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Abstract
A 1989 result of Y. H. H. Kwong established periodicity of the sequence of values of
the restricted partition function p(n,m) modulo any natural number where p(n,m)
enumerates partitions of n into at most m parts. In this paper we re-visit this
result and establish several new and general theorems on infinite families of partition
congruences.

1. Introduction

A partition of an integer n is a finite sequence of non-increasing natural numbers
�1,�2, ...,�k such that �1 + �2 + ... + �k = n. Each �i is called a part of the
partition. The general partition function is denoted by p(n). In 1919, Ramanujan
[12] observed and proved several congruence properties for the general partition
function. The most most basic of these are

p(5n + 4) ⌘ 0 (mod 5), p(7n + 5) ⌘ 0 (mod 7)

and p(11n + 6) ⌘ 0 (mod 11).
In 2000 Ono [11] proved that for any prime ` � 5, there exist infinitely many

partition congruences with the form p(An + B) ⌘ 0 (mod `). With the assistance
of Rhiannon Weaver [3], an undergraduate student at the time, they were able top
compute many examples of Ono’s results. Here is one example:

p(4063467631n + 30064597) ⌘ 0 (mod 31).

Ono’s partition divisibility results were extended by Ahlgren [1] to any prime power
`a later in that year. Recent work of Yifan Yang [13] continues in this vein.

The restricted partition function, p(n,m), defined as the number of partitions
of n into at most m parts, was studied by Euler as an auxiliary partition function
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in his investigation into the general partition function. It was also a focus of J. J.
Sylvester’s work on invariant theory in the 19th century [4].

For m � n, we have the relation p(n,m) = p(n). If n is negative, we define
p(n,m) = 0, and p(0,m) = 1. Kronholm [5, 6, 7] and Larsen [8] have proven
Ramanujan-style divisibility properties similar to those proved by Ono and Ahlgren
for this restricted partition function. Here are several specific examples of congru-
ences for p(n,m).

Example 1. For k � 0 one has

p(54k � 3, 3) ⌘ 0 (mod 27) (1)

p(60k � 5, 5) ⌘ p(60k � 10, 5) ⌘ 0 (mod 5). (2)
and

p(2940k � 7, 7) ⌘ 0 (mod 49). (3)

In order to state such results in their full generality in Theorem 1 we require the
following definition.

Definition 1 ([6]). For any natural number a, we denote by lcm(a) the least
common multiple of the natural numbers from 1 to a.

Theorem 1 ([7]). For ` an odd prime, k � 0, 1  j  `� 1
2

, and ↵ � 1,

p(lcm(`)`↵�1k � j`, `) ⌘ 0 (mod `↵).

We note that the congruence results of Theorem 1 are dependent on a prime
number of parts ` and confined to some power of that same prime. The main goal
of this paper is to establish results similar to Theorem 1 without any restrictions
on the number of parts or the modulus. In order to do this we will make use of
Theorem 2 and Theorem 3 which describe the periodicity of sequences of integer
partitions of the form {p(n,m) (mod j)}n�0. Indeed, such periodicity results can
be recast as divisibility patterns. However, we obtain several infinite families of
partition congruences of the form p(Ak + B,m) ⌘ 0 (mod j) that, while depen-
dent on established periodicity results, they are by no means immediate and overt.
Moreover, the results of this paper are di↵erent than those displayed in Example 1
and Theorem 1 in that there are no restrictions on the number of parts m or the
modulus j.

2. Background

It is well known that the generating function for p(n,m) is given by
1X

n=0

p(n,m)qn =
1

(1� q)(1� q2)...(1� qm)
. (4)
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Definition 2. A sequence {an}n�0 is purely periodic modulo a positive integer M
if there exists a positive integer µ such that an+µ ⌘ an (mod M) for n � 0. The
smallest such µ is called the minimum period.

Nijenhuis and Wilf [10] described the periodicity of p(n,m) modulo a prime. In
1989, Kwong [9] extended these results by proving that for fixed m, the restricted
partition function is purely periodic modulo a power of a prime.

Theorem 2 (Kwong). [9] Let `,m,N and b � 1 be integers with ` prime and b

the least integer such that `b �
P
��0

�(`�)
j

m
`�

k
where � is Euler’s totient function.

Furthermore, let L be the `-free part of lcm(m) as in Definition 1. Then {p(n,m)
(mod `N )}n�0 is purely periodic with minimum period `N+b�1L.

Kwong also proved a result that allows us to extend this to modulo any positive
integer j.

