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Abstract
A 1989 result of Y. H. H. Kwong established periodicity of the sequence of values of
the restricted partition function p(n, m) modulo any natural number where p(n, m)
enumerates partitions of n into at most m parts. In this paper we re-visit this
result and establish several new and general theorems on infinite families of partition
congruences.

1. Introduction

A partition of an integer n is a finite sequence of non-increasing natural numbers
A1, A2, ..., A such that A\ + Ao + ... + Ay = n. Each ); is called a part of the
partition. The general partition function is denoted by p(n). In 1919, Ramanujan
[12] observed and proved several congruence properties for the general partition
function. The most most basic of these are

p(bn+4)=0 (mod5), p(Tn+5)=0 (mod 7)

and p(1ln+6) =0 (mod 11).

In 2000 Ono [11] proved that for any prime ¢ > 5, there exist infinitely many
partition congruences with the form p(An + B) = 0 (mod ¢). With the assistance
of Rhiannon Weaver [3], an undergraduate student at the time, they were able top
compute many examples of Ono’s results. Here is one example:

p(4063467631n + 30064597) =0 (mod 31).

Ono’s partition divisibility results were extended by Ahlgren [1] to any prime power
£% later in that year. Recent work of Yifan Yang [13] continues in this vein.

The restricted partition function, p(n,m), defined as the number of partitions
of n into at most m parts, was studied by Euler as an auxiliary partition function
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in his investigation into the general partition function. It was also a focus of J. J.
Sylvester’s work on invariant theory in the 19th century [4].

For m > n, we have the relation p(n,m) = p(n). If n is negative, we define
p(n,m) = 0, and p(0,m) = 1. Kronholm [5, 6, 7] and Larsen [8] have proven
Ramanujan-style divisibility properties similar to those proved by Ono and Ahlgren
for this restricted partition function. Here are several specific examples of congru-
ences for p(n,m).

Example 1. For k£ > 0 one has

p(54k —3,3) =0 (mod 27) (1)
p(60k — 5,5) = p(60k — 10,5) =0 (mod 5). (2)

and
p(2940k — 7,7) =0 (mod 49). (3)

In order to state such results in their full generality in Theorem 1 we require the
following definition.

Definition 1 ([6]). For any natural number a, we denote by lem(a) the least
common multiple of the natural numbers from 1 to a.

—1
Theorem 1 ([7]). For ¢ an odd prime, k> 0,1 <j < ET, and o > 1,
p(lem(0) 6>k — j£,6) =0 (mod £%).

We note that the congruence results of Theorem 1 are dependent on a prime
number of parts £ and confined to some power of that same prime. The main goal
of this paper is to establish results similar to Theorem 1 without any restrictions
on the number of parts or the modulus. In order to do this we will make use of
Theorem 2 and Theorem 3 which describe the periodicity of sequences of integer
partitions of the form {p(n,m) (mod j)},>o. Indeed, such periodicity results can
be recast as divisibility patterns. However, we obtain several infinite families of
partition congruences of the form p(Ak + B,m) = 0 (mod j) that, while depen-
dent on established periodicity results, they are by no means immediate and overt.
Moreover, the results of this paper are different than those displayed in Example 1
and Theorem 1 in that there are no restrictions on the number of parts m or the
modulus j.

2. Background

It is well known that the generating function for p(n,m) is given by

S - 1
2P md = e T ®
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Definition 2. A sequence {ay }n>0 is purely periodic modulo a positive integer M
if there exists a positive integer p such that an4, = a, (mod M) for n > 0. The
smallest such p is called the minimum period.

Nijenhuis and Wilf [10] described the periodicity of p(n, m) modulo a prime. In
1989, Kwong [9] extended these results by proving that for fixed m, the restricted
partition function is purely periodic modulo a power of a prime.

Theorem 2 (Kwong). [9] Let £,m,N and b > 1 be integers with ¢ prime and b

the least integer such that £° > 3 ¢(£%) {%J where ¢ is Buler’s totient function.
6>0

Furthermore, let L be the £-free part of lem(m) as in Definition 1. Then {p(n,m)

(mod ¢M)},>0 is purely periodic with minimum period ¢N+t0=1L.

Kwong also proved a result that allows us to extend this to modulo any positive
integer 7.

Theorem 3 (Kwong). [9] Let (M) be the minimum period of an infinite integer
sequence modulo any positive integer M > 1. If M = ({'052..4% is the prime
factorization of M, then u(M) = lem(u(£5"), p(€52), ..., p(€5)).

Kwong’s two theorems enable us to compute the minimum period of the restricted
partition function modulo j given a fixed number of parts m. We denote this period

as p(m, j).

Remark 1. Statements of periodicity modulo j can be readily translated into
infinite families of divisibility properties in the following way: For 0 < s < u(m,j)
and integers ¢ and k, whenever p(s,m) =t (mod j), then, for all £ > 0, one has
p(p(m, j)k +s,m) =t (mod j).

