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Abstract
We introduce a class of fixed points of primitive morphisms among aperiodic binary
generalized pseudostandard words. We conjecture that this class contains all fixed
points of primitive morphisms among aperiodic binary generalized pseudostandard
words that are not standard Sturmian words.

1. Introduction

This note is devoted to binary infinite words generated by a construction called gen-
eralized pseudopalindromic closure, known as generalized pseudostandard words.
Concerning this topic, the following facts are known so far. In [3], the general-
ized pseudostandard words were defined and it was proved there that the famous
Thue–Morse word is an example of such words. The authors of [6] characterized
generalized pseudostandard words in the class of generalized Thue–Morse words.
A necessary and su�cient condition on the periodicity of binary and ternary gen-
eralized pseudostandard words was provided in [1]. The authors of [2] focused on
binary generalized pseudostandard words and obtained several interesting results:
an algorithm for a so-called normalization, an e↵ective algorithm for generation of
such words, and a dedescription3 of generalized pseudostandard words among Rote
words. In [5], a new estimate on complexity of binary generalized pseudostandard
words was provided.

In this paper, we introduce a new class of aperiodic binary generalized pseudo-
standard words being fixed points of primitive morphisms. Moreover, we conjec-
ture that this is the only class among aperiodic binary generalized pseudostandard
words, except standard Sturmian words, that consist of fixed points of primitive
morphisms.
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2. Preliminaries

Throughout the paper, N denotes natural numbers, i.e., N = {1, 2, 3, . . .}, while
N0 = {0} [ N. We restrict ourselves to the binary alphabet {0, 1}; we call 0 and
1 letters. A (finite) word w over {0, 1} is any finite binary sequence. Its length
|w| is the number of letters w contains. The empty word – the neutral element
for concatenation of words – is denoted by ", and its length is set |"| = 0. The
set of all finite binary words is denoted by {0, 1}⇤. If a finite word w = pvs, where
p, v, s 2 {0, 1}⇤, then p is called a prefix of w and s is called a su�x of w. An infinite
word u over {0, 1} is any binary infinite sequence. The set of all infinite words is
denoted {0, 1}N. A finite word w is a factor of the infinite word u = u0u1u2 . . . with
ui 2 {0, 1} if there exists an index i � 0 such that w = uiui+1 . . . ui+|w|�1. Such an
index is called an occurrence of w in u.

An infinite word u is called recurrent if each of its factors occurs infinitely many
times in u. It is said to be uniformly recurrent if for every n 2 N, there exists
a length r(n) such that every factor of length r(n) of u contains all factors of
length n of u. We say that an infinite word u is eventually periodic if there exists
v, w 2 {0, 1}⇤ such that u = wv!, where ! denotes an infinite repetition. If w = ",
we call u (purely) periodic. If u is not eventually periodic, u is said to be aperiodic.
It is not di�cult to see that if an infinite word is recurrent and eventually periodic,
then it is necessarily purely periodic.

A morphism is a map ' : {0, 1}⇤ ! {0, 1}⇤ such that for every v, w 2 {0, 1}⇤, we
have '(vw) = '(v)'(w). It is clear that in order to define a morphism, it su�ces
to provide letter images. Application of a morphism ' may be naturally extended
to an infinite word u = u0u1u2 . . . 2 {0, 1}N as '(u) = '(u0)'(u1)'(u2) . . . If
u = '(u) for some infinite or finite word u, we call u a fixed point of '. Let us
make a trivial observation: any periodic infinite word u = v! is a fixed point of a
morphism (for instance, it su�ces to set every letter image equal to v).

A morphism ' is said to be primitive if there exists n 2 N such that both
'n(0) and 'n(1) contain both letters 0 and 1. It is obvious that if an infinite word
u 2 {0, 1}N satisfies '(u) = u for some primitive morphism ', then there exists
a letter a 2 {0, 1} such that '(a) starts in a and |'(a)| � 2. We say that ' is
prolongable on a. The fixed point u starting in a has evidently 'n(a) as its prefix
for all n 2 N. We sometimes write u = limn!1 'n(a). It is known that fixed points
of primitive morphisms are uniformly recurrent.

