say very little beyond the fact that these
might be interesting, particularly since m > 3 is required (or else the distinction
between Hr and H∗

r is meaningless). All we have determined at this time is a
lower bound: the smallest of these, H∗

2 (4), is at least 300,000. It could be that
H∗

2 (4) = ∞, since Theorem 24 does not guarantee this quantity is finite.

4.3. Exponential Rado Numbers

Sisto [43] proves that the equation z = xy is regular (with x, y, z > 1). Brown [4]
extends this to systems of exponential equations, while Sahasrabudhe [35] shows
that the system {xy = w, xy = z} is regular, which we could call “geometric
Hindman numbers,” perhaps. We can offer the following quantitative result to
complement these advances, with a slight modification of our usual idea of Rado
number to allow x, y, z > 1, i.e., we color only {2, 3, 4, 5, . . .}.
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Computation 27. The 2-color Rado number for colorings of integers greater than
2 for the exponential equation z = xy is 65,536.

That is 216, which is of course no coincidence, since this is a result about ex-
ponential quantities. We have also been able to determine that the corresponding
quantity for the system from [35] is over 219.

At this time, we are unable to compute corresponding results for three colors,
but we are optimistic that further investigation into this thread will yield additional
results of this type.

Finally, we propose something new. Consider the exponential equation:

x1 + · · ·+ xm−1 = knxm .

Fixing k = 1 and n = 2, we can determine the following Rado numbers.

Computation 28. The 2-color Rado numbers R2 (x1 + · · ·+ xm−1 = 2xm) are 1,
6, 3, 9, 11, 5, 5 for m = 3, 4, 5, 6, 7, 8, 9 (respectively).

The certificate for this computation withm = 7 is discussed in Appendix C.4. We
hope in the future to learn more about Rado numbers for non-polynomial equations
like these.

4.4. Miscellany

Finally, we will discuss a few other Rado numbers for nonlinear equations. We
should acknowledge the important work of Doss, Saracino, and Vestal [10], in which
the following famlies of Rado numbers are determined.

Theorem 29. For any positive integer n, R2 (x+ yn = z) = 1 + 2n+1.

Theorem 30. For any integer c ≥ 2, R2

(
x+ y2 + c = z

)
= c2 + 7c+ 7.

Theorem 31. For any integer a ≥ 2, R2

(
x+ y2 = az

)
= a− 1.

To our knowledge, these are the only parametrized families of nonlinear equations
for which the Rado number has been determined exactly (in the style of previous
results on linear equations, e.g. Theorems 4 through 7). Two of these equations are
quadratic, but one is of arbitrary degree n (where n is the parameter in this family
of equations).

We have computed Rado numbers for several other nonlinear equations that have
been mentioned elsewhere, often having been proved regular in the course of other
work. Most of these come from Luperi Baglini [30]. We give these miscellaneous
results in Table 6, including the reference in which this equation can be found, the
equation, and the Rado number for at least r = 2 colors and others as computational
limits permit. We hope to add many more rows to this table in the future.
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Ref. Equation r = 2 3 4 5

[8] x1x2 + y1y2 = z2 5 13 41 60+
[30] x1y1 + x2y2 = x3 13 128+
[30] 2x1 + 3x2y1y2 + x4y2y3 = 5x3y1 5 20 146+
[30] t1t2x2 + t3t4y2 = t5t6z2 5 13
[30] x1y1y2 + 4x2y1y2y3 + x5 = 3x3y3 + 2x4y1 9 53+

Table 6: Miscellaneous Nonlinear Rado Numbers

5. Future Work

In the future, we hope to be able to more efficiently compute Rado numbers for more
diverse classes of linear and nonlinear equations, and that this study will continue
to inform (and be informed by) the ongoing theoretical work towards proving the
existence of these numbers. In particular, Di Nasso & Luperi Baglini [8] give us
hope that we will soon know whether equations comprised of sums of squares are
regular.

We hope that progress in computing 3-color Rado numbers (even just for linear
equations) will also provide further insight into the conditions for an equation to
be 3-regular. (We do not know this, even for linear equations.)

Concretely, we expect improvements and new insights into our computational
approaches. The use of SAT-solvers and backtracking algorithms can be tweaked
and improved incrementally, allowing for incremental progress – sometimes tedious,
but sometimes extraordinary (as in Heule, Kullmann, & Marek [21]). Likewise,
physical computer resources continue to expand. We also expect innovative and hy-
brid approaches to these algorithms to allow for more rapid and robust exploration
of these problems.

Our tree-searching program RADO is a highly-specialized, sophisticated search
algorithm developed over several years. It makes a number of very significant gains
in practical computational speed by capitalizing on some nuances of these problems.
Yet, like any computational tool, it is not perfectly optimized or ideal in some way.
There may be ways of combining the methods of RADO with other backtracking
algorithms or using hardware-facilitated improvements to the existing algorithm to
substantially increase its computational power.

In addition to the general open question of determining Rado numbers for many
unknown classes of linear and nonlinear equations, there are also variations of the
idea of Rado numbers of great interest.

We might consider modified Rado numbers that require monochromatic solutions
where each integer is different, as discussed above. Not only does this pose a slightly
different problem, but it makes more natural questions about equations like x2+y2 =
z2 +w2 or even x+ y = z+w (which would otherwise have trivial Rado numbers).
Again, Luperi Baglini [31] and elsewhere has used terminology we suggest is well-
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suited to this: calling such an equation injectively partition regular. Computing
injective Rado numbers seems like an obvious avenue for future exploration.

We may also be interested in rainbow Rado numbers, which require a solution set
have one element of each color. Generally, the number of variables is equal to the
number of colors, by design, and consequently each part of the solution must be be
distinct. Investigations into rainbow Rado numbers may provide new computational
challenges, since colorings must be restricted to provide nearly (or exactly) equally
sized color classes. Adapting the methods of SAT-solving (see Appendix B) to
such a problem is not trivial, since there is no simple clause that would enforce a
requirement like “1/3 of this 3-coloring of {1, 2, . . . , 90} is red.”

There are many other variations on the theme of Rado numbers, but we will
leave these two as examples and invite the reader to explore the literature for more
such variations – or to invent his/her own.
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Appendices

A. Tree-Searching Methods

We use a custom-built program named RADO to compute Rado numbers with an
exhaustive search of the r-ary tree using a backtracking depth-first search. However,
many of the details in the implementation are significant in making feasible these
large-scale computations.

