COMMUTATIVE ALGEBRA AND THE LINEAR DIOPHANTINE PROBLEM OF FROBENIUS

Melvyn B. Nathanson
Department of Mathematics, Lehman College (CUNY), Bronx, New York
melvyn.nathanson@lehman.cuny.edu

Received: 5/2/17, Revised: 1/6/18, Accepted: 2/13/18, Published: 4/27/18

Abstract
Let A be a finite set of relatively prime positive integers, and let $S(A)$ be the set of all nonnegative integral linear combinations of elements of A. The set $S(A)$ is a semigroup that contains all sufficiently large integers. The largest integer not in $S(A)$ is the Frobenius number of A, and the number of positive integers not in $S(A)$ is the genus of A. Sharp and Sylvester proved in 1884 that the Frobenius number of the set $A = \{a, b\}$ is $ab - a - b$, and that the genus of A is $(a - 1)(b - 1)/2$. Graded rings and a simple form of Hilbert’s syzygy theorem have been used to prove this result. This paper describes this application of commutative algebra to combinatorial number theory.

1. The Linear Diophantine Problem of Frobenius

Let \mathbb{N}_0 be the additive semigroup of nonnegative integers. A numerical semigroup is a subsemigroup S of \mathbb{N}_0 that contains 0 and contains all sufficiently large integers.

Theorem 1. Let $A = \{a_1, \ldots, a_k\}$ be a finite set of positive integers with $\text{card}(A) = k \geq 2$, and let $\text{gcd}(A)$ denote the greatest common divisor of the integers in A. The set

$$S(A) = \left\{ \sum_{i=1}^{k} a_ir_i : r_i \in \mathbb{N}_0 \text{ for all } i \in \{1, 2, \ldots, k\} \right\}$$

is a numerical semigroup if and only if $\text{gcd}(A) = 1$.

Proof. The set $S(A)$ is a semigroup because it contains 0 and is closed under addition. Every integer in $S(A)$ is divisible by $\text{gcd}(A)$. If $S(A)$ is a numerical semigroup, then it contains all sufficiently large integers, and so $\text{gcd}(A) = 1$.

A basic theorem in elementary number theory states that if $\text{gcd}(A) = 1$, then every integer n can be written as an integral linear combination of the elements of A. If

$$n = \sum_{i=1}^{k} a_is_i$$
with \(s_1, \ldots, s_k \in \mathbb{Z} \), then
\[
n \equiv \sum_{i=1}^{k-1} a_is_i \quad \text{(mod } a_k).\]

For each \(i \in \{1, \ldots, k-1\} \), there exists \(r_i \in \{0, 1, 2, \ldots, a_k - 1\} \) such that \(s_i \equiv r_i \pmod{a_k} \) and so
\[
n \equiv \sum_{i=1}^{k-1} a_ir_i \quad \text{(mod } a_k).\]

There is an integer \(r_k \) such that
\[
a_kr_k = n - \sum_{i=1}^{k-1} a_ir_i \geq n - (a_k - 1)\sum_{i=1}^{k-1} a_i.
\]

If \(n \geq (a_k - 1)\sum_{i=1}^{k-1} a_i \), then \(r_k \geq 0 \), and \(n = \sum_{i=1}^{k} a_ir_i \) is a representation of \(n \) as a nonnegative integral linear combination of the elements of the \(A \). This completes the proof.