An involutory antimorphism is a map # : {0, 1}⇤ ! {0, 1}⇤ such that for every
v, w 2 {0, 1}⇤, we have #(vw) = #(w)#(v) and moreover #2 equals identity. There
are only two involutory antimorphisms over the alphabet {0, 1}: the reversal (mir-
ror) map R satisfying R(0) = 0, R(1) = 1, and the exchange antimorphism E given
by E(0) = 1, E(1) = 0. We use the notation 0 = 1 and 1 = 0, E = R and R = E.
A finite word w is a palindrome (an R-palindrome) if w = R(w), and w is an E-
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palindrome (pseudopalindrome) if w = E(w). The palindromic closure wR of a word
w is the shortest palindrome having w as prefix. Similarly, the pseudopalindromic
closure wE of w is the shortest E-palindrome having w as prefix.

2.1. Generalized Pseudostandard Words

Let us underline that we again restrict ourselves only to the binary alphabet {0, 1}.

Definition 1. Let � = �1�2 . . . 2 {0, 1}N and ⇥ = #1#2 . . . 2 {E,R}N. The
infinite word u(�,⇥) generated by the generalized pseudopalindromic closure (or
generalized pseudostandard word) is the word whose prefixes wn are obtained from
the recurrence relation

wn+1 = (wn�n+1)#n+1 , w0 = ".

The sequence ⇤ = (�,⇥) is called the directive bi-sequence of the word u(�,⇥).
If ⇥ = R!, the word u(�,⇥) is called R-standard. If it is moreover aperiodic, it

is called standard Sturmian. If ⇥ = E!, the word u(�,⇥) is called E-standard or
pseudostandard.

It is readily seen that generalized pseudostandard words are uniformly recurrent.
The sequence (wk)k�0 of prefixes of a generalized pseudostandard word u(�,⇥)

does not have to contain all E-palindromic and R-palindromic prefixes of u(�,⇥).
Blondin Massé et al. [2] introduced the notion of normalization of the directive
bi-sequence.

Definition 2. A directive bi-sequence ⇤ = (�,⇥) of a generalized pseudostandard
word u(�,⇥) is called normalized if the sequence of prefixes (wk)k�0 of u(�,⇥)
contains all E-palindromic and R-palindromic prefixes of u(�,⇥).

The authors of [2] proved that every directive bi-sequence ⇤ can be normalized,
i.e., transformed to such a form e⇤ that the new sequence (fwk)k�0 already contains
every E-palindromic and R-palindromic prefix, and e⇤ generates the same general-
ized pseudostandard word as ⇤.

Theorem 1. Let ⇤ = (�,⇥) be a directive bi-sequence. Then there exists a normal-
ized directive bi-sequence e⇤ = (e�, e⇥) such that u(�,⇥) = u(e�, e⇥). Moreover, in
order to normalize the sequence ⇤, it su�ces to first execute the following changes
of its prefix (if it is of the corresponding form):

• (aā, RR) ! (aāa,RER),

• (ai, Ri�1E) ! (aiā, RiE) for i � 1,

• (aiāā, RiEE) ! (aiāāa,RiERE) for i � 1,
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and secondly to replace step by step from left to right every factor of the form:

• (abb̄,###) ! (abb̄b,####),

where a, b 2 {0, 1} and # 2 {E,R}.

A necessary and su�cient condition for periodicity of binary generalized pseu-
dostandard words was found in [1].

Theorem 2. Let � = �1�2 . . . 2 {0, 1}N and ⇥ = #1#2 . . . 2 {E,R}N. A binary
generalized pseudostandard word u(�,⇥) is periodic if and only if the directive bi-
sequence (�,⇥) satisfies the following condition:

(9a 2 {0, 1})(9# 2 {E,R})(9n0 2 N)(8n > n0, n 2 N)(�n+1 = a , #n = #).

3. Fixed Points of Morphisms Among Generalized Pseudostandard
Words

The aim of this section is to introduce a new class of aperiodic binary generalized
pseudostandard words being fixed points of morphisms. The only known aperiodic
binary examples are so far:

1. The Thue–Morse word, which is the fixed point of the morphism 0 7! 01, 1 7!
10 (or 0 7! 0110, 1 7! 1001), and also the pseudostandard word with the
directive bi-sequence (�,⇥) = (01!, R(ER)!), as described in [3].

2. R-standard words were studied in [4]. An R-standard word u(�, R!) is peri-
odic if and only if the sequence � is eventually constant, i.e., � = va!, where
v 2 {0, 1}⇤ and a 2 {0, 1}. An aperiodic R-standard (standard Sturmian)
word u(�, R!) is a fixed point of a morphism if and only if the sequence � is
periodic.

