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Abstract
For any set of positive integers A with gcdA = 1, let �(A) denote the set of integers
that are expressible as a linear combination of elements of A with non-negative
integer coe�cients. Then g(A), n(A), s(A) denote the largest, the number of, the
sum of positive integer(s) not in �(A), respectively. We investigate the change in
g(A), n(A), and s(A) when A changes from a two-element set to a three-element
set. In particular, we determine these numbers for certain families A = {a, b, c}.
For the same families A, we also determine the set S?(A) which consists of positive
integers n not in �(A) for which n+

�
�(A)\{0}

�
⇢ �(A)\{0}. The largest element

in S?(A) is g(A).

1. Introduction

Consider a finite set A = {a1, . . . , ak} of positive integers with gcd A := gcd(a1, . . . , ak) =
1. Let �(A) :=

�
a1x1 + · · · + akxk : xi 2 Z�0

 
and �?(A) = �(A) \ {0}. Then

�c(A) := N \ �(A) can be shown to be a finite set, and this allows us to define the
Frobenius number g(A) and the Sylvester number n(A):

g(A) := max�c(A), n(A) :=
���c(A)

��.
The Frobenius Problem is to determine g(A) and n(A) in the general case.

For A = {a, b}, gcd(a, b) = 1, Sylvester [10, 11] showed

g(a, b) = ab� a� b, n(a, b) =
1
2
(a� 1)(b� 1).

1Corresponding author



INTEGERS: 18B (2018) 2

Exact values for g(A) have been known only for few cases when |A| > 2, in some
cases when the elements of A satisfy a specific condition. For instance, g(ab, bc, ca) =
2abc � ab � bc � ca whenever gcd(a, b) = gcd(b, c) = gcd(c, a) = 1. On the other
hand, bounds and algorithms to compute g(A), especially in the case |A| = 3, have
been a major source of research. Corresponding results for n(A) have been much
rarer, even in special cases.

Brown and Shiue [1] introduced the related problem of determining the function

s(A) :=
X

n2�c(A)

n,

and found
s(a, b) =

1
12

(a� 1)(b� 1)(2ab� a� b� 1)

when gcd(a, b) = 1; see also [13].
The set �(A) is closed under addition, and so n + �(A) ✓ �(A) whenever n 2

�(A). It is conceivable that n 2 �c(A) satisfy a slightly modified condition, replacing
�(A) by �(A) \ {0}. In fact, g(A) is clearly the largest number satisfying such a
condition. Thus we study the set given by

S?(A) :=
�
n 2 �c(A) : n + �?(A) ⇢ �?(A)

 
,

where �?(A) = �(A)\{0}. Members of S?(A) are called pseudo-Frobenius numbers,
and the size of S?(A) is called the type of A.

The main purpose of our paper is to investigate the change in the Frobenius
number g(A) and the Sylvester number n(A) as we move from a 2-set {a, b} to a
3-set {a, b, c} for certain range of c 2 �c(A) explictly formulated in the following
paragraph. The fact that this forces gcd(a, b) = 1 in the 3-set does not reduce the
generality of our argument due to Proposition 2. We also investigate corresponding
changes in s(A), and directly determine the set S?({a, b, c}). Since g(A), n(A), s(A),
and S?(A) are well known when |A| = 2, determining changes in these functions
would amount to the determination of these functions for the case |A| = 3. Explicit
formulae for each of these functions is unknown, except for g(A).