Some of the tools we will use in establishing our results are reciprocal polynomials
and anti-reciprocal polynomials which we now define.

Definition 3. [2] A polynomial P(q) = ag + a1q + ... + aqq? is called reciprocal if
for each i, a; = aq_;; equivalently, ¢¢P (%) = P(q).

Definition 4. [5] A polynomial P(q) = ag+a1q+ ... +aqq® is called anti-reciprocal

if for each i, a; = —aq_;; equivalently, g% P ( ) = —P(q).

1
q

The remainder of this paper investigates the instances of s, with 0 < s < u(m, j),
for which p(s,m) =0 (mod j) and thereby establishing several new infinite families
of partition congruences overlooked by the periodicity results of Kwong. It is im-
portant to note that the minimum period p(m,j) is describing “pure periodicity”
whereas lem(m), as it is used in Theorem 1, is describing a different and shorter
sub-period.
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3. Results

3.1. Congruences in an Arithmetic Progression for a Fixed Number of

Parts
Theorem 4. Modulo 7, Z[p(n, m)—p(n—p(m,7),m)|q" is a polynomial of degree
n=0
w(m, j) — (mg'l) If m is even, it is an anti-reciprocal polynomial; if m is odd, it is

a reciprocal polynomial.
Proof. From Equation (4) we have

1 — gt(m.d)
(1-q)(1—¢?)...1—qm)

> [p(n,m) — p(n — p(m, j), m)]q" = (5)

Theorem 2 guarantees that modulo j, (5) is a polynomial.
We will use definitions 3 and 4 to show that modulo j, the right-hand side of (5)

m+1).

is either a reciproccal or antireciprocal polynomial of degree d = u(m,j) — ( N

We begin by setting
1 — gnlmad)
(1=g)(1—=¢*)..(1—-q™)

for P(q) the polynomial in question of degree d = pu(m,j) — (

P(q) = (mod j)

")

q#(m,j)—(mgl) <1 _ qfu(m,ﬂ)

) ) ) )

qu(m»ﬂ') 1

qu(m,j) -1 _— 1— qu(m,j) )
= = (-1 ==£P d j).
(¢—D(¢* = 1)..(¢" = 1) =D (1-q9(1—¢?)..(1 —gm) (@) (mod j)
The sign on the final equivalence depends on m even or odd. O

Corollary 1. For u(m,j) — ("]") < s < u(m,j) one has p(u(m,j)k + s,m) = 0

(mod j).
Proof. Observe that

P(q) = p(0,m) + p(1,m)q + ... + p(u(m, j) — 1,m)g""™ =" (mod j). (4)

Since it is an (anti)reciprocal polynomial of degree u(m,j) — (m;'l) we can rewrite

(4) as

P = 0,40t mlat oty () = ("5 ) ) O (o ),
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Note that p(m,j) — (m;rl) < p(m,j) — 1, so each coefficient on the terms ¢ with

exponents between p(m, j) — (mgl) and p(m,7) — 1 must be 0 (mod j). Hence, we
have

. +1 . +1
which proves the corollary. ]

Here are some examples to illustrate Corollary 1.

Example 2. For m =6 and j = 4, u(m,j) = u(6,4) = 480 and (m;'l) = (;) = 21;
hence,

p(480k — 20,6) = p(480k — 19,6) = ... = p(480k — 1,6) =0 (mod 4).
For m =5 and j =5, u(m,j) = n(5,5) = 300 and (mH) = (g) = 15; hence,
p(300k — 14,5) = p(300k — 13,5) = ... = p(300k — 1,5) =0 (mod 5).
For m =8 and j = 3, u(m, j) = pu(8,3) = 7560 and (") = (3) = 36; hence,
p(7560k — 35,8) = p(7560k — 34,8) = ... = p(7560k —1,8) =0 (mod 3).

Corollary 2. For k>0, h >0, and 0 < s < u(m,j), if m is even one has

ot )+ 5.m) = = (st -+ i) = ("5 1) < sm) - (mod

and if m is odd one has

atm )t +5:m) = (. i+ ) = (757 = som) o )

Proof. By Theorem 4, for m even, it follows that

psm) = =p (o) = (" 31) = sm) - (mod 5

when 0 < s < u(m,j) — (m;l). Note that —p (p(m, j) — (m2+1) —s5,m) = 0 when
s > p(m,j) — ("F). By Corollary 1, for pu(m,j) — ("F') < s < pu(m, j) we have
that p(s,m) =0 (mod j). Thus, for p(m,j) — (") <'s < p(m, ),

sy = =p ()~ ("3 ) = som) - od )

This proves the case for m even by Remark 1. A similar argument holds for the
case where m is odd. O
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Using this corollary and taking Definition 4 into consideration, we can further
prove interesting results.