The tree search is parallelized by splitting an initial fixed-depth search into a
queue of valid colorings. This search factors out any symmetry in the tree by only
using the ith color if the (i − 1)th color is already in use. (In other words, the
branch beginning red-red-blue is the equivalent to that of red-red-green, so we only
do one of those two). Each worker is assigned a branch (an initial valid coloring)
and explores this branch depth-first. When a worker has explored the entire branch,
it is assigned a new branch to explore.

The parallelized algorithm is controlled by a master process that directs the
workers in their search. This master process keeps track of any idle workers and
the queue of branches not yet explored.

If a full certificate (the entire search tree) is being created, there are other man-
ager tasks that handle the output (a list of all maximal valid colorings) from the
workers, in order to avoid overwhelming the master process with this task. These
manager processes write to disk asynchronously in order to prevent thrashing the
hard disk and other I/O issues. The managers also compress the output using LZ4
compression, which allows for compression in real time, at a relatively good com-
pression ratio. A partial certificate, containing only summary information, can also
be produced (in which case, there are no manager processes).

In order to compute these Rado numbers, the numbers of colorings checked (i.e.,
number of nodes in the search) is extremely large, and for each coloring checked,
the number of times the equation E is evaluated is likewise very large. For exam-
ple, proving that R3

(
x2 + y2 + z2 = w2

)
= 105 requires checking over 50 million

colorings, makes billions of tests for satisfying the equation E , and generates a full
certificate of roughly 250 megabytes. (That is, by no means, the worst case –
some certificates are in the terabyte scale, and some problems require even greater
numbers of computations.)

In order to evaluate E this many times, within a feasible time-frame, the arith-
metic operations that define E are translated into a function fE (subtracting all
terms to one side), and this function evaluated repeatedly (and E is satisfied if and
only if fE = 0). This function is not hard-coded, nor is it a complex method in C++
or some other language – instead, a user-input string representing fE is parsed and
compiled. This just-in-time (JIT) compilation allows the method to be comprised
of a set of low-level operations corresponding to the arithmetical operations in fE .
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For a fixed coloring, a worker node will have to check whether that coloring is
valid. Because this is a depth first search, each such coloring is an extension (by
one element) of a valid coloring, so the integer at the end of the coloring would have
to be a part of any monochromatic zero of fE . In order to check for monochromatic
solutions, we check all possible evaluations of fE (where one or more of the variables
must be the element from the end of the coloring) using what we have termed the
value-iterator (VI).

The VI checks quickly, in a predetermined order, for any possible monochromatic
solution. The VI is optimized in the case of certain symmetry in the equations, like
in the case of x2

1+ · · ·+x2
k = z2, assuming x1 ≤ x2 ≤ · · · ≤ xk ≤ z (and so we know

z must be the largest integer in the coloring as well). At this time, the VI will not
optimize for equations like x + y + 3z = 10w, where the only assumption we can
make is that x ≤ y.

It is important to note that having more variables in E will (generally speaking)
make the Rado number smaller. However, it increases the complexity of the VI by a
factor of the current depth of the search (which is not a favorable trade-off). There
is significant room for improvement in the VI, especially when handling nonlinear
equations like x2 + y2 = z2, where solutions to the equation are sparse.

B. Satisfiability (SAT)

Ahmed [1] describes how the problem of computing van der Waerden numbers
can be translated into a problem of logical satisfiability (or “SAT”). Like many
problems in computer science, satisfiability has a yes or no answer: “Is a certain
logical statement satisfiable, for some assignment of the variables?” For example,
the statement x ∧ y is satisfiable, with the assignment x = y = True. However,
the statement x ∧ (¬x) is not satisfiable, because any assignment of x will make
this statement false. Here ∧ represents “and,” ∨ represents “or,” and ¬ represents
“not.” Satisfiability could also be rephrased in terms of Boolean algebra, but we
will continue to use the logical notation ∧, ∨, ¬.

We will reserve x and y for variables in our Diophantine equation E from now
on, and we will enumerate our logical variables in this section using v instead.

For our purposes, we have an equation E and a specific N and r, and we want to
know whether there is any r-coloring of {1, 2, . . . , N} such that no monochromatic
solutions to E exist, i.e., a valid coloring. First, we will formulate our method in
the case of r = 2. We designate the variable vi to indicate that i is colored blue
(and so if vi is false, i must be colored red).

SAT solving algorithms generally accept input in one of several normal forms.
In this case, we will use the DIMACS format [9] for SAT problems, which uses con-
junctive normal form (CNF). The statement to be satisfied must be the conjunction
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(“and”) of a number of clauses. These clauses are themselves all disjunctions (“or”)
of literals (variables or their negations). It is important to note that all logical
formulas can be formulated in CNF, but we will find that this form is quite natural
for our problem.

The conditions we must impose are relatively simple: We know any satisfying
assignment will result in a valid coloring (and if not, there is no such coloring)
because each vi will be either true or false. We take every solution (x1, x2, . . . , xm)
and form two clauses:

(
vx1 ∨ vx2 ∨ · · · ∨ vxm

)
∧
(
¬vx1 ∨ ¬vx2 ∨ · · · ∨ ¬vxm

)
.

These two clauses force at least one of the xi to be red, and at least one to be
blue, i.e., not monochromatic. As an example, if we wanted to prove the 2-color
Schur number S(2) > 4, we would need to gather up all solutions to x+ y = z (we
may assume x ≤ y to eliminate some redundant clauses). They are:

{
(1, 1, 2), (1, 2, 3), (1, 3, 4), (2, 2, 4)

}
.

This gives us the following formula:

F (v1, v2, v3, v4) =
(
v1 ∨ v2

)
∧
(
¬v1 ∨ ¬v2

)
∧

(
v1 ∨ v2 ∨ v3

)
∧
(
¬v1 ∨ ¬v2 ∨ ¬v3

)
∧

(
v1 ∨ v3 ∨ v4

)
∧
(
¬v1 ∨ ¬v3 ∨ ¬v4

)
∧

(
v2 ∨ v4

)
∧
(
¬v2 ∨ ¬v4

)
.

We can use a SAT solver to produce a satisfying assignment to F (v1, v2, v3, v4),
e.g. v1 = v4 = False, v2 = v3 = True, which is red-blue-blue-red.

We could then consider two additional solutions, (1, 4, 5) and (2, 3, 5), obtaining:

G(v1, v2, v3, v4, v5) = F (v1, v2, v3, v4) ∧
(
v1 ∨ v4 ∨ v5

)
∧
(
¬v1 ∨ ¬v4 ∨ ¬v5

)
∧

(
v2 ∨ v3 ∨ v5

)
∧
(
¬v2 ∨ ¬v3 ∨ ¬v5

)
.