Theorem 3 (Kwong). [9] Let µ(M) be the minimum period of an infinite integer
sequence modulo any positive integer M > 1. If M = `e1

1 `e2
2 ...`es

s is the prime
factorization of M , then µ(M) = lcm(µ(`e1

1 ), µ(`e2
2 ), ..., µ(`es

s )).

Kwong’s two theorems enable us to compute the minimum period of the restricted
partition function modulo j given a fixed number of parts m. We denote this period
as µ(m, j).

Remark 1. Statements of periodicity modulo j can be readily translated into
infinite families of divisibility properties in the following way: For 0  s < µ(m, j)
and integers t and k, whenever p(s,m) ⌘ t (mod j), then, for all k � 0, one has
p(µ(m, j)k + s,m) ⌘ t (mod j).

Some of the tools we will use in establishing our results are reciprocal polynomials
and anti-reciprocal polynomials which we now define.

Definition 3. [2] A polynomial P (q) = a0 + a1q + ... + adqd is called reciprocal if
for each i, ai = ad�i; equivalently, qdP

⇣
1
q

⌘
= P (q).

Definition 4. [5] A polynomial P (q) = a0 +a1q + ...+adqd is called anti-reciprocal
if for each i, ai = �ad�i; equivalently, qdP

⇣
1
q

⌘
= �P (q).

The remainder of this paper investigates the instances of s, with 0  s < µ(m, j),
for which p(s,m) ⌘ 0 (mod j) and thereby establishing several new infinite families
of partition congruences overlooked by the periodicity results of Kwong. It is im-
portant to note that the minimum period µ(m, j) is describing “pure periodicity”
whereas lcm(m), as it is used in Theorem 1, is describing a di↵erent and shorter
sub-period.
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3. Results

3.1. Congruences in an Arithmetic Progression for a Fixed Number of
Parts

Theorem 4. Modulo j,
1X

n=0

[p(n,m)�p(n�µ(m, j),m)]qn is a polynomial of degree

µ(m, j)�
�m+1

2

�
. If m is even, it is an anti-reciprocal polynomial; if m is odd, it is

a reciprocal polynomial.

Proof. From Equation (4) we have

1X

n=0

[p(n,m)� p(n� µ(m, j),m)]qn =
1� qµ(m,j)

(1� q)(1� q2)...(1� qm)
. (5)

Theorem 2 guarantees that modulo j, (5) is a polynomial.
We will use definitions 3 and 4 to show that modulo j, the right-hand side of (5)

is either a reciproccal or antireciprocal polynomial of degree d = µ(m, j) �
�m+1

2

�
.

We begin by setting

P (q) ⌘ 1� qµ(m,j)

(1� q)(1� q2)...(1� qm)
(mod j)

for P (q) the polynomial in question of degree d = µ(m, j)�
�m+1

2

�
.

qdP

✓
1
q

◆
⌘

qµ(m,j)�(m+1
2 )

⇣
1� q�µ(m,j)

⌘

✓
1� 1

q

◆ ✓
1� 1

q2

◆
...

✓
1� 1

qm

◆ ⌘ qµ(m,j) � 1

q(
m+1

2 )
✓

q � 1
q

◆ ✓
q2 � 1

q2

◆
...

✓
qm � 1

qm

◆

⌘ qµ(m,j) � 1
(q � 1)(q2 � 1)...(qm � 1)

⌘ (�1)m+1 1� qµ(m,j)

(1� q)(1� q2)...(1� qm)
⌘ ±P (q) (mod j).

The sign on the final equivalence depends on m even or odd.

Corollary 1. For µ(m, j) �
�m+1

2

�
< s < µ(m, j) one has p(µ(m, j)k + s,m) ⌘ 0

(mod j).

Proof. Observe that

P (q) ⌘ p(0,m) + p(1,m)q + ... + p(µ(m, j)� 1,m)qµ(m,j)�1 (mod j). (4)

Since it is an (anti)reciprocal polynomial of degree µ(m, j)�
�m+1

2

�
we can rewrite

(4) as

P (q) ⌘ p(0,m)+p(1,m)q+...+p

✓
µ(m, j)�

✓
m + 1

2

◆
,m

◆
qµ(m,j)�(m+1

2 ) (mod j).
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Note that µ(m, j) �
�m+1

2

�
< µ(m, j) � 1, so each coe�cient on the terms q with

exponents between µ(m, j)�
�m+1

2

�
and µ(m, j)� 1 must be 0 (mod j). Hence, we

have

p

✓
µ(m, j)k �

✓
m + 1

2

◆
+ 1,m

◆
⌘ p

✓
µ(m, j)k �

✓
m + 1

2

◆
+ 2,m

◆
⌘ ...