Let \(A \) be a finite set of positive integers with \(\gcd(A) = 1 \). The Frobenius number of \(A \) is the largest integer \(F(A) \) not contained in \(S(A) \). The proof of Theorem 1 shows that
\[
F(A) \leq (a_k - 1)\sum_{i=1}^{k-1} a_i - 1.
\]

The elements of the finite set \(\mathbb{N}_0 \setminus S(A) = \{0, 1, 2, \ldots, F(A)\} \setminus S(A) \) are called the gaps of \(S(A) \). The genus of \(A \), denoted \(G(A) \), is the number of gaps of \(S(A) \). Because \(S(A) \) is closed under addition and \(F(A) \not\in S(A) \), it follows that if \(n \in S(A) \), then \(F(A) - n \notin S(A) \). Therefore, \(S(A) \) contains at most one element of the set \(\{n, F(A) - n\} \) for all \(n \in \{0, 1, 2, \ldots, F(A)\} \), and so \(G(A) \geq (F(A) + 1)/2 \). The numerical semigroup \(S(A) \) is symmetric if \(n \notin S(A) \) implies \(F(A) - n \in S(A) \).

The linear diophantine problem of Frobenius is to compute the integer \(F(A) \). In 1884, Sylvester [18] and Sharp [16] proved that the set \(A = \{a, b\} \) has Frobenius number \(F(a, b) = ab - a - b \) and genus \(G(a, b) = (a - 1)(b - 1)/2 \).

For sets \(A \) with \(|A| \geq 3 \), the problem is still unsolved and mysterious. Indeed, there is no explicit solution to the Frobenius problem even for sets \(A \) with \(|A| = 3 \). Methods from number theory, analysis, geometry, probability, and algebraic geometry have produced many partial results. Much of this is described in monographs by Assi and García-Sánchez [5], Ramirez-Alfonsin [13], and Rosales and García-Sánchez [14], and in recent work (for example, Aliev-Henk [1], Arnold [2, 3], Bourgain-Sinai [6], Fel [9, 10], Fukhansky-Robins [11], Marklof [12], Schmidt [15], and Strömbergsson [17]).
Graded rings and a simple form of Hilbert’s syzygy theorem have been used to obtain the Sharp-Sylvester solution to the Frobenius problem for \(k = 2 \). I do not know who was the first to observe this connection between numerical semigroups and algebraic geometry. The purpose of this paper is to give an elementary exposition of this application of commutative algebra to combinatorial number theory.

2. The Frobenius Number \(\mathcal{F}(a, b) \)

In Section 4, we use commutative algebra (essentially, a simple form of the Hilbert syzygy theorem) to prove the following result.

Theorem 2. Let \(A = \{a, b\} \), where \(a \) and \(b \) are distinct, relatively prime positive integers, and let \(S(A) = \{ai + bj : i, j \in \mathbb{N}_0\} \). The generating function for the gaps of the numerical semigroup \(S(A) \) is the polynomial

\[
 f_A(q) = \sum_{n \in \mathbb{N}_0 \setminus S(A)} q^n. \tag{2}
\]

This polynomial satisfies the functional equation

\[
 (q^a - 1)(q^b - 1)((q - 1)f_A(q) + 1) = (q - 1)(q^{ab} - 1). \tag{3}
\]

More general forms of this functional equation appear in Assi, García-Sánchez, and Ojeda [4] and Ciolan, García-Sánchez, and Moree [7].

From Theorem 2, we need only high school algebra to deduce the Sharp-Sylvester solution of the Frobenius problem. Recall that if \(a_d \neq 0 \) and

\[
 f(q) = a_d q^d + a_{d-1} q^{d-1} + \cdots + a_1 q + a_0
\]

is a polynomial of degree \(d \), then the reciprocal polynomial of \(f(t) \) is the polynomial

\[
 \hat{f}(q) = q^d f\left(\frac{1}{q}\right) = a_0 q^d + a_1 q^{d-1} + \cdots + a_{d-1} q + a_d = \sum_{i=0}^{d} a_i q^{d-i} \tag{4}
\]

of degree at most \(d \). For example, the degree 5 polynomial \(f(q) = q^5 + q^2 + q \) has the degree 4 reciprocal polynomial \(\hat{f}(q) = q^4 + q^3 + 1 \).

Theorem 3. Let \(A = \{a, b\} \), where \(a \) and \(b \) are distinct, relatively prime positive integers, and let \(S(A) = \{ai + bj : i, j \in \mathbb{N}_0\} \).