A SAT solver would tell us that G is not satisfiable, proving S(2) ≤ 5.

Because our usual equations include three variables (or more), most of our clauses
will too. This means our problems fall into the framework of 3-SAT, the problem
of deciding the satisfiability of a general formula in CNF where each clause has 3
literals. This problem is well-known to be NP-hard.

Our approach to these problems is complicated by the need to have more than
two colors, in which case we we will introduce additional clauses. For each color j
and each solution (x1, . . . , xm) to E , we have the clause:

(
vx1,j ∨ vx2,j ∨ · · · ∨ vxm,j

)
.
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We have now doubly indexed our variables as vi,j , representing that integer i is
colored the color j. In practice, vi,j is translated to vNj+i, since SAT solvers do not
usually allow a double index. We no longer require the corresponding clause with
negative literals, since that was to accommodate the second color of two. But there
is more to consider.

We must explicitly enforce that a color is assigned to each i, so we must include
for each i the clause: (

vi,1 ∨ vi,2 ∨ · · · ∨ vi,r
)
.

We must also insist that no i is assigned to multiple colors. For each i, we include
the following clauses, which are a bit more complicated because we need one for
each 1 ≤ j < j′ ≤ r, i.e., for

(
r
2

)
pairs:

¬vi,j ∨ ¬vi,j′ .

The DIMACS format for CNF formulas requires us to count the numbers of
variables and clauses. This is actually not simple, at least not in most cases, since
we would need to enumerate the number of solutions to E in [N ]. Since we have
already listed them, the best way is to simply count the length of that list – rather
than try to exploit some special cases (e.g. if E is x+ y = z, it is not hard). Each
solution to E contributes r clauses, and we have to add on (1 +

(r
2

)
)N clauses to

enforce the well-definedness of our coloring. If the solution set is dense (i.e., E has
roughly o(Nm−1) solutions in [N ]), we will have o(Nm−1 +Nr2) clauses.

Fortunately, it is not so difficult to count the number of variables. Even in cases
where some i is never used in a solution to E , it is used in the clauses that enforce
the well-definedness of the coloring. So, we know there are rN variables.

In some respects, using a SAT solver is a generalization or restatement of methods
used in previous work of this type that did not utilize computers. For more on this,
see [32].

SAT solvers are not tailor-made for these types of systems, but SAT solvers are
important tools and many different SAT solvers exist to tackle these tough problems
like computing Rado numbers, including WalkSAT1, GRASP2, and MiniSAT3. These
SAT solvers rely on high performance computing, written for efficiency and effec-
tiveness in lower-level languages than computer algebra systems or the like, and are
highly effective in many cases.

SAT-solving and RADO may be similar in some ways, but they are very different.
RADO is robust and effective in many cases, and provides exhaustive output, while
SAT solvers have their own advantages. In particular, when the solution set is
sparse, the RADO program does not adapt to this and will consider a significant

1available at http://www.cs.rochester.edu/u/kautz/walksat/
2available at http://vlsicad.eecs.umich.edu/BK/Slots/cache/sat.inesc.pt/∼jpms/grasp/
3available at http://minisat.se/
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number of redundant cases. A SAT solver does not have this issue and will instead
reap the benefits of the sparsity by having far fewer clauses to satisfy.

C. Selected Certificates of Computations

In this appendix, we present various certificates of computation.

A full certificate, proving a particular Rado number, is comprised of the list of
all maximal valid colorings (which, if arranged as such, would constitute the tree of
all valid colorings). Each coloring listed is valid, meaning it has no monochromatic
solutions to the equation in question. Each is maximal, meaning it cannot be
extended by one of the colors and remain valid. The list is exhaustive, covering
all possible colorings – any coloring is either a prefix of one of these colorings (and
therefore valid), on the list (also valid), or an extension of one of the colorings on
the list (therefore not valid).

Note there is some nuance: a maximal valid coloring, for the purposes of our
certificates, means there is at least one color that cannot be appended and remain
valid – some colors may be possible to append, but importantly, such extensions
will occur as prefixes for maximal colorings later in the certificate. For those few
colorings of maximum length, which we will discuss in detail below, indeed it cannot
be extended by any color. We might limit ourselves to only these colorings, but in
order to check such a certificate, we would have to check extensions of any prefix of
such a coloring.

Generally it is impractical to present such certificates on paper. This is due
to the size, as certificates range from 127 KB (which is possible, just impractical,
totaling at least 30 pages) to 1.5 GB (perhaps filling an infeasible quarter million
pages). While we might present a short certificate entirely, we must provide large
full certificates on the Internet.

These four examples and all other examples will include at least one valid col-
oring of maximum length. This will prove the lower bound for the computation
in question. We will discuss each such example at length, and as we examine the
maximum-length valid colorings (those that prove the lower bound), we will show
why they (in particular) cannot be extended by any color.

Certificates can be given in a few different ways. A full certificate is a list of
colorings, while a partial certificate may consist only of a single coloring of maximum
length (maximum, not just maximal). Each coloring can be given as r sets, each
representing a color class. However, a more compact representation is using binary
(ternary, quaternary, etc.) strings for 2 (3, 4, etc.) colors. This more easily provides
a single lengthy coloring or a long list of colorings.

These colorings are listed using r digits, so that a string of digits represents
an r-coloring. The integer i is colored with the jth color, where j is the digit in
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position i of the coloring. For example, 01012211 represents the coloring R = {1, 3},
B = {2, 4, 7, 8}, G = {5, 6} (where R,B,G are the color classes).

In order to reduce the size of each certificate, we assume 1 is in the first color
class (“red” or “0”), 2 is in the second (“blue” or “1”) if not red, and so forth. This
eliminates redundancy one could obtain by permuting the colors.

We will use these two methods (color classes given as explicit sets and r-ary
strings) to represent colorings. There are several other ways to represent lengthy
colorings and large sets of colorings, including color-coded diagrams and other pic-
torial encodings, but we will not use them here.

C.1. Sums of Squares

Recall that Ea,b is our notation for:

a∑

i=1

x2
i =

b∑

j=1

y2j .

For four such equations, we provide a full certificate. However, these certificates
are too lengthy to print in most cases. We will provide links to electronic versions
of these certificates instead.

The Equation E2,3 With 2 Colors

In this first example, we can provide a full certificate, spanning only a few pages.
The following set of binary strings is a certificate for R2 (E2,3) = 19.