We list preliminary results that are key to this paper in Section 2, present our
main results in Section 3, and conclude by listing the cases in which the problem
remains open in Section 4. In moving from a 2-set {a, b} to a 3-set {a, b, c}, we
may assume that c /2 �({a, b}), since c 2 �({a, b}) can be easily seen to imply
�({a, b, c}) = �({a, b}). We may write any c /2 �({a, b}) in the form bs � ar with
s 2 {1, . . . , a� 1} and 1  r < bs

a . Our main results in Section 3 are:

(i) Theorem 1, in which we determine the change in the least positive integer
representable in each residue class modulo a, for the cases 1  r 

⌃ b(a�1)
2a

⌥
and a�1

2 < s  a� 1,
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(ii) Theorem 2, in which we give precise results for the functions g(A), n(A),
s(A), and determine the set S?(A) for the cases 1  r 

⌃ b(a�1)
2a

⌥
and

a�1
2 < s  a� 1 using the result of Theorem 1, and

(iii) Theorem 3, in which we give a sharp lower bound for the di↵erences g({a, b})�
g({a, b, c}) and n({a, b})� n({a, b, c}). We also characterize c for which these
lower bounds are attained.

Results corresponding to those in Theorem 1, and consequently corresponding to
Theorem 2 for the remaining choices of r and s are much more di�cult, and under
ongoing investigation.

2. Preliminary Results

Suppose A is any set of positive integers with gcdA = 1, and let a 2 A. For each
residue class C modulo a, let mC denote the least integer in �(A) \C. It is well
known that the functions g, n and s are easily determined from the values of mC.
The following result, part (i) of which is due to Brauer and Shockley [2], part (ii) to
Selmer [8], and part (iii) to Tripathi [13], is often a key step in this determination.

Proposition 1. ([2], [8], [13])
Let A be any set of positive integers with gcd(A) = 1. For any a 2 A,

(i) g(A) =
⇣
max
C

mC

⌘
� a.

(ii) n(A) =
1
a

X
C

mC �
1
2
(a� 1).

(iii) s(A) =
1
2a

X
C

mC
2 � 1

2

X
C

mC +
1
12

(a2 � 1).

In each case, the maximum and the sums are taken over all nonzero classes C
modulo a.

The following reduction formulae for g(A), due to Johnson [5] for the three
variable case and to Brauer and Shockley [2] for the general case, and for n(A) due
to Rødseth [6], are useful in cases when all but one member of A share a common
divisor greater than 1.

Proposition 2. ([2], [6])
Let A be any set of positive integers with gcd(A) = 1. If a 2 A is such that
gcd(A \ {a}) = d, and A0 = 1

d

�
A \ {a}

�
, then

(i) g
�
A
�

= d · g
�
A0 [ {a}

�
+ a(d� 1).
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(ii) n
�
A
�

= d · n
�
A0 [ {a}

�
+

1
2
(a� 1)(d� 1).

The set S?(A) consists of positive integers n in �c(A) such that translating the
set of positive integers in �(A) by n results in a subset of �(A). Since g(A) =
maxS?(A), determining S?(A) ensures that g(A) is also determined. The following
result is due to Tripathi [12].

Proposition 3. ([12])
Let A be any set of positive integers with gcd(A) = 1. Let a 2 A, and let mx denote
the least integer in �(A) congruent to x modulo a, 1  x  a� 1. Then

S?(A) =
�
mx � a : mx + my � mx+y + a for 1  y  a� 1

 
.

For the case where |A| = 3, Rosales and Garćıa-Sánchez [7] provide analogues
of the results in Proposition 1 for the functions g(A) and n(A) and of the result in
Proposition 3 for the set S?(A). Tripathi and Vijay [14] have also provided results
similiar to these, but only for the function g(A) and for the set S?(A).

Proposition 4. ([7])
Let A = {a, b, c} be a set of positive integers, with gcd(a, b, c) = 1. Define c1, c2, c3

by

c1 := min
�
x 2 N : xa 2 �({b, c})

 
,

c2 := min
�
x 2 N : xb 2 �({a, c})

 
,

c3 := min
�
x 2 N : xc 2 �({a, b})

 
.

Then there exist nonnegative integers r12, r13, r21, r23, r31, r32 such that

c1a = r12b + r13c, c2b = r21a + r23c, c3c = r31a + r32b.