(i) The Frobenius number of the set \(A \) is

\[
 \mathcal{F}(A) = ab - a - b.
\]
(ii) The numerical semigroup $S(A)$ is symmetric, and the genus of A is
\[G(A) = \frac{\mathcal{F}(A) + 1}{2} = \frac{(a - 1)(b - 1)}{2}. \]

Proof. Because $\gcd(a, b) = 1$, at least one of the integers a and b is odd, and so $(a - 1)(b - 1)/2$ is an integer.

The degree of the polynomial $f_A(q)$ is the Frobenius number $\mathcal{F}(A)$, which is the largest integer not in $S(A)$. Equating the degrees of the polynomials on the left and right sides of identity (3) in Theorem 2, we obtain
\[a + b + 1 + \deg(f_A(q)) = 1 + ab \]
and so
\[\mathcal{F}(A) = \deg(f_A(q)) = ab - a - b. \]

It follows that the reciprocal polynomial of $f_A(q)$ is
\[\hat{f}_A(q) = q^{ab-a-b} f\left(\frac{1}{q} \right). \]

Consider the polynomial
\[g_A(q) = \sum_{n=0}^{\frac{ab-a-b}{a+b+1}} q^n - f_A(q). \]

(5)

The polynomials on the left and right sides of identity (3) have degree $ab + 1$. The reciprocal polynomial of the right side of (3) is
\[q^{ab+1} \left(\left(\frac{1}{q} - 1 \right) \left(\frac{1}{q^{ab}} - 1 \right) \right) = (q - 1)(q^{ab} - 1). \]

The reciprocal polynomial of the left side of (3) is
\[
q^{ab+1} \left(\left(\frac{1}{q^a} - 1 \right) \left(\frac{1}{q^b} - 1 \right) \left(\frac{1}{q} - 1 \right) f_A \left(\frac{1}{q} \right) + 1 \right) \\
= (q^a - 1)(q^b - 1) \left(-(q-1) q^{ab-a-b} f_A \left(\frac{1}{q} \right) + q^{ab-a-b+1} \right) \\
= (q^a - 1)(q^b - 1) \left(-(q-1) \hat{f}_A(q) + q^{ab-a-b+1} \right).
\]

Therefore,
\[(q^a - 1)(q^b - 1) \left(-(q-1) \hat{f}_A(q) + q^{ab-a-b+1} \right) = (q - 1)(q^{ab} - 1). \]

(6)

Comparing identities (3) and (6), we obtain
\[(q - 1)f_A(q) + 1 = -(q - 1)\hat{f}_A(q) + q^{ab-a-b+1} \]
and so
\[(q - 1)(f_A(q) + \hat{f}_A(q)) = q^{ab-a-b+1} - 1 = (q - 1) \left(1 + q + q^2 + \cdots + q^{ab-a-b} \right).\]

By identity (5),
\[f_A(q) + \hat{f}_A(q) = 1 + q + q^2 + \cdots + q^{ab-a-b} = f_A(q) + g_A(q)\]
and so \(\hat{f}_A(q) = g_A(q)\). Let
\[\varepsilon_n = \begin{cases}
1 & \text{if } n \in S(A) \\
0 & \text{if } n \notin S(A).
\end{cases}\]
We have
\[f_A(q) = \sum_{n=0}^{\mathcal{F}(A)} (1 - \varepsilon_n)q^n\]
and
\[g_A(q) = \sum_{n=0}^{\mathcal{F}(A)} \varepsilon_n q^n.\]

Recalling formula (4) for the reciprocal polynomial, we obtain
\[\hat{f}_A(q) = \sum_{n=0}^{\mathcal{F}(A)} (1 - \varepsilon_n)q^{\mathcal{F}(A) - n} = \sum_{n=0}^{\mathcal{F}(A)} (1 - \varepsilon_{\mathcal{F}(A) - n})q^n = g_A(q).\]