{ 000, 0001000, 00010001000, 000100010001000, 000100010001001,
000100010001010, 000100010001011, 000100010001100, 000100010001101,
000100010001110, 000100010001111, 00010001001, 000100010011000,
000100010011001, 000100010011010, 000100010011011, 000100010011100,
000100010011101, 000100010011110, 000100010011111, 00010001010,
000100010101000, 000100010101001, 0001000101010, 000100010101100,
00010001010110, 0001000101011, 00010001011, 000100010111000,
000100010111001, 0001000101110, 000100010111100, 00010001011110,
0001000101111, 00010001100, 000100011001000, 00010001100100,
000100011001010, 00010001100101, 000100011001100, 00010001100110,
000100011001110, 00010001100111, 00010001101, 000100011011000,
00010001101100, 000100011011010, 00010001101101, 000100011011100,
00010001101110, 000100011011110, 00010001101111, 00010001110,
000100011101000, 00010001110100, 0001000111010, 000100011101100,
00010001110110, 0001000111011, 000100011110, 0001000111101, 00010001111011,
000100011111000, 00010001111100, 0001000111110, 000100011111100,
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00010001111110, 0001000111111, 0001001, 00010011000, 000100110001000,
000100110001001, 000100110001010, 000100110001011, 000100110001100,
00010011000110, 000100110001110, 00010011000111, 00010011001, 00010011010,
000100110101000, 000100110101001, 0001001101010, 000100110101100,
00010011010110, 0001001101011, 00010011011, 00010011, 0001010,
00010101000, 000101010001000, 000101010001001, 000101010001010,
000101010001011, 000101010001100, 00010101000110, 000101010001110,
00010101000111, 00010101001, 000101010011000, 000101010011001,
000101010011010, 000101010011011, 000101010011100, 00010101001110,
000101010011110, 00010101001111, 000101010, 00010101100, 000101011001000,
00010101100100, 000101011001010, 00010101100101, 000101011001100,
00010101100110, 0001010110011, 00010101101, 000101011011000,
00010101101100, 000101011011010, 00010101101101, 000101011011100,
00010101101110, 0001010110111, 000101011, 00010110, 00010110100,
000101101001, 0001011010011000, 00010110100110001, 000101101001100011,
000101101001100, 00010110100110, 0001011010011, 00010110101, 00010110110,
000101101101, 00010110111, 00010111000, 000101110001000, 000101110001001,
000101110001010, 00010111000101, 000101110001100, 00010111000110,
000101110001110, 00010111000111, 00010111001, 000101110, 00010111,
0001100, 00011001000, 000110010001000, 000110010001001, 000110010001010,
000110010001011, 000110010001, 00011001001, 00011001010, 000110010101000,
000110010101001, 0001100101010, 000110010101, 00011001011, 00011001100,
000110011001000, 00011001100100, 000110011001010, 00011001100101,
000110011001, 0001100110, 00011001110, 0001100111, 0001101, 00011011000,
000110110001000, 000110110001001, 000110110001010, 000110110001011,
000110110001, 00011011001, 00011011010, 000110110101000, 000110110101001,
0001101101010, 000110110101, 00011011011, 00011011, 00011100, 00011101000,
000111010001000, 000111010001001, 000111010001010, 000111010001011,
000111010001, 00011101001, 000111010, 00011101, 00011110, 00011111000,
000111110001000, 000111110001001, 000111110001010, 00011111000101,
000111110001, 00011111001, 000111110, 00011111, 00100, 00100100, 00100100100,
00100100101, 00100100110, 001001001110, 0010010011101, 00100100111011,
001001001110111, 00100100111, 00100101, 00100101100, 00100101101, 001001011,
00100110, 00100110100, 00100110101, 00100110110, 001001101110, 0010011011101,
00100110111011, 001001101110111, 00100110111, 001001110, 00100111, 001010,
0010101, 00101100, 00101100100, 00101100101, 00101100110, 0010110011100,
00101100111001, 001011001110011, 0010110011101, 00101100111011,
001011001110111, 00101100111, 00101101, 00101101100, 00101101101, 001011011,
001011100, 0010111001000, 00101110010001, 001011100100011, 0010111001001,
00101110010011, 001011100100111, 00101110010100, 001011100101001,
0010111001010, 001011100101, 0010111001100, 00101110011001, 001011100110011,
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0010111001101, 00101110011011, 001011100110111, 00101110011, 00101110100,
00101110101, 0010111011000, 00101110110001, 001011101100011, 0010111011001,
00101110110011, 001011101100111, 00101110110, 0010111011100, 00101110111001,
001011101110011, 0010111011101, 00101110111011, 001011101110111,
00101110111, 0010111, 0011000, 00110001000, 001100010001000, 001100010001001,
001100010001010, 001100010001011, 001100010001100, 001100010001101,
001100010001110, 001100010001111, 0011000100, 00110001010, 001100010101000,
001100010101001, 0011000101010, 001100010101100, 00110001010110,
0011000101011, 0011000101, 00110001100, 0011000110, 00110001110, 0011000111,
0011001, 00110011000, 001100110001000, 001100110001001, 001100110001010,
001100110001011, 001100110001100, 00110011000110, 001100110001110,
00110011000111, 0011001100, 00110011010, 001100110101000, 001100110101001,
0011001101010, 001100110101100, 00110011010110, 0011001101011,
0011001101, 00110011, 00110100, 00110100100, 00110100101, 00110100110,
001101001110, 00110100111, 00110101000, 001101010001000, 001101010001001,
001101010001010, 00110101000101, 001101010001100, 00110101000110,
001101010001110, 00110101000111, 0011010100, 001101010, 00110101100,
0011010110, 001101011, 00110110, 00110110100, 001101101010, 00110110101,
00110110110, 001101101110, 00110110111, 00110111000, 001101110001000,
001101110001001, 001101110001010, 00110111000101, 001101110001100,
00110111000110, 001101110001110, 00110111000111, 0011011100, 001101110,
00110111, 0011, 010, 0101000, 01010001000, 010100010001000, 010100010001001,
0101000100010, 010100010001100, 01010001000110, 0101000100011, 01010001001,
010100010011000, 010100010011001, 0101000100110, 010100010011100,
01010001001110, 0101000100111, 01010001010, 01010001011, 01010001100,
010100011001000, 01010001100100, 0101000110010, 010100011001100,
01010001100110, 0101000110011, 01010001101, 010100011011000, 01010001101100,
0101000110110, 010100011011100, 01010001101110, 0101000110111, 01010001110,
0101000111, 0101001, 01010011000, 010100110001000, 010100110001001,
0101001100010, 010100110001100, 01010011000110, 0101001100011, 01010011001,
01010011010, 01010011011, 01010011, 0101010, 01010110, 01010110100,
010101101001, 0101011010011000, 01010110100110001, 010101101001100011,
010101101001100, 01010110100110, 0101011010011, 01010110101, 01010110110,
010101101101, 01010110111, 0101011, 0101100, 01011001000, 010110010001000,
010110010001001, 0101100100010, 010110010001, 01011001001, 01011001010,
01011001011, 01011001, 0101101, 01011011000, 010110110001000,
010110110001001, 0101101100010, 010110110001, 01011011001, 01011011010,
01011011011, 01011011, 01011100, 0101110, 010111, 01100000, 011000001,
01100000110, 011000001110, 01100000111010, 011000001110101, 01100000111011,
011000001110111, 01100000111, 01100001, 011000011, 01100001110,
0110000111, 01100010, 011000101, 01100010110, 011000101110, 01100010111010,
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011000101110101, 01100010111011, 011000101110111, 01100010111, 01100011,
01100100, 01100100100, 011001001010, 0110010010101, 01100100101011,
011001001010111, 01100100101, 01100100110, 011001001110, 01100100111010,
011001001110101, 01100100111011, 011001001110111, 01100100111, 0110010,
0110011000, 01100110001, 0110011001, 011001100110, 01100110011010,
011001100110101, 01100110011011, 011001100110111, 01100110011, 01100110100,
011001101010, 0110011010101, 01100110101011, 011001101010111, 01100110101,
01100110110, 011001101110, 01100110111010, 011001101110101, 01100110111011,
011001101110111, 01100110111, 0110011, 01101000, 011010001, 01101000110,
0110100011100, 01101000111001, 011010001110011, 01101000111010,
011010001110101, 01101000111011, 011010001110111, 01101000111,
01101001, 011010100, 0110101001000, 01101010010001, 011010100100011,
01101010010010, 011010100100101, 01101010010011, 011010100100111,
01101010010, 0110101001100, 01101010011001, 011010100110011, 01101010011010,
011010100110101, 01101010011011, 011010100110111, 01101010011, 011010101,
0110101011000, 01101010110001, 011010101100011, 01101010110010,
011010101100101, 01101010110011, 011010101100111, 01101010110,
0110101011100, 01101010111001, 011010101110011, 01101010111010,
011010101110101, 01101010111011, 011010101110111, 01101010111, 0110101,
01101100, 01101100100, 0110110010100, 01101100101001, 011011001010011,
0110110010101, 01101100101011, 011011001010111, 01101100101, 01101100110,
01101100111000, 011011001110001, 01101100111001, 011011001110011,
01101100111010, 011011001110101, 01101100111011, 011011001110111,
01101100111, 0110110, 0110111000000, 01101110000001, 011011100000011,
0110111000001, 01101110000011, 011011100000111, 0110111000010,
011011100001, 0110111000100, 01101110001001, 011011100010011,
0110111000101, 01101110001011, 011011100010111, 01101110001, 01101110010000,
011011100100001, 01101110010001, 011011100100011, 01101110010010,
011011100100101, 01101110010011, 011011100100111, 01101110010,
01101110011000, 011011100110001, 01101110011001, 011011100110011,
01101110011010, 011011100110101, 01101110011011, 011011100110111,
01101110011, 0110111010000, 01101110100001, 011011101000011, 0110111010001,
01101110100011, 011011101000111, 01101110100, 0110111010100, 01101110101001,
011011101010011, 0110111010101, 01101110101011, 011011101010111,
01101110101, 01101110110000, 011011101100001, 01101110110001,
011011101100011, 01101110110010, 011011101100101, 01101110110011,
011011101100111, 01101110110, 01101110111000, 011011101110001,
01101110111001, 011011101110011, 01101110111010, 011011101110101,
01101110111011, 011011101110111, 01101110111, 0110111, 01110000, 011100001,
01110000110, 0111000011, 01110001000, 011100010001000, 011100010001001,
0111000100010, 011100010001100, 01110001000110, 0111000100011, 0111000100,
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01110001010, 0111000101, 01110001100, 0111000110, 01110001110, 0111000111,
011100100, 0111001001, 011100101, 01110010110, 0111001011, 01110011000,
011100110001000, 011100110001001, 0111001100010, 011100110001100,
01110011000110, 0111001100011, 0111001100, 011100110, 01110011, 01110100,
01110100100, 011101001010, 01110100101, 01110100110, 0111010011, 0111010,
0111011000, 01110110001, 0111011001, 01110110100, 011101101010, 01110110101,
01110110110, 0111011011, 0111011, 0111 }