3.1. A New Class of Fixed Points of Morphisms Among Aperiodic Binary
Generalized Pseudostandard Words

We will now study morphisms 'k, for k 2 N, of the following form:

'k : 0 7! 0(110)k,
1 7! 1(001)k.

(1)

Such a morphism 'k has two fixed points, limn!1 'n
k (0) and limn!1 'n

k (1). We
will prove that the first fixed point is a generalized pseudostandard word, whose
directive bi-sequence equals (�,⇥) = (01!, R(ERk)!), and the second fixed point
has the directive bi-sequence (�,⇥) = (10!, R(ERk)!).
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First of all, given the fact that 'k(0) = 'k(1), the fixed point limn!1 'n
k (0)

equals limn!1 'n
k (1) and therefore, without loss of generality, we will study the

fixed point u = limn!1 'n
k (0) and then easily generalize the results for both cases.

Let us consider the directive bi-sequence (�,⇥) = (01!, R(ERk)!). Note that
this directive bi-sequence is normalized by Theorem 1. We remark also that for
every k 2 N, the corresponding word u = u(�,⇥) is aperiodic by Theorem 2. We
will show in two steps a relation between the prefixes wk obtained by the generalized
pseudopalindromic closure and the morphism 'k.

First, we will show a recursive relation concerning the prefixes wk of the word u.
Let K denote the length of the shortest period of ⇥, i.e., K = |RERk�1| = k + 1.
We will show that the construction of these prefixes may be expressed depending
on K.

Lemma 1. Let (�,⇥) = (01!, R(ERk)!) be the directive bi-sequence of the word u.
Let wi, i 2 N, be its prefixes obtained by the generalized pseudopalindromic closure
and K = k + 1 the length of the shortest period of ⇥. Then for all l 2 N0 the
following holds:

wl·K+2 = wl·K+1 E(wl·K+1) = wlK+1wlK+1 (E-palindrome)
wl·K+3 = wl·K+2 R(wl·K+2) = wlK+2wlK+2 (R-palindrome)
wl·K+4 = wl·K+3 w�1

l·K+1 wl·K+3 (R-palindrome)
wl·K+5 = wl·K+4 w�1

l·K+3 wl·K+4 (R-palindrome)
...

...
...

wl·K+K = wl·K+(K�1) w�1
l·K+(K�2) wl·K+(K�1) (R-palindrome)

w(l+1)·K+1 = w(l+1)·K w�1
l·K+(K�1) w(l+1)·K (R-palindrome)

Remark 1. The reason we start from l · K + 2 is that w1 is the only prefix for
which the lemma does not hold. Naturally, if K = k + 1 = 2, 3 or 4, only the first
2, 3 or 4 lines hold and then another cycle is started with l = l + 1.

Proof. Let � = �1�2 . . . and ⇥ = #1#2 . . . We will prove the lemma directly using
the construction of pseudostandard words. In each case, we will construct wi+1 =
(wi�i+1)#i+1 after finding the longest #i+1-palindromic su�x of wi�i+1. We will
split the proof into several cases:

1. Case of wl·K+2. If we show that the longest E-palindromic su�x of wl·K+11
is 01, then it is clear that wl·K+2 = wl·K+1 E(wl·K+1) = wlK+1wlK+1. The
last equality holds, because using the form of ⇥ = R(ERk)!, one can see that
wl·K+1 is an R-palindrome, and applying E on an R-palindrome is equivalent
to the exchange of zeros and ones.
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The longest E-palindromic su�x is at least 01 because wl·K+1 is an R-
palindrome and thus ends with a 0. It cannot be longer than 01 because
that would mean there exists an E-palindromic prefix of wl·K+1 followed by
a 0 (the prefix wl·K+1 is an R-palindrome and the reverse image of its E-
palindromic su�x preceded by a 0 is an E-palindromic prefix followed by a
0), and this is not possible since every E-palindromic prefix is followed by 1
due to the fact that � is normalized and � = 01!.

2. Case of wl·K+3. Similarly to the case above, if we can show that the longest
R-palindromic su�x of wl·K+21 is 11, it directly follows that wl·K+3

= wl·K+2 R(wl·K+2) = wlK+2wlK+2. The last equality holds because again,
applying the antimorphism R on an E-palindrome is equivalent to the ex-
change of zeros and ones.