It follows that \(1 - \varepsilon_{\mathcal{F}(A) - n} = \varepsilon_n\). Equivalently,
\[\varepsilon_n + \varepsilon_{\mathcal{F}(A) - n} = 1\]
for all \(n \in \{0, 1, 2, \ldots, \mathcal{F}(A)\}\). Therefore, \(n \in S(A)\) if and only if \(\varepsilon_n = 1\) if and only if \(\varepsilon_{\mathcal{F}(A) - n} = 0\) if and only if \(\mathcal{F}(A) - n \notin S(A)\). Thus, the semigroup \(S(A)\)is symmetric, and the genus of \(A\) is
\[G(A) = f_A(1) = \frac{(a-1)(b-1)}{2}.\]
This completes the proof. \(\square\)

3. A Division Algorithm in \(E[x, y]\)

Let \(E\) be a field, and let \(E[t]\) and \(E[x, y]\) be the polynomial rings in one and two variables, respectively. Let \(A = \{a, b\}\), where \(a\) and \(b\) are distinct, relatively
prime positive integers, and let $S(A) = \{ai + bj : i, j \in \mathbb{N}_0\}$. Consider the ring homomorphism $\Phi : E[x, y] \to E[t]$ defined by

$$\Phi(x) = t^a \quad \text{and} \quad \Phi(y) = t^b.$$

(7)

For every polynomial $f(x, y) \in E[x, y]$, we have $\Phi(f(x, y)) = f(t^a, t^b)$. Thus,

$$\Phi(x^b - y^a) = (t^a)^b - (t^b)^a = t^{ab} - t^{ab} = 0$$

(8)

and so the kernel of Φ contains the polynomial $x^b - y^a$. We shall prove that the kernel of Φ is the principal ideal generated by $x^b - y^a$.

The image of Φ is the subring of $E[t]$ generated by the set $\{t^a, t^b\}$, and denoted $E[t^a, t^b]$. Because $\Phi(x^iy^j) = t^{ai+bj}$, it follows that $\{t^n : n \in S(A)\}$ is the set of monomials that appear in $E[t^a, t^b]$, and so $E[t^a, t^b]$ is a vector space over the field E with basis $\{t^n : n \in S(A)\}$.

The proof of Theorem 4 uses the division algorithm for a polynomial in k variables by a sequence of s polynomials in k variables. (This is clearly explained in Cox-Little-O’Shea [8, Chapter 2].) We need only the special case $k = 2$ and $s = 1$. Lexicographically order the monomials $x^iy^j \in E[x, y]$ as follows: $x^{i_1}y^{j_1} < x^{i_2}y^{j_2}$ if $i_1 < i_2$ or if $i_1 = i_2$ and $j_1 < j_2$. Every nonempty finite set of monomials has a largest element. The leading monomial of a nonzero polynomial $f(x, y)$ is the largest monomial that appears in the polynomial with a nonzero coefficient. For example, if a and b are positive integers, then $y^a = x^0y^a < x^by^0 = x^b$, and so x^b is the leading monomial of the polynomial $x^b - y^a$. By the division algorithm, if the leading monomial of the polynomial $f(x, y)$ is x^b for some positive integer b, then, for every polynomial $g(x, y) \in E[x, y]$, there exists a “quotient polynomial” $q(x, y) \in E[x, y]$ and “remainder polynomials” $r_i(y) \in E[y]$ for $i = 0, 1, 2, \ldots, b-1$ such that

$$g(x, y) = q(x, y)f(x, y) + \sum_{i=0}^{b-1} x^i r_i(y).$$

(9)

Theorem 4. Let a and b be distinct, relatively prime positive integers. Let E be a field, and consider the polynomial rings $E[x, y]$ and $E[t]$. Define the ring homomorphism $\Phi : E[x, y] \to E[t]$ by (7). The kernel of Φ is the principal ideal generated by $x^b - y^a$.