This is a set of 696 maximal valid colorings, varying in length from 3 to 18. There
are two colorings of maximum length:

{000101101001100011, 010101101001100011}.

The first of these can be written as sets as:

R = {1, 2, 3, 5, 8, 10, 11, 14, 15, 16},
B = {4, 6, 7, 9, 12, 13, 17, 18}.

The second maximum length coloring is the same except for the coloring of 2. In
either case, one can verify relatively quickly no solutions exist in a single color class
to E2,3. Neither color class (in either coloring) can be extended to include 19 due
to the following potential monochromatic solutions (red and blue, respectively):

12 + 152 + 162 = 112 + 192,

42 + 92 + 192 = 132 + 172.

(These do not represent all such triples – coloring 19 red or blue in any case in-
troduces a number of these solutions. In most cases, including the rest of these
examples, it is conceivable to have many such potential monochromatic solutions,
although one of each color will suffice to quash the possibility of extension.)

The Equation E1,3 With 2 Colors

It would be impossible to present a certificate for R2 (E1,3) = 105 in print. This
certificate consists of 19,471,702 maximal valid colorings, 188,160 of which are maxi-
mum length (104, that is). We will examine only one such maximum length coloring:
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R = {1, 4, 6, 9, 10, 11, 14, 16, 17, 21, 24, 25, 26, 29, 30, 31, 34, 36,
37, 39, 41, 43, 44, 45, 46, 49, 53, 54, 56, 57, 60, 63, 64, 65, 66,

67, 70, 73, 74, 76, 77, 80, 82, 83, 84, 87, 88, 92, 93, 94, 95, 96,

97, 98, 100, 102, 103, 104},
B = {2, 3, 5, 7, 8, 12, 13, 15, 18, 19, 20, 22, 23, 27, 28, 32, 33, 35,

38, 40, 42, 47, 48, 50, 51, 52, 55, 58, 59, 61, 62, 68, 69, 71, 72,

75, 78, 79, 81, 85, 86, 89, 90, 91, 99, 101}.