Then

(i) g(A) = max
�
(c3 � 1)c + (r12 � 1)b� a, (c2 � 1)b + (r13 � 1)c� a

 
.

(ii) n(A) =
1
2
�
(c1 � 1)a + (c2 � 1)b + (c3 � 1)c� c1c2c3 + 1

�
.

(iii) S?(A) =
�
(c3 � 1)c + (r12 � 1)b� a, (c2 � 1)b + (r13 � 1)c� a

 
.

3. Main Results

Let A be any set of positive integers that are relatively prime. Unless otherwise
specified, we use Proposition 1 to compute g(A). We consider the congruence classes
modulo minA, and denote the least integer in �(A) congruent to i modulo minA
by mi. It is trivial that �c(A) = ; if 1 2 A, and consequently that g(A) = �1 in
this case.
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Proposition 5. Let a, b be positive integers, with gcd(a, b) = 1.

(a) Every c 2 Z is expressible in the form ax + by with 0  y  a� 1 and x 2 Z.

(b) Every c 2 N0 = N [ {0} is expressible in the form ax + by with 0  y  a� 1
and x � � by

a .

(c) Every c 2 �({a, b}) is expressible in the form ax + by with 0  y  a� 1 and
x � 0.

(d) Every c 2 �c({a, b}) = N \ �({a, b}) is expressible in the form ax + by with
1  y  a� 1 and � by

a < x < 0.

Each expression is unique.

Proof. (a) Every integer is expressible in the form ax + by with x, y 2 Z since
gcd(a, b) = 1. Moreover if c = ax0 + by0, then all solution to ax + by = c are
given by x = x0 + bt, y = y0 � at with t 2 Z. Therefore there is a unique
representation of c by the form ax + by with 0  y  a� 1.

(b) By part (a), there is a unique representation of c by the form ax + by with
0  y  a � 1. Now c 2 N0 if and only if ax + by � 0, which is the same as
x � � by

a .

(c) By part (a), there is a unique representation of c by the form ax + by with
0  y  a � 1. If c = ax0 + by0 with x0 � 0 and 0  y0  a � 1, then
c 2 �({a, b}). Suppose x0 < 0 and c = ax + by with x � 0. Since x = x0 + bt,
t � 1, so that y = y0 � at  y0 � a < 0. Hence there is no representation of c
by the form ax + by with both x, y � 0 when x0 < 0.

(d) This follows from parts (b) and (c) since �c({a, b}) = N \ �({a, b}) = N0 \
�({a, b}).

Remark 1. We use the equivalent form of Proposition 5 (d):

�c({a, b}) =
n
by � ax : 1  y  a� 1, 1  x < by

a

o
.

Corollary 1. Let a, b be positive integers, with gcd(a, b) = 1. For 0  i  a � 1,
let mi denote the smallest integer in �({a, b}) congruent to i mod a. Then

�
mi :

0  i  a� 1
 

=
�
by : 0  y  a� 1

 
.

Proof. This immediately follows from Proposition 5 (c).

Proposition 6. Let a, b be positive integers, with gcd(a, b) = 1, and let c be any
positive integer. The following are equivalent:
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(i) c 2 �({a, b}).
(ii) �

�
{a, b, c}

�
= �

�
{a, b}

�
.

(iii) n(a, b, c) = n(a, b).
(iv) g(a, b, c) = g(a, b).

Proof. We note that �
�
{a, b, c}

�
◆ �

�
{a, b}

�
, so that g(a, b, c)  g(a, b) and n(a, b, c) 

n(a, b), for every positive integer c.
It is clear that (i) implies (ii), and that (ii) implies (iii). If c /2 �({a, b}), then

c 2 �c({a, b}) but c /2 �c({a, b, c}). Hence n(a, b)�n(a, b, c) � 1, and so (iii) implies
(i). This proves the equivalence of (i), (ii), and (iii).