Proof. Equation (8) shows that $f(x, y) = x^b - y^a \in \text{kernel}(\Phi)$.

Let $g \in \text{kernel}(\Phi)$. Using the division algorithm to divide $g(x, y)$ by $f(x, y)$, we obtain polynomials $q(x, y)$ and $r_0(y), r_1(y), \ldots, r_{b-1}(y)$ that satisfy (9). Let

$$r_i(y) = \sum_{j=0}^{d_i} c_{i,j}y^j$$
for $i = 0, 1, 2, \ldots, b - 1$. Equation (9) gives
\[g(x, y) = q(x, y)f(x, y) + \sum_{i=0}^{b-1} \sum_{j=0}^{d_i} c_{i,j} x^i y^j. \]

Because $\Phi(g(x, y)) = \Phi(f(x, y)) = 0$, we obtain
\[
0 = \Phi(g(x, y)) = \Phi \left(q(x, y)f(x, y) + \sum_{i=0}^{b-1} \sum_{j=0}^{d_i} c_{i,j} x^i y^j \right)
= \Phi(q(x, y))\Phi(f(x, y)) + \sum_{i=0}^{b-1} \sum_{j=0}^{d_i} c_{i,j} \Phi(x^i y^j)
= \sum_{i=0}^{b-1} \sum_{j=0}^{d_i} c_{i,j} x^{ai+bj}.
\]

For
\[(i_1, j_1) \in \{0, 1, \ldots, b - 1\} \times \mathbb{N}_0 \]
and
\[(i_2, j_2) \in \{0, 1, \ldots, b - 1\} \times \mathbb{N}_0 \]
we have
\[t^{ai_1+bj_1} = t^{ai_2+bj_2} \]
if and only if
\[ai_1 + bj_1 = ai_2 + bj_2 \]
if and only if
\[a(i_2 - i_1) = b(j_2 - j_1). \]

Because b divides $a(i_2 - i_1)$ and $\gcd(a, b) = 1$, it follows that b divides $i_2 - i_1$. The inequality $0 \leq |i_2 - i_1| \leq b - 1$ implies that $i_1 = i_2$ and so $j_1 = j_2$. Thus, the integers in the set
\[\{ai + bj : i \in \{0, 1, \ldots, b - 1\} \text{ and } j \in \mathbb{N}_0\} \]
are pairwise distinct elements of the semigroup $S(A)$, and the corresponding monomials t^{ai+bj} are pairwise distinct. The polynomial identity
\[\sum_{i=0}^{b-1} \sum_{j=0}^{d_i} c_{i,j} t^{ai+bj} = 0 \]
implies that $c_{i,j} = 0$ for all i and j, and so $r_i(y) = 0$ for $i = 0, 1, \ldots, b - 1$, and
\[g(x, y) = q(x, y)f(x, y). \]

Thus, the kernel of Φ is the principal ideal generated by $f(x, y)$. This completes the proof. \[\square \]
4. Graded Rings and Modules

Let R be a commutative ring with 1. The ring R is *graded* if it contains a sequence $(R_n)_{n=0}^\infty$ of additive subgroups such that, first, as an additive abelian group,

$$R = \bigoplus_{n=0}^\infty R_n$$

and, second, as a ring, multiplication in R satisfies

$$R_mR_n \subseteq R_{m+n}$$

(10)

for all $m, n \in \mathbb{N}_0$. In particular, $R_0R_0 \subseteq R_0$ and $1 \in R_0$, and so R_0 is a ring. Similarly, for every $n \in \mathbb{N}_0$, we have $R_0R_n \subseteq R_n$, and so R_n is an R_0-module.