One can check that this coloring has no monochromatic solutions to E1,3, but it
cannot be extended and remain valid, due to the following potential monochromatic
triples (in red and blue, respectively):

142 + 702 + 772 = 1052,

182 + 512 + 902 = 1052.

A full certificate for this Rado number is available at
http://www.kellenmyers.org/rado/.

It is 35 MB compressed and can be uncompressed to 1.04 GB.

The Equation E3,4 With 3 Colors

A certificate for R3 (E3,4) = 32 is much smaller than that for R2 (E1,3) = 105, but
is still much too long to present in print. It consists of 3,612,110 maximal valid
colorings. However, only six of them are maximum length (31) and they are as
follows:

{0112010021010212000212011222000, 0112010021010212000212011222010,
0112010021010212000212011222100, 0112010021010212000212011222110,

0112201200212001022210010102220, 0112201200212001022210010102221}.

We can examine the first of these, which can be expressed as:

R = {1, 5, 7, 8, 11, 13, 17, 18, 19, 23, 29, 30, 31},
B = {2, 3, 6, 10, 12, 15, 21, 24, 25},
G = {4, 9, 14, 16, 20, 22, 26, 27, 28}.

One can verify that there are no solutions to E3,4 in any one of these color classes,
so this coloring is valid, but it cannot be extended to include 32 and remain valid.
This is demonstrated by the following potential monochromatic solutions, in red,
blue, and green respectively:
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72 + 182 + 302 = 82 + 82 + 112 + 322,

32 + 152 + 322 = 22 + 22 + 252 + 252,

142 + 202 + 322 = 92 + 92 + 272 + 272.

A full certificate for this Rado number is available at
http://www.kellenmyers.org/rado/.

It is 6.4 MB compressed and can be uncompressed to 84 MB.

The Equation x2 + y2 = z2 + 2w2 With 2 Colors

We are able to generate a full certificate for this Rado number, but again it is too
lengthy to reproduce in print. For this variation on the theme of Ea,b, we find that
there are 3845 maximal valid colorings, of which 20 are length 32. They are given
below:

{00010110110111001001000100010100, 00010110110111001001000100010110,
00010110110111001001000100011100, 00010110110111001001000100011110,

00010110110111001001000100110100, 00010110110111001001000100110110,

00010110110111001001001100010100, 00010110110111001001001100010110,

00010110110111001001001100011100, 00010110110111001001001100011110,

01010110110111001001000100010100, 01010110110111001001000100010110,

01010110110111001001000100011100, 01010110110111001001000100011110,

01010110110111001001000100110100, 01010110110111001001000100110110,

01010110110111001001001100010100, 01010110110111001001001100010110,

01010110110111001001001100011100, 01010110110111001001001100011110}.

The first of these can be split into the following color classes:

R = {1, 2, 3, 5, 8, 11, 15, 16, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32},
B = {4, 6, 7, 9, 10, 12, 13, 14, 17, 20, 24, 28, 30}.

One may verify that there are no solutions to x2 + y2 = z2 + 2w2 among ei-
ther color class in relatively short order. But this coloring (like the other nineteen
others in the list above) cannot be extended and remain valid, considering for ex-
ample the following potentially monochromatic solutions involving 33 (in R and B
respectively):

152 + 332 = 82 + 252,

122 + 332 = 92 + 242.
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A full certificate for this Rado number is available at
http://www.kellenmyers.org/rado/.

It is 7 KB compressed and can be uncompressed to 80 KB.

C.2. Square Gaps

The Furstenberg-Sárközy Number FS3

Recall that FSr is the least integer such that any r coloring of [1, FSr] must contain
monochromatic x and y such that x − y is a square. To prove that FS3 ≥ 29, we
must provide a coloring of [1, 28]

R = {2, 5, 7, 10, 15, 17, 20, 25, 28},
B = {1, 4, 9, 12, 14, 19, 22, 24, 27},
G = {3, 6, 8, 11, 13, 16, 18, 21, 23, 26}.

Although it does not prove FS3 ≤ 29 exhaustively, we remark that this particular
valid coloring cannot be extended. If 29 were added to R, 29− 28 = 1 is a square;
if B, 29− 4 = 25 is a square; and if G, 29− 13 = 16 is a square.

The Corresponding Rado Number R3

(
x − y = z2

)

Likewise, we considered Rado numbers for the equation x− y = z2 (bounded below
by FSr) and obtained R3

(
x− y = z2

)
= 204. The following 3-coloring of [1, 203]

provides the lower-bound:

R = {3, 5, 7, 10, 13, 20, 23, 27, 34, 37, 40, 44, 47, 50, 57, 60, 64, 67,
70, 77, 80, 84, 87, 94, 97, 101, 104, 111, 114, 117, 125, 128, 130,

131, 138, 141, 148, 151, 154, 158, 161, 165, 168, 171, 175, 178, 181,

185, 188, 191, 195, 198, 199, 202},
B = {2, 8, 11, 14, 16, 17, 19, 22, 25, 28, 30, 31, 33, 36, 39, 42, 45,

48, 51, 53, 54, 56, 59, 62, 65, 68, 71, 73, 74, 76, 79, 82, 85, 88,

90, 91, 93, 96, 99, 102, 105, 107, 108, 110, 113, 116, 119, 121, 122,

124, 127, 133, 134, 136, 139, 142, 144, 145, 147, 150, 153, 156, 159,

162, 164, 167, 170, 173, 176, 179, 182, 184, 187, 190, 193, 196, 201},
G = {1, 4, 6, 9, 12, 15, 18, 21, 24, 26, 29, 32, 35, 38, 41, 43, 46, 49,

52, 55, 58, 61, 63, 66, 69, 72, 75, 78, 81, 83, 86, 89, 92, 95, 98,

100, 103, 106, 109, 112, 115, 118, 120, 123, 126, 129, 132, 135, 137,

140, 143, 146, 149, 152, 155, 157, 160, 163, 166, 169, 172, 174, 177,

180, 183, 186, 189, 192, 194, 197, 200, 203}.
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Again, we can check (perhaps in more computing time than the previous, but
with no more complex an algorithm to do the checking) that this is a valid coloring
for this problem: None of these three sets has monochromatic solutions to x−y = z2.
However, this coloring can not be extended, because:

204− 104 = 102

204− 8 = 142

204− 203 = 12,

where we can observe that 10 and 104 are red, that 8 and 13 are blue, and that 1
and 203 are green. (These are not necessarily the only examples that exclude 204
from each color class.)