It is clear that (ii) implies (iv). If c /2 �({a, b}), then c = by � ax for some
y 2 [1, a � 1] and x � 1 by Remark 1. But then g(a, b) = b(a � 1) � a = a(x �
1) + b(a� 1� y) + c 2 �({a, b, c}). Thus g(a, b, c) < g(a, b), so that (iv) implies (i),
which is equivalent to (ii).

Let a, b be positive integers, with gcd(a, b) = 1, and let c /2 �({a, b}), c > 0. For
each residue class C modulo a, let mC denote the least integer in �({a, b})\C and
let m?

C denote the least integer in �({a, b, c}) \C.

Theorem 1. Let a, b be positive integers, with gcd(a, b) = 1. Let c = bs� ar with
1  r 

⌃ b(a�1)
2a

⌥
and a�1

2 < s  a� 1. Then

m?
bi = bi� ar ·

�
i

s

⌫
for 1  i  a� 1.

Proof. Suppose c = bs � ar with 1  r 
⌃ b(a�1)

2a

⌥
and a�1

2 < s  a � 1. Observe
that m?

bs = c = bs � ar, that bi 2 �({a, b}) ⇢ �({a, b, c}) for i < s, and that
bi� ar = b(i� s) + c 2 �({a, b, c}) for i > s. Therefore it su�ces to prove that

bi� a /2 �({a, b, c}) for i < s, bi� a(r + 1) /2 �({a, b, c}) for i > s. (1)

Suppose i < s. If bi� a 2 �({a, b, c}), then bi� a� �c = b(i� �s) + a(�r� 1) 2
�({a, b}) for some � � 1. Note that � = 0 would imply bi � a 2 �({a, b}), and
this is impossible since mbi = bi for each i. Thus there exists µ � 1 such that
i� �s + µa � 0 and �r � 1� µb � 0, or that

�r � 1 + µb, �s  i + µa (2)

for some positive integers � and µ. Thus s(1 + µb)  r(i + µa), so that

µc  ri� s, (3)

and
µa

s
<

µb

r
<

1 + µb

r
 �  i + µa

s
< 1 +

µa

s
. (4)
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From eqn. (4), it follows that � does not exist if s | µa. Henceforth suppose
s - µa. From eqn. (4), � = dµa

s e, and since µa
s < 2µ, we have �  2µ.

Observe that r  d b(a�1)
2a e = d b

2 �
b
2ae 

b
2 . From eqn. (4), � > µb

r � 2µ.
Therefore � = 2µ when s - µa. From eqn. (3) and eqn. (4),

r � (µb + 1)s
µa + i

>
µb + 1
� + 1

>
µb

�
=

b

2
,

which contradicts the assumption on r that leads to r  b
2 .

This completes the proof of the claim in eqn. (1) for the case i < s.
Suppose i > s. If bi�a(r +1) 2 �({a, b, c}), then bi�a(r +1)��c = b(i��s)+

a
�
(� � 1)r � 1

�
2 �({a, b}) for some � � 1. Again, note that � = 0 would imply

bi�a(r+1) 2 �({a, b}), and this is impossible since mbi = bi for each i. Thus there
exists µ � 1 such that i� �s + µa � 0 and (�� 1)r � 1� µb � 0, or that

(�� 1)r � 1 + µb, �s  i + µa (5)

for some positive integers � and µ. Thus s(r + 1 + µb)  r(i + µa), so that

µc  r(i� s)� s, (6)

and
1 +

µa

s
< 1 +

µb

r
< 1 +

1 + µb

r
 �  i + µa

s
< 2 +

µa

s
. (7)

From eqn. (7), it follows that � does not exist if s | µa. Henceforth suppose
s - µa. From eqn. (7), � = 1 + dµa

s e, and since µa
s < 2µ, we have �  1 + 2µ.