Let $R = \bigoplus_{n=0}^\infty R_n$ be a graded ring. An R-module M is *graded* if M contains a sequence $(M_n)_{n=0}^\infty$ of additive subgroups such that, first, as an additive abelian group,

$$M = \bigoplus_{n=0}^\infty M_n$$

and, second, as an R-module, multiplication satisfies

$$R_mM_n \subseteq M_{m+n}$$

for all $m, n \in \mathbb{N}_0$. Because $R_0M_n \subseteq M_n$, it follows that M_n is an R_0-module for all $n \in \mathbb{N}_0$. If $f_n \in M_n$ for all n, and if $f = \sum_{n=0}^\infty f_n = 0$, then $f_n = 0$ for all n.

If $R_0 = E$ is a field, then M_n is a vector space over E. If M_n is a finite-dimensional vector space for all n, then the formal power series

$$H_M(q) = \sum_{n=0}^\infty \dim(M_n)q^n$$

is called the *Hilbert series* for M.

Relation (10) implies that every graded ring R is also a graded R-module with $M_n = R_n$ for all $n \in \mathbb{N}_0$.

Let $R = \bigoplus_{n=0}^\infty R_n$ be a graded ring, and let $M = \bigoplus_{n=0}^\infty M_n$ and $M' = \bigoplus_{n=0}^\infty M'_n$ be graded R-modules. An R-module homomorphism $\Phi : M \to M'$ is *graded* if $\Phi(M_n) \subseteq M'_n$ for all $n \in \mathbb{N}_0$. Define the R_0-module homomorphism $\varphi_n : M_n \to M'_n$ by restriction: $\varphi_n(f_n) = \Phi(f_n)$ for all $f_n \in M_n$. The kernel of φ_n is a submodule, denoted K_n, of M_n, and so $K = \bigoplus_{n=0}^\infty K_n$ is a graded R-module. If $f = \sum_{n=0}^\infty f_n \in K$ with $f_n \in K_n$ for all n, then

$$\Phi(f) = \Phi \left(\sum_{n=0}^\infty f_n \right) = \sum_{n=0}^\infty \Phi(f_n) = \sum_{n=0}^\infty \varphi_n(f_n) = 0$$
and so \(f \in \ker(\Phi) \). Therefore, \(K \subseteq \ker(\Phi) \).

Conversely, if \(f \in \ker(\Phi) \) and if \(f = \sum_{n=0}^{\infty} f_n \) with \(f_n \in M_n \) for all \(n \), then

\[
0 = \Phi(f) = \Phi \left(\sum_{n=0}^{\infty} f_n \right) = \sum_{n=0}^{\infty} \varphi_n(f_n)
\]

with \(\varphi_n(f_n) \in M_n \), and so \(\varphi_n(f_n) = 0 \). Therefore, \(f_n \in \ker(\varphi_n) = K_n \) and \(f \in K \). This proves that \(K = \ker(\Phi) \).

Here are some examples of graded rings and modules. Let \(E \) be a field. The polynomial ring \(E[t] \) is a vector space over \(E \). For every \(n \in \mathbb{N}_0 \), let \(R_n = Et^n \) be the one-dimensional subspace of \(E[t] \) spanned by \(t^n \). The identity \(t^m t^n = t^{m+n} \) implies that \(R_m R_n \subseteq R_{m+n} \), and so \(E[t] = \bigoplus_{n=0}^{\infty} R_n \) is a graded ring with \(\dim(R_n) = 1 \) for all \(n \). As a graded \(E[t] \)-module, the Hilbert series for \(E[t] \) is

\[
H_{E[t]}(q) = \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}.
\]

Let \(a \) and \(b \) be distinct, relatively prime positive integers, and let \(S(A) = \{ai+bj : i, j \in \mathbb{N}_0\} \). Consider the ring \(E[t^a, t^b] \). As a vector space over \(E \), a basis for \(E[t^a, t^b] \) is the set of monomials

\[
\{t^{ai+bj} : (i,j) \in \mathbb{N}_0^2\} = \{t^n : n \in S(A)\}
\]

and so

\[
E[t^a, t^b] = \bigoplus_{n=0}^{\infty} R_n
\]

where

\[
R_n = \begin{cases}
Et^n & \text{if } n \in S(A) \\
0 & \text{if } n \notin S(A).
\end{cases}
\]