C.3. Reciprocal Schur Numbers

We produced two reciprocal Schur numbers with three variables. The first, with two

colors, was R2

(
1
x + 1

y = 1
z

)
= 60. The following coloring has no monochromatic

solutions to the equation:

R = {2, 3, 5, 8, 11, 12, 13, 14, 15, 18, 20, 31, 32, 33, 34, 35, 37, 38, 41, 42, 43,
44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59},

B = {1, 4, 6, 7, 9, 10, 16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 36, 39, 40}.

This valid coloring cannot be extended because we have the following potential
red and blue (respectively) solutions:

1

60
+

1

15
=

1

12
,

1

60
+

1

40
=

1

24
.

Likewise, with three colors, we have R3

(
1
x + 1

y = 1
z

)
= 3276. The lower bound is

demonstrated by the following 3-coloring. For the sake of brevity, this is presented
in the ternary-string format as described above.

100202001120021210221021010002011022201022021022010001210110
121010210001102222010001111000012020012222210102010001020212
002102210001000201020120000201012101011222122120202210221221
220201121002120021201020100001100200112011222202222112100011
111100021200001012021212121112110110211112220111210101101100
010020120200112210002120000000102001100210000002100000000022
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101101100112020000110100001002220002002200010001100201110122
120211101112020000012002000100000200211121221221221101211200
122020020221010000201122110102012010110100000000000010100221
002221000201000000002000000011000002000001100112001102100211
011011120002001011001202100001100001022200101111020101010102
000111011102000101101011111112112101000102011101011111210010
101110101100002211002000010102010221000222220201020202022201
012122220220222101012112222022010100001222002222020011222000
000002000000002200020221122022222222221221212220122202201202
222222202112212020202020000002202020112012222120201212200201
220020220022220122212122222221212222200222221101222011100101
111020222022022002201111011102112102111111120011001111010100
010100000002020211200202011101111112111100112112112111110212
110112221200211111220112101122220201111112201210221212100012
110010111010101011010100211102121000010100100111100112012220
000101010100110111011101000100100220220022000102010221220101
020112101000010012202210020101220112020222212222220022121011
122020020120121101022121211212102210011010102212210211121202
220222020221121100002121212121202010010120022221212221120201
020001211112020201200010111002101102210101101101110111100122
122000101011002111111011100110001100110000101001101100111111
111001101102111110111111111100101120022122212022212120222212
220202022221222222021222220201201202221121000000000100020021
000000211111000010000000001210111101000111001111101200100111
000011000001001100000001111011111111101111111001110111111111
101111111012101011110010000000000111100110000000111111111112
111111111111101101010110000111000000000000000010000100011012
000000000001000101000000000002220200011001010010000111000102
000010111111111111111111111111010101002200000000010010022221
000000000101001000001000000001010010110102001000010022222121
222221202121210222021201222022002222002202202220221222022222
220222220221200222222221222221222200022220022222220222000221
222222222220210102212222002202020222002102021220022220220001
200001202222200202220220202222100022002022200220222222220010
020222212202002020220222022202022200222022022102002020020200
220120220222020022022202202101220222002222020221222220202021
222222222202222222002222022221202220222222022222211221222212
222102202122002022222021020222021220212222200002002101020220
222022022021002222212222022222222020202220202022220022020222
200022022200022021012020200220002021200022222020022000222222
002020020002220022222022200022222202222020202022002020002200
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220200202202022000222002000211200200202022000202200000002121
000022202000020022100112022022200222220200200100002220000000
200120220221222222000021022001002000202220202002002102202200
220002220222202220220000022022200122202122020202002022020120
220222202221202221100102222220222200022222202220000222202021
220020222221220220022202012221220022220222020220020202220022
022200000221202022012222022200222220222120000202002000002010

Again, this valid coloring cannot be extended, due to the potential red, blue, and
green (respectively) solutions below:

1

3276
+

1

273
=

1

252
,

1

3276
+

1

546
=

1

468
,

1

3276
+

1

2808
=

1

1512
.

C.4. Other

Recall that Hr(m) is the r-color Hindman number, such that for any N ≥ Hr(m)
there is a monochromatic solution to the system:

x1 + x2 + · · ·+ xm−1 = xm,

x1 · x2 · · · · · xm−1 = z.

We have computed H2(2) = 39, and we can demonstrate the lower bound with
the following coloring:

R = {2, 3, 5, 7, 9, 11, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27,
28, 29, 31, 32, 33, 35, 36, 37}

B = {1, 4, 6, 8, 10, 12, 14, 18, 22, 26, 30, 34, 38}

One may check that for each pair in R, either the sum, product, or both is absent
from R, and likewise for B. However, this coloring cannot be extended, because
3+ 13 = 16 and 3 · 13 = 39 would be monochromatic (red), or else 1 + 38 = 39 and
1 · 38 = 38 (blue).

As a final example, consider R2 (x1 + x2 + · · ·+ x6 = 2x7) = 11. The lower-
bound for this Rado number can be proved by the following coloring:

R = {3, 4, 6, 7, 8, 9, 10}
B = {1, 2, 5}
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One can check that R and B contain no monochromatic solutions to the equation
in question, a task simplified by the fact that most 6-fold sums from R or B will
not be powers of 2. However, this valid coloring cannot be extended due to the
potential red and blue (respectively) solutions below:

9 + 11 + 11 + 11 + 11 + 11 = 26

1 + 2 + 2 + 5 + 11 + 11 = 25

D. Extended Proof of Theorem 12

We will first restate the theorem:

Theorem. For some constant c there is a constant M such that for any a and b
with a ≤ b ≤ ca, R2 (Ea,b) < M .

The idea behind our proof is straightforward, and it follows a depth-first search,
much in the spirit of our computational methods. We will begin without a clear
understanding of which values of c or M we can use, but instead, considering how
we could prove such a theorem by searching the tree of colorings.

First, assume there is a valid coloring in which 1, 2, and 3 are all red. We want
to construct a monochromatic solution that only uses 1, 2, and 3. We observe
such a solution exists: 32 = 12 + 22 + 22. This works along this branch of the
tree not just for E1,3. We can also add sort of dummy variable to each side, like
12 + 32 = 12 + 12 + 32 + 22, covering E2,4or indeed any E1+k,3+k. We could also
double-up on the solution (3, 1, 2, 2) to cover E2,6 and then any E2+k,6+k.