Observe that r  d b(a�1)
2a e = d b

2 �
b
2ae 

b
2 . From eqn. (7), � > 1 + µb

r � 1 + 2µ.
Therefore � = 1 + 2µ when s - µa.
From eqn. (6) and eqn. (7),

r � (µb + 1)s
µa + i� s

>
µb + 1

�
=

µb + 1
2µ + 1

>
µb

2µ
=

b

2
,

which contradicts the assumption on r that leads to r  b
2 .

This completes the proof of the claim in eqn. (1) for the case i > s, and the proof
of the Theorem.

Theorem 2. Let a, b be positive integers, with gcd(a, b) = 1. Let c = bs� ar with
1  r 

⌃ b(a�1)
2a

⌥
and a�1

2 < s  a� 1. Then

(i) g(a, b, c) = g(a, b)�min {ar, b(a� s)} = max {b(a� 1)� ar, b(s� 1)}� a.

(ii) n(a, b, c) = n(a, b)� r(a� s) =
1
2
(a� 1)(b� 1)� r(a� s).
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(iii) s(a, b, c) = s(a, b)� 1
2
r(a� s)

�
c + g(a, b)

�

=
1
12

(a� 1)(b� 1)(2ab� a� b� 1)� 1
2
r(a� s)

�
c + ab� a� b

�
.

(iv) S?({a, b, c}) = {b(a� 1)� a(r + 1), b(s� 1)� a} .

Proof. Suppose c = bs � ar with 1  r 
⌃ b(a�1)

2a

⌥
and a�1

2 < s  a � 1. By
Theorem 1,

�({a, b, c}) \ �({a, b}) =
[

sia�1

{bi� at : 1  t  r} . (8)

From Proposition 1 and Theorem 1, we have

g(a, b, c) = max
1ia�1

m?
bi � a

= max
1ia�1

✓
bi� ar ·

�
i

s

⌫◆
� a

= max
�
b(a� 1)� ar, b(s� 1)

 
� a.

This gives the result in part (i).
We determine each of the functions n(a, b, c), s(a, b, c) from eqn. (8).
The result in part (ii) is a direct consequence of

���({a, b, c})\�({a, b})
�� = r(a�s),

and the result in part (iii) is a direct consequence of

a�1X
i=s

rX
t=1

(bi� at) =
a�1X
i=s

✓
bri� 1

2
ar(r + 1)

◆

=
1
2
br(a� s)(a + s� 1)� 1

2
ar(r + 1)(a� s)

=
1
2
r(a� s)

⇣
b(a + s� 1)� a(r + 1)

⌘

=
1
2
r(a� s)(ab� a� b + c).

To prove the result in part (iv), we show that

m?
bj > m?

b(j+i) �m?
bi for all i 2 {1, . . . , a� 1}, (9)

when j 2 {s� 1, a� 1}, and

m?
bj = m?

b(j+1) �m?
b (10)

when j /2 {s� 1, a� 1}.
Suppose j /2 {s� 1, a� 1}. By Theorem 1,

m?
bj+m?

b =
✓

bj � ar ·
�

j

s

⌫◆
+b = b(j+1)�ar·

�
j

s

⌫
= b(j+1)�ar·

�
j + 1

s

⌫
= m?

b(j+1).
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Therefore eqn. (10) holds.
Suppose j = s � 1. To show that eqn. (9) holds, we consider three cases for i:

(I) i 2 [1, a� s]; (II) i 2 (a� s, s� 1]; (III) i = s; (IV) i 2 (s, a� 1].
For i 2 [1, a� s],

m?
b(s�1) + m?

bi = b(s� 1) + bi > b(i + s� 1)� ar = m?
b(i+s�1).

For i 2 (a� s, s� 1],

m?
b(s�1) + m?

bi = b(s� 1) + bi > b(i + s� 1� a) = m?
b(i+s�1).

For i = s,

m?
b(s�1) + m?

bs = b(s� 1) + (bs� ar) > b(2s� 1� a)� ar = m?
b(2s�1).