Thus, \(\dim(R_n) = 1 \) if \(n \in S(A) \) and \(\dim(R_n) = 0 \) if \(n \notin S(A) \). Note that \(R_0 = E \) because \(0 \in S(A) \). As a graded \(E[t^a, t^b] \)-module, the Hilbert series for \(E[t^a, t^b] \) is

\[
H_{E[t^a, t^b]}(q) = \sum_{n \in S(A)} q^n = \sum_{n=0}^{\infty} q^n - \sum_{n \notin \mathbb{N}_0 \setminus S(A)} q^n = \frac{1}{1-q} - f_A(q)
\]

where \(f_A(q) \) is the polynomial defined by (2).

A ring can be graded in many ways. For example, in the polynomial ring \(E[x,y] \), the degree of the monomial \(x^i y^j \) is \(i + j \). If \(R_n \) is the vector subspace of \(E[x,y] \) generated by the set of monomials of degree \(n \), that is, by the set \(\{x^n, x^{n-1}y, x^{n-2}y^2, \ldots, y^n\} \), then \(R_n \) is an \(E \)-vector space of dimension \(n+1 \), and
$E[x, y] = \bigoplus_{n=0}^{\infty} R_n$ is a graded ring. With this grading by degree, as an $E[x, y]$-module, the Hilbert series for the polynomial ring $E[x, y]$ is

$$\sum_{n=0}^{\infty} (n+1)q^n = \frac{1}{(1-q)^2}.$$

For the Frobenius problem, we use a different grading of $E[x, y]$. Let E_n be the vector subspace of $E[x, y]$ generated by the set of monomials

$$\{x^iy^j : ai + bj = n\}.$$

The number of monomials in this set is exactly $p_{a, b}(n)$, which is the number of partitions of n into parts a and b. Euler observed that the generating function for this partition function is the formal power series

$$\sum_{n=0}^{\infty} p_{a, b}(n)q^n = \left(\sum_{i=0}^{\infty} q^{ai}\right)\left(\sum_{j=0}^{\infty} q^{bj}\right) = \frac{1}{(1-q^a)(1-q^b)}.$$

If $x^iy^j \in E_m$ and $x^ky^\ell \in E_n$, then

$$ai + bj = m$$

$$ak + b\ell = n$$

and so

$$(x^iy^j)(x^ky^\ell) = x^{i+k}y^{j+\ell} \in E_{m+n}.$$

This implies that $E_mE_n \subseteq E_{m+n}$ and so $E[x, y] = \bigoplus_{n=0}^{\infty} E_n$ is a graded ring. Because $ai + bj = 0$ if and only if $i = j = 0$, we have $E_0 = E$, and so E_n is a vector space over the field E with $\dim(E_n) = p_{a, b}(n)$. With this “Frobenius grading,” the Hilbert series for $E[x, y]$ is

$$H_{E[x, y]}(q) = \sum_{n=0}^{\infty} \dim(E_n)q^n = \sum_{n=0}^{\infty} p_{a, b}(n)q^n = \frac{1}{(1-q^a)(1-q^b)}.$$

(12)

Let $E[t^n, t^b] = \bigoplus_{n=0}^{\infty} R_n$, with R_n defined by (11). We define a “multiplication”

$$E[x, y] \times E[t^n, t^b] \rightarrow E[t^n, t^b]$$

as follows: $xt^n = t^{a+n}$ and $yt^n = t^{b+n}$ for all $n \in S(A)$. Thus, if $x^iy^j \in E_m$ and $n \in S(A)$, then $ai + bj = m$ and $x^iy^jt^n = t^{ai+bi+t} = t^{m+n}$. Therefore, $E_mE_n \subseteq E_{m+n}$ for all $m, n \in \mathbb{N}_0$, and $E[t^n, t^b]$ is a graded $E[x, y]$-module.