In summary, if b− a is even, say b− a = 2k, then consider the solution:

12 + · · ·+ 12︸ ︷︷ ︸
a−k

+32 + · · ·+ 32︸ ︷︷ ︸
k

= 12 + · · ·+ 12︸ ︷︷ ︸
a−k=b−3k

+12 + 22 + 22 + · · ·+ 12 + 22 + 22︸ ︷︷ ︸
3k

.

This solution is feasible because each xi = 3 for i > a− k corresponds to three y
terms 1,1,2, and with k of them, that gives us the correct number of x and y terms
(and of course, it is important to note 32 = 12 + 22 + 22). This requires b ≤ 3a
(equivalent to a − k ≥ 0) in order to have enough variables on each side to make
this work. So for a certain set of Ea,b, we have used a solution to a smaller equation
Ea′,b′ = E1,3, yielding a bound c ≤ b′

a′ .

Likewise, if b − a = 3k, we can similarly obtain monochromatic solutions using
the identity 12 + 12 + 12 + 12 = 22, requiring b ≤ 4a.

However, we would rather have b − a = 1 and use the identity 22 + 22 + 22 =
12 + 12 + 12 + 32, with no divisibility restriction, so that we can find solutions of
the form:

. . .︸︷︷︸
a−3k

+22 + · · ·+ 22︸ ︷︷ ︸
3k

= . . .︸︷︷︸
b−4k

+12 + 12 + 12 + 32 + · · ·+ 12 + 12 + 12 + 32︸ ︷︷ ︸
4k

.
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This requires a− 3k ≥ 0, i.e., b ≤ 4
3a, so c = 4

3 will suffice.

For other initial colorings, like 1 red, 2 red, 3 blue, we must repeat this argument
and obtain a similar bound. But we have our start – this is how we traverse the
tree of colorings. Depth-first, using smaller solutions of the form Ea′,a′+1 to cover
solutions to any Ea,b with the approriate restriction that a ≤ b ≤ ca with c = a′+1

a′ .

After tabulating the outcome, we obtain the following proof:

Proof. In Figure 2 we illustrate the tree of all colorings, truncated according to
Table 7. In this table, the monochromatic elements of each branch are given as well
as the corresponding solutions to some Ea′,a′+1.

The worst case (greatest number of squares) is 12 ·22 = 12 ·12+62, which proves
that this theorem holds for c = 13

12 and M = 9.

Monoch. Set Sums of squares
{1, 2, 3} 22 + 22 + 22 = 12 + 12 + 12 + 32

{1, 2, 6} 12× 22 = 12× 12 + 62

{1, 3, 4} 32 + 32 = 12 + 12 + 42

{1, 3, 8} 8× 32 = 8× 12 + 92

{2, 3, 4} 22 + 42 + 42 = 32 + 32 + 32 + 32

{2, 3, 5} 32 + 32 + 32 + 32 + 32 = 22 + 22 + 22 + 22 + 22 + 52

{2, 3, 6} 9× 22 + 62 + 62 = 12× 32

{2, 4, 6} 42 + 42 + 42 = 22 + 22 + 22 + 62

{3, 4, 5} 52 = 32 + 42

{3, 4, 7} 7× 42 = 7× 32 + 72

{3, 5, 8} 52 + 52 + 52 + 52 = 32 + 32 + 32 + 32 + 82

{3, 6, 9} 62 + 62 + 62 = 32 + 32 + 32 + 92

{4, 6, 8} 42 + 82 + 8 = 62 + 62 + 62 + 62

{1, 3, 5, 6} 12 + 62 + 62 + 62 = 32 + 52 + 52 + 52 + 52

{1, 3, 6, 7} 62 + 62 + 62 = 12 + 32 + 72 + 72

{1, 4, 5, 6} 42 + 42 + 42 + 42 = 12 + 12 + 12 + 52 + 62

{2, 5, 8, 9} 52 + 82 = 22 + 22 + 92

{3, 5, 6, 7} 62 + 62 + 62 = 32 + 52 + 52 + 72

{1, 2, 4, 5, 9} 22 + 42 + 42 + 52 + 52 = 12 + 12 + 12 + 12 + 12 + 92

{1, 2, 4, 7, 9} 22 + 42 + 42 + 72 = 12 + 12 + 12 + 12 + 92

{1, 2, 4, 8, 9} 22 + 42 + 82 = 12 + 12 + 12 + 92

{1, 2, 5, 7, 9} 22 + 22 + 22 + 52 + 72 = 12 + 12 + 12 + 12 + 12 + 92

Table 7: Table for proof of Theorem 12
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This proof was constructed in a way that prioritized three things: first, to ter-
minate every branch of the tree as soon as feasible; second, to minimize value of
M ; third, to minimize a′. The proof could be reconstructed to give better (higher)
values of c, allowing instead poorer (larger) values of M . Regardless, whatever
value of c and M one may obtain, it is important to note that this value M is
a uniform bound, confirming our intuition that in some cases, increasing a and b
will not increase the Rado number of Ea,b (in general, not increasing one of a or b
significantly without increasing the other).

This conveniently excludes the counter-example to our intuition discussed previ-
ously, the first row of Table 1, since no value of c gives a region of a ≤ b ≤ ca that
includes a whole row of these values. Indeed, it could not, since our observation
that the first row (E1,k) eventually grows without bound (bounded below by

√
k)

should apply to any row of the table (with analogous lower bound
√
b/a, likewise

unbounded with a fixed and b increasing).

After obtaining the set of solutions listed in Table 7, it is possible to delete some
of them (as we have done for our previous, more concise proof). Some of them may
end up being unnecessary, once this set is assembled. This corresponds to exploring
certain branches of the tree longer but reusing solution-sets more efficiently.

A more streamlined reconstruction of the proof could also refer to any particular
value of R2 (Ea′,a′+1), which would itself provide a bound M for c = a′+1

a′ . (The
tree in this version of the proof would be the same as the tree of valid colorings that
would prove R2 (Ea′,a′+1) in the first place.).

That means that the result of Heule, Kullmann, & Marek [21] proves the theorem
for c = 2 (which covers, in some sense, half of all possible Ea,b) with a very large
value of M = 7825, while our value of R2 (E2,3) proves this theorem with c = 3/2
with a tigheter bound M = 19.