... ⌘ p(µ(m, j)k � 1,m) ⌘ 0 (mod j),

which proves the corollary.

Here are some examples to illustrate Corollary 1.

Example 2. For m = 6 and j = 4, µ(m, j) = µ(6, 4) = 480 and
�m+1

2

�
=
�7
2

�
= 21;

hence,

p(480k � 20, 6) ⌘ p(480k � 19, 6) ⌘ ... ⌘ p(480k � 1, 6) ⌘ 0 (mod 4).

For m = 5 and j = 5, µ(m, j) = µ(5, 5) = 300 and
�m+1

2

�
=
�6
2

�
= 15; hence,

p(300k � 14, 5) ⌘ p(300k � 13, 5) ⌘ ... ⌘ p(300k � 1, 5) ⌘ 0 (mod 5).

For m = 8 and j = 3, µ(m, j) = µ(8, 3) = 7560 and
�m+1

2

�
=
�9
2

�
= 36; hence,

p(7560k � 35, 8) ⌘ p(7560k � 34, 8) ⌘ ... ⌘ p(7560k � 1, 8) ⌘ 0 (mod 3).

Corollary 2. For k � 0, h � 0, and 0  s < µ(m, j), if m is even one has

p(µ(m, j)k + s,m) ⌘ �p

✓
µ(m, j)h + µ(m, j)�

✓
m + 1

2

◆
� s,m

◆
(mod j)

and if m is odd one has

p(µ(m, j)k + s,m) ⌘ p

✓
µ(m, j)h + µ(m, j)�

✓
m + 1

2

◆
� s,m

◆
(mod j).

Proof. By Theorem 4, for m even, it follows that

p(s,m) ⌘ �p

✓
µ(m, j)�

✓
m + 1

2

◆
� s,m

◆
(mod j)

when 0  s  µ(m, j) �
�m+1

2

�
. Note that �p

�
µ(m, j)�

�m+1
2

�
� s,m

�
= 0 when

s > µ(m, j) �
�m+1

2

�
. By Corollary 1, for µ(m, j) �

�m+1
2

�
< s < µ(m, j) we have

that p(s,m) ⌘ 0 (mod j). Thus, for µ(m, j)�
�m+1

2

�
< s < µ(m, j),

p(s,m) ⌘ �p

✓
µ(m, j)�

✓
m + 1

2

◆
� s,m

◆
(mod j).

This proves the case for m even by Remark 1. A similar argument holds for the
case where m is odd.



INTEGERS: 18 (2018) 6

Using this corollary and taking Definition 4 into consideration, we can further
prove interesting results.

Proposition 1. If m ⌘ 0 (mod 4) and j is odd then

p

 

µ(m, j)k +
µ(m, j)�

�m+1
2

�

2
,m

!

⌘ 0 (mod j)

and if j is even then

p

 

µ(m, j)k +
µ(m, j)�

�m+1
2

�

2
,m

!

⌘ 0 (mod j/2). (5)

Proof. Note that
�
µ(m, j)�

�m+1
2

��
/2 is an integer when m ⌘ 0 (mod 4). By

Corollary 2, we can say

p

 
µ(m, j)�

�m+1
2

�

2
,m

!

⌘ �p

 

µ(m, j)�
✓

m + 1
2

◆
�

µ(m, j)�
�m+1

2

�

2
,m

!

⌘ �p

 
µ(m, j)�

�m+1
2

�

2
,m

!

(mod j)

and arrive at

2p

 
µ(m, j)�

�m+1
2

�

2
,m

!

⌘ 0 (mod j).

If j is odd then the gcd(2, j) = 1, hence

p

 
µ(m, j)�

�m+1
2

�

2
,m

!

⌘ 0 (mod j).

If j is even then the gcd(2, j) = 2, and hence

p

 
µ(m, j)�

�m+1
2

�

2
,m

!

⌘ 0 (mod j/2).

Thus the proposition follows.

Here are some examples of Proposition 3.4

Example 3. For k � 0 one has p(60k +25, 4) ⌘ 0 (mod 5), p(7560k +3762, 8) ⌘ 0
(mod 3) and p(48k + 19, 4) ⌘ 0 (mod 2).
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3.2. Congruences in an Arithmetic Progession for a Small Family of
Number of Parts

The following theorem deals with variability across the second variable, m, rather
than the first one. It is a similar to a theorem proved by Kronholm [6].