The factor 11 is an R-palindromic su�x of wl·K+21 because wl·K+2 ends
with a 1 since it is an E-palindrome that begins with 0. Moreover, every R-
palindromic su�x of wl·K+2 is preceded by a 0 because they are E-images of
R-palindromic prefixes of wl·K+2, and all non-empty R-palindromic prefixes
are followed by 1 because of the form of the directive bi-sequence. Hence,
we cannot find a longer R-palindromic su�x of wl·K+2 preceded by 1, and
therefore 11 is the longest palindromic su�x of wl·K+21.

3. Case of wl·K+4. In this situation, we want to prove that 1wl·K+11 is the
longest R-palindromic su�x of wl·K+31. Then we will have wl·K+4

= wl·K+3 w�1
l·K+1 wl·K+3. Now, let us find the longest R-palindromic suf-

fix of wl·K+3 preceded by a 1. Because of the normalization of �, we know
the only pseudopalindromic su�xes are images of the prefixes wi. It cannot
be wl·K+3 since it is too long. It cannot be also R(wl·K+2) since it is an
E-palindrome. The longest possibility is now R(wl·K+1) = wl·K+1, and it is
the correct one because it is preceded by 1 since wl·K+3 is an R-palindrome
and the prefix wl·K+1 is followed by 1 according to the form of the directive
bi-sequence.

4. Cases of wl·K+5 to w(l+1)·K+1. In these last cases, we will proceed anal-
ogously to the previous case. We want to find the longest R-palindromic
su�x of wl·K+(i�1)1, i 2 {5, . . . ,K + 1}. It can be easily seen that it is
1wl·K+(i�2)1 because of the normalization of �. It cannot be 1wl·K+(i�1)1
(it is too long). The next longest R-palindromic su�x of wl·K+(i�1) pre-
ceded by a 1 is wl·K+(i�2), and therefore 1wl·K+(i�2)1 is the longest R-
palindromic su�x of wl·K+(i�1)1. As in the previous case, it follows that
wl·K+i = wl·K+(i�1) w�1

l·K+(i�2) wl·K+(i�1).

Secondly, we will prove a proposition showing a relation between the prefixes of
u = u(�,⇥) and the prefixes of the fixed point of 'k. The fact that u is a fixed
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k = 1:
⇥ = R(ER1)!

k = 2:
⇥ = R(ER2)!

k = 3:
⇥ = R(ER3)!

w1 0 0 0
w2 01 01 01
w3 0110 0110 0110
w4 01101001 0110110 0110110
w5 0110100110010110 01101101001001 0110110110

w6
0110100110010110
1001011001101001

01101101001001
10010010110110

01101101101001001001

w7

0110100110010110
1001011001101001
1001011001101001
0110100110010110

01101101001001
10010010110110
100100110010010110110

01101101101001001001
10010010010110110110

Table 1: The first seven prefixes wi of the word u = u(01!, R(ERk)!) for k = 1
(the Thue–Morse word), 2 and 3.

point of 'k follows immediately from this proposition.

Proposition 1. Let (�,⇥) = (01!, R(ERk)!) be the directive bi-sequence of the
word u. Let wi, i 2 N, be its prefixes obtained by the generalized pseudopalindromic
closure and K = k+1 the length of the shortest period of ⇥. Let 'k be the morphism
defined in (1). Then for every l 2 N:

wl·K+r = 'k(w(l�1)·K+r) (2)

for all r 2 {1, 2, . . . ,K}.

Proof. We proceed by induction on l. First, we will prove that if the equality (2)
holds for some l � 1, it also holds for l. The proof for l = 1 will then be easier
because during the proof of the induction step, we will show that for a fixed l, if the
equality holds for r = 1, then it easily follows that (2) holds for all r 2 {2, . . . ,K}.