For i 2 (s, a� 1],

m?
b(s�1) + m?

bi = b(s� 1) + (bi� ar) > b(i + s� 1� a) = m?
b(i+s�1).

Suppose j = a � 1. To show that eqn. (9) holds, we consider three cases for i:
(V) i 2 [1, s); (VI) i = s; (VII) i 2 (s, a� 1].
For i 2 [1, s),

m?
b(a�1) + m?

bi =
�
b(a� 1)� ar

�
+ bi > b(i� 1) = m?

b(i�1).

For i = s,

m?
b(a�1) + m?

bs =
�
b(a� 1)� ar

�
+ (bs� ar) > b(s� 1) = m?

b(s�1).

For i 2 (s, a� 1],

m?
b(a�1) + m?

bi =
�
b(a� 1)� ar

�
+ (bi� ar) > b(i� 1)� ar = m?

b(i�1).

This completes the proof of part (iv).

Theorem 3. Let a, b be positive integers, with a < b and gcd(a, b) = 1. If c =
bs� ar /2 �({a, b}), then

g(a, b)� g(a, b, c) � min
�
ar, b(a� s)

 
, n(a, b)� n(a, b, c) � r(a� s), (11)

with equality in each case if and only if 1  r 
⌃ b(a�1)

2a

⌥
and s > a�1

2 .

Proof. Suppose c = bs � ar with 1  s  a � 1, 1  r < bs
a . Then c /2 �({a, b}),

and so n(a, b)� n(a, b, c) > 0 by Proposition 6. We note that equality in eqn. (11)
holds if 1  r 

⌃ b(a�1)
2a

⌥
and s > a�1

2 by Theorem 1, parts (ii) and (iii).
Therefore, we must show (I) that the inequalities in eqn. (11) always hold, and

(II) that there is no equality if either
⌃ b(a�1)

2a

⌥
< r < bs

a or 1  s  a�1
2 .
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Since m?
bs = c,

�
�({a, b, c}) \ �({a, b})

� T
(bs) = {bs� a, bs� 2a, . . . , bs� ar}.

For each i > s, bi�ar = b(i�s)+c 2 �({a, b, c}). Therefore bi�aj 2 �({a, b, c})
for j 2 {1, . . . , r�1}, so that

�
�({a, b, c})\�({a, b})

� T
(bi) ◆ {bi�a, bi�2a, . . . , bi�

ar}.
Hence each of the a� s congruence classes (bs), (b(s + 1)), . . . , (b(a� 1)) modulo

a contributes at least r to the di↵erence n(a, b)�n(a, b, c), and we have the required
lower bound given by eqn. (11) for n(a, b)� n(a, b, c).

As shown before, mbi� ar = bi� ar = b(i� s)+ c 2 �({a, b, c}) for i > s. Hence
m?

bi  bi� ar when i > s. Therefore

g(a, b, c) = max
1ia�1

m?
bi � a

 max
⇢

max
1is�1

bi, max
sia�1

(bi� ar)
�
� a

 max
�
b(s� 1), b(a� 1)� ar

 
� a.

This proves the inequality in eqn. (11) for g(a, b) � g(a, b, c), and completes the
proof of our assertion in (I).

To prove the assertion in (II), we shall first show that

bi� a(r + 1) 2 �({a, b, c}) for at least one i > s (12)

whenever either
⌃ b(a�1)

2a

⌥
< r < bs

a or 1  s  a�1
2 .

Suppose r >
⌃ b(a�1)

2a

⌥
. Define  by c ⌘ �a(r + 1) (mod b), 0    b � 1,

and set i =
�
c + a(r + 1)

�
/b. Then bi � a(r + 1) = c 2 �({a, b, c}). Note that

 = 0 implies a | i, which is impossible. Hence  � 1. Now bi = a(r + 1) + c �
a(r +1)+ c = bs+a > bs, so that i > s. Hence i satisfies both conditions i > s and
bi� a(r + 1) = c 2 �({a, b, c}), as desired.