The function $\Phi : E[x, y] \rightarrow E[t^n, t^b]$ defined by $\Phi(x) = t^n$ and $\Phi(y) = t^b$ is a surjective ring homomorphism. Theorem 4 states that $K = \ker(\Phi)$ is the
principal ideal of $E[x, y]$ generated by the polynomial $f = f(x, y) = x^b - y^a \in E_{ab}$. Thus, the kernel of Φ is the graded ring

$$K = E[x, y]f = \bigoplus_{n=0}^{\infty} E_n f = \bigoplus_{n=ab}^{\infty} E_{n-ab} f = \bigoplus_{n=0}^{\infty} K_n$$

where $E_{n-ab} f \subseteq E_n$ and

$$K_n = K \cap E_n = \begin{cases} 0 & \text{if } n = 0, 1, \ldots, ab-1 \\ E_{n-ab} f(x, y) & \text{if } n \geq ab. \end{cases}$$

For all $x^iy^j \in E_m$, we have $ai + bj = m$ and

$$\Phi(x^iy^j) = t^{ai+bj} = x^iy^j \Phi(1) \in E[t^a, t^b]$$

and so $\Phi : E[x, y] \to E[t^a, t^b]$ is also an $E[x, y]$-module homomorphism. The Hilbert series for K is

$$H_K(q) = \sum_{n=ab}^{\infty} \dim(K_n) q^n = \sum_{n=ab}^{\infty} \dim(E_{n-ab} f) q^n$$

$$= \sum_{n=ab}^{\infty} \dim(E_{n-ab}) q^n = q^{ab} \sum_{n=ab}^{\infty} \dim(E_{n-ab}) q^{n-ab}$$

$$= q^{ab} \sum_{n=0}^{\infty} \dim(E_n) q^n = \frac{q^{ab}}{(1-q^a)(1-q^b)}.$$

The final equation comes from (12).

We have the graded $E[x, y]$-modules $E[x, y] = \bigoplus_{n=0}^{\infty} E_n$ and $E[t^a, t^b] = \bigoplus_{n=0}^{\infty} R_n$, and the $E[x, y]$-module homomorphism $\Phi : E[x, y] \to E[t^a, t^b]$. The restriction of Φ to E_n is the linear transformation $\varphi: E_n \to R_n$, where $R_n \neq 0$ if and only if $n \in S(A)$. If $n \in S(A)$, then there exist nonnegative integers i and j such that $n = ai + bj$. Because $x^iy^j \in E_n$ and $\varphi_n(x^iy^j) = t^{ai+bj} = t^n$, it follows that φ_n is surjective for all $n \in N_0$. The kernel of φ_n is K_n. By the rank-nullity theorem in linear algebra,

$$\dim(E_n) = \dim(R_n) + \dim(K_n). \quad (13)$$

Multiplying this equation by q^n and summing over n, we obtain the following Hilbert series identity:

$$H_{E[x,y]}(q) = \sum_{n=0}^{\infty} \dim(E_n) q^n = \sum_{n=0}^{\infty} (\dim(R_n) + \dim(K_n)) q^n$$

$$= \sum_{n=0}^{\infty} \dim(R_n) q^n + \sum_{n=0}^{\infty} \dim(K_n) q^n$$

$$= H_{E[t^a,t^b]}(q) + H_K(q).$$
Equivalently,

\[
\frac{1}{(1-q^a)(1-q^b)} = \frac{1}{1-q} - f_A(q) + \frac{q^{ab}}{(1-q^a)(1-q^b)} = 0
\]

and so

\[(q^a - 1)(q^b - 1)((q-1)f_A(q) + 1) = (q-1)(q^{ab} - 1).\]

This completes the proof of Theorem 2.

References