Theorem 5. For k � 0 and 2  t  m and 1  c <
�t+1

2

�

p(µ(m, j)k � c, t) ⌘ 0 (mod j).

We require the following lemma.

Lemma 1. For 1  t  m and x is a natural number, we have that µ(m, j) =
xµ(t, j).

Proof. The cases t = 1 and t = m are trivial. When t = 1 then µ(1, j) = 1 so
x = µ(m, j). When t = m then µ(t, j) = µ(m, j) so x = 1.

We consider 2  t < m. Let j = pe1
1 pe2

2 ...pes
s be the prime factorization of j as in

Theorem 3 so that for t, m and j we have

µ(t, j) = lcm{µ(t, pe1
1 ), µ(t, pe2

2 ), ..., µ(t, pes
s )} (6)

and
µ(m, j) = lcm{µ(m,pe1

1 ), µ(m,pe2
2 ), ..., µ(m,pes

s )}. (7)

From Theorem 2, we have for any natural number a,

µ(a, pei
i ) = p

ei+ba,i�1
i La,pi (8)

where ba,i is the least integer such that p
ba,i

i �
X

��0

�(p�
i )
j a

p�
i

k
and La,pi is the pi-free

part of lcm(a).
With 2  t < m and Definition 1, it is clear that lcm(t)

��lcm(m). Moreover, from
the definition of L from Theorem 3 and (8) that for every pi

��j, if pg
i is the largest

power of pi dividing lcm(m), then lcm(t) cannot have a larger power of pi dividing
it. It then follows that for every pi

��j,

Lt,pi

��Lm,pi . (9)

Furthermore, with 2  t < m and the definition of b from Theorem 3 and (8) it
is clear that bt,i  bm,i. Hence for every pi

��j,

p
bt,i

i

��pbm,i

i . (10)

Now, lines (9) and (10) together with (6) and (7) imply that µ(t, j)
��µ(m, j).

Thus, µ(m, j) = xµ(t, j) for some natural number x.
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We now prove Theorem 5.

Proof. By Lemma 1, for 2  t  m, there exists an integer x such that µ(m, j) =
xµ(t, j). Also, by Corollary 2, for 1  c <

�t+1
2

�

p(µ(t, j)k � c, t) ⌘ 0 (mod j).

By Remarks 1 we can say that p((x � 1)µ(t, j)k + µ(t, j)k � c, t) ⌘ 0 (mod j),
p(xµ(t, j)k � c, t) ⌘ 0 (mod j), and p(µ(m, j)k � c, t) ⌘ 0 (mod j).

Example 4 serves to highlight the nature of Theorem 5; that these divisibilty
results are not confinded to a fixed number of parts m. In Theorem 5 set m = 6
and j = 10 so that µ(m, j) = µ(6, 10) = 1200 and 1  c <

�6+1
2

�
. For the family of

numbers of parts t with 2  t  6 we have the following list of congruences in (11).

Example 4.
p(1200k � 1, t) ⌘ 0 (mod 10) 2  t  6
p(1200k � 2, t) ⌘ 0 (mod 10) 2  t  6
p(1200k � 3, t) ⌘ 0 (mod 10) 3  t  6
p(1200k � 4, t) ⌘ 0 (mod 10) 3  t  6
p(1200k � 5, t) ⌘ 0 (mod 10) 3  t  6
p(1200k � 6, t) ⌘ 0 (mod 10) 4  t  6
p(1200k � 7, t) ⌘ 0 (mod 10) 4  t  6
p(1200k � 8, t) ⌘ 0 (mod 10) 4  t  6
p(1200k � 9, t) ⌘ 0 (mod 10) 4  t  6
p(1200k � 10, t) ⌘ 0 (mod 10) 5  t  6
p(1200k � 11, t) ⌘ 0 (mod 10) 5  t  6
p(1200k � 12, t) ⌘ 0 (mod 10) 5  t  6
p(1200k � 13, t) ⌘ 0 (mod 10) 5  t  6
p(1200k � 14, t) ⌘ 0 (mod 10) 5  t  6
p(1200k � 15, t) ⌘ 0 (mod 10) t = 6
p(1200k � 16, t) ⌘ 0 (mod 10) t = 6
p(1200k � 17, t) ⌘ 0 (mod 10) t = 6
p(1200k � 18, t) ⌘ 0 (mod 10) t = 6
p(1200k � 19, t) ⌘ 0 (mod 10) t = 6
p(1200k � 20, t) ⌘ 0 (mod 10) t = 6.

(11)
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