Suppose s  a�1
2 . For i = 2s, we have bi�a(r +1) = a(r� 1)+2c 2 �({a, b, c}).

Note that any choice of i > 2s may be invalid since i  a� 1.
Hence eqn. (12) holds.
Since mbi �m?

bi � a(r + 1) for some i0 > s and mbi �m?
bi � ar for all i � s,

i 6= i0, we have

n(a, b)� n(a, b, c) =
1
a

a�1X
i=1

�
mbi �m?

bi

�

� 1
a

a�1X
i=s

�
mbi �m?

bi

�

> r(a� s).

Let i � i0. Then bi� a(r + 1) = b(i� i0) +
�
bi0 � a(r + 1)

�
2 �({a, b, c}). Hence

m?
bi  bi� a(r + 1), so that mbi �m?

bi = b(a� 1)�m?
bi � b(a� 1� i) + a(r + 1) �

a(r + 1) > min
�
ar, b(a� s)

 
.



INTEGERS: 18B (2018) 11

Thus there is no equality in eqn. (11) if either
⌃ b(a�1)

2a

⌥
< r < bs

a or 1  s  a�1
2 ,

completing the proof of our assertion in (II).

Corollary 2. Let a, b be positive integers, with a < b and gcd(a, b) = 1. If c /2
�({a, b}), then

(i)
g(a, b)� g(a, b, c) � a,

with equality if and only if c = bs� a with a�1
2 < s  a� 1.

(ii)
n(a, b)� n(a, b, c) � 1,

with equality if and only if c = b(a� 1)� a = g(a, b).

4. Concluding Remarks

For the cases covered by Theorem 2, Proposition 4 may also be used to determine
the functions g(A) and n(A), and also the set S?(A). This requires determining the
three constants c1, c2, c3, and then the six constants r12, r13, r21, r23, r31, r32. We
list this in the following result, without proof.

Proposition 7. Let a, b be positive integers, with gcd(a, b) = 1. Let c = bs � ar
with 1  r 

⌃ b(a�1)
2a

⌥
and a

2 < s  a� 1. Then

c1 = b� r, r12 = a� s, r13 = 1,
c2 = s, r21 = r, r23 = 1,
c3 = 2, r31 = b� 2r, r32 = 2s� a.

The omission of the case s = a
2 from the assumption in Theorem 2 provides no

serious setback, since this case is only possible when a is even and then c = bs� ar
implies that a

2 is a common divisor of a and c. Proposition 2 assures that the
condition gcd(a, c) = 1 is without loss of generality when |A| = 3 when computing
the functions g(A) and n(A). The results of Theorem 2, except for the formula for
S(A), now follow from Proposition 4 and Proposition 7.

Theorem 1 provides a simple result for the change mbi � m?
bi for each i 2

{1, . . . , a� 1} in the case c = bs� ar with 1  r 
⌃ b(a�1)

2a

⌥
and a�1

2 < s  a� 1.
This enables us to determine explicitly g(a, b, c), n(a, b, c), s(a, b, c), and S?({a, b, c})
for c in these cases.

Observe that if s  a�1
2 , then r < bs

a  b(a�1)
2a . Therefore the cases that remain

are:

(i) 1  r 
⌃ b(a�1)

2a

⌥
, 1  s  a�1

2 ;
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(ii)
⌃ b(a�1)

2a

⌥
< r < bs

a , a�1
2 < s  a� 1.

Obtaining results for the change mbi�m?
bi for each i 2 {1, . . . , a� 1} for these two

cases appear to be considerably more di�cult.

Acknowledgement. The authors gratefully acknowledge the contributions of the
anonymous referee for suggesting work on the Frobenius Problem related to Nu-
merical Semigroups, and in particular for the reference [7]. They are also grateful
for providing the result in Proposition 7.
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