We rewrite the prefixes wi using Lemma 1 and we apply the fact that 'k(w) =
'k(w).

wl·K+1 = wl·K w�1
l·K�1 wl·K

= w(l�1)·K+K w�1
(l�1)·K+K�1 w(l�1)·K+K

= 'k(w(l�2)·K+K)
�
'k(w(l�2)·K+K�1)

��1
'k(w(l�2)·K+K)

= 'k(w(l�2)·K+K w�1
(l�2)·K+K�1 w(l�2)·K+K)

= 'k(w(l�1)·K+1)
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wl·K+2 = wl·K+1 wl·K+1

= 'k(w(l�1)·K+1) 'k(w(l�1)·K+1)
= 'k(w(l�1)·K+1 w(l�1)·K+1)
= 'k(w(l�1)·K+2)

wl·K+3 = wl·K+2 wl·K+2

= 'k(w(l�1)·K+2) 'k(w(l�1)·K+2)
= 'k(w(l�1)·K+2 w(l�1)·K+2)
= 'k(w(l�1)·K+3)

wl·K+4 = wl·K+3 w�1
l·K+1 wl·K+3

= 'k(w(l�1)·K+3)
�
'k(w(l�1)·K+1)

��1
'k(w(l�1)·K+3)

= 'k(w(l�1)·K+3 w�1
(l�1)·K+1 w(l�1)·K+3)

= 'k(w(l�1)·K+4)
Consider wl·K+i, i = {5, . . . ,K}. We first prove the proposition for i = 5, then 6
etc. We proceed exactly in the same way as in the cases above.

wl·K+i = wl·K+(i�1) w�1
l·K+(i�2) wl·K+(i�1)

= 'k(w(l�1)·K+(i�1) w�1
(l�1)·K+(i�2) w(l�1)·K+(i�1))

= 'k(w(l�1)·K+(i�1))
�
'k(w(l�1)·K+(i�2))

��1
'k(w(l�1)·K+(i�1))

= 'k(w(l�1)·K+i)

Now, let us focus on the case l = 1. If we prove the proposition for r = 1, we
will have that wK+1 = 'k(w1). Moreover, Lemma 1 holds for all wi, i � 2, and
therefore, all above equalities are also satisfied if we set l = 1, so the proposition
holds for r = {2, . . . ,K}.

The last case we need to prove is the statement for l = 1 and r = 1, i.e.,
'k(w1) = wK+1. By the definition of 'k, we have 'k(w1) = 0(110)k = 0(110)K�1.
We have to show that 0(110)K�1 is equal to wK+1. We have w1 = 0, w2 = 01,
w3 = (w21)R = 0110 = 0(110)1, w4 = (w31)R = 0110110 = 0(110)2. Proceeding in
the same way, i.e., adding 1 to the end and making the R-palindromic closure, we
obtain wK+1 = 0(110)K�1.

By Proposition 1, we get the following corollary providing a new class of binary
generalized pseudostandard words being fixed points of morphisms.

Corollary 1. Denote u = limn!1'n
k (0) and v = limn!1'n

k (1), where 'k is
defined in (1). Then u = u(01!, R(ERk)!) and v = v(10!, R(ERk)!).

4. Open Problems

According to our computer experiments, it seems that the morphisms defined in (1)
are the only primitive morphisms whose fixed points are aperiodic binary generalized
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pseudostandard words that are not standard Sturmian words. Let us thus state the
following conjecture.

Conjecture 1. Let u be an aperiodic binary generalized pseudostandard word, not
standard Sturmian, being a fixed point of a primitive morphism. Then u = 'k(u)
for some k 2 N, where 'k is the morphism defined in (1).

In this note, we focused only on binary words. Generalized pseudostandard
words are defined over any alphabet {0, 1, . . . ,m � 1} for m > 1, m 2 N [3]. To
our knowledge, the only fact known about fixed points of primitive morphisms in
a multiliteral case is a result from [6]. In order to describe the result, we have to
state a definition at first.

The generalized Thue–Morse words are defined for m, b 2 N, m > 1, b > 1 as
follows:

tb,m =
�
sb(n) mod m

�1
n=0

where sb(n) denotes the digit sum of the expansion of number n in the base b.
Such words are fixed points of morphisms. A generalized Thue–Morse word tb,m is
a generalized pseudostandard word if and only if b  m or b�1 = 0 (mod m). Note
that the Thue–Morse word is a special case of tb,m for b = m = 2. For the form of
morphisms whose fixed points are the generalized Thue–Morse words and for the
form od their directive bi-sequence (�,⇥) and other properties, see [6]. Hence, it is
an open problem to detect fixed points of primitive morphisms over larger alphabets
in the class of aperiodic generalized pseudostandard words.
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