Proposition 1. If m =0 (mod 4) and j is odd then

p (mm,j)k ) = (15) ,m> =0 (mod )
and if j is even then
P <,u(m,j)k + W,m) =0 (mod j/2). (5)

Proof. Note that (u(m,7) — (")) /2 is an integer when m = 0 (mod 4). By
Corollary 2, we can say

m. 7 — (m+ m m7<_m;‘1
p(%mm)}p(mm—( Jl)—%’@

m.1q) — m+1
=—p (anﬁo (mod j)

and arrive at

m+1
2p (,u(m ) ,m) =0 (mod j).
If j is odd then the ged(2,7) = 1, hence
m+1
D (,u(m :9) ,m) =0 (mod j).

If j is even then the ged(2,j) = 2, and hence
N m—+1
P (M(m,J)Q (") ),m> =0 (mod j/2).

Thus the proposition follows. O
Here are some examples of Proposition 3.4

Example 3. For k > 0 one has p(60k +25,4) =0 (mod 5), p(7560k+3762,8) =0
(mod 3) and p(48k +19,4) =0 (mod 2).
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3.2. Congruences in an Arithmetic Progession for a Small Family of
Number of Parts

The following theorem deals with variability across the second variable, m, rather
than the first one. It is a similar to a theorem proved by Kronholm [6].

Theorem 5. Fork>0and2<t<mandl1<c< (thrl)
We require the following lemma.

Lemma 1. For 1 <t < m and x is a natural number, we have that u(m,j) =
zu(t, J).
Proof. The cases t = 1 and ¢ = m are trivial. When ¢t = 1 then p(1,7) = 1 so
x = p(m,j). When t = m then u(t, j) = u(m,j) so x = 1.

We consider 2 <t < m. Let j = p{'p5?...p¢ be the prime factorization of j as in
Theorem 3 so that for ¢, m and j we have

u(t, g) = lem{u(t,pi"), p(t, p3*)s o u(t, 057 } (6)

and
p(m, j) = lem{p(m, pi*), p(m, p3?), ..., p(m, pg*) }- (7)
From Theorem 2, we have for any natural number a,

N ei+ba,i—1
wla, ") =p; Lap, (8)
: a
where b, ; is the least integer such that p?‘“ > Z o(p?) L—a
p.
620 g

J and L p, is the p;-free

part of lem(a).

With 2 <t < m and Definition 1, it is clear that lcm(t)|lcm(m). Moreover, from
the definition of L from Theorem 3 and (8) that for every pi| J, if p? is the largest
power of p; dividing lem(m), then lem(t) cannot have a larger power of p; dividing
it. It then follows that for every pi| 7,

Ltﬁvi

mei' (9)

Furthermore, with 2 < ¢ < m and the definition of b from Theorem 3 and (8) it
is clear that by ; < by, ;. Hence for every pl-|j7

bin,i

pes p; - (10)

p;

Now, lines (9) and (10) together with (6) and (7) imply that pu(t,j)|u(m, j).
Thus, pu(m,j) = zu(t, j) for some natural number z. O
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We now prove Theorem 5.

Proof. By Lemma 1, for 2 < ¢t < m, there exists an integer z such that u(m,j) =
xu(t,j). Also, by Corollary 2, for 1 < ¢ < (t'gl)

By Remarks 1 we can say that p((z — D)u(t, )k + p(t,5)k — ¢,t) = 0 (mod j),
plau(t, i)k — e,t) = 0 (mod 7), and p(u(m, j)k — 1) = 0 (mod 5). O

Example 4 serves to highlight the nature of Theorem 5; that these divisibilty
results are not confinded to a fixed number of parts m. In Theorem 5 set m = 6
and j = 10 so that p(m, j) = u(6,10) = 1200 and 1 < ¢ < (°}"). For the family of
numbers of parts ¢ with 2 <t < 6 we have the following list of congruences in (11).

Example 4.

p(1200k — 1,t) =0 (mod 10) 2<t<6
p(1200k — 2,t) =0 (mod 10) 2<t<6
p(1200k — 3,t) =0 (mod 10) 3<t<6
p(1200k —4,t) =0 (mod 10) 3<t<6
p(1200k — 5,t) =0 (mod 10) 3<t<6
p(1200k — 6,t) =0 (mod 10) 4<t<6
p(1200k — 7,t) =0 (mod 10) 4<t<6
p(1200k — 8,t) =0 (mod 10) 4<t<6
p(1200k — 9,t) =0 (mod 10) 4<t<6
p(1200k — 10,t) =0 (mod 10) 5<t<6 (11)
p(1200k — 11,£) =0 (mod 10) 5<t<6
p(1200k — 12,t) =0 (mod 10) 5<t <6
p(1200k — 13,t) =0 (mod 10) 5<t <6
p(1200k — 14,t) =0 (mod 10) 5<t <6
p(1200k — 15,t) =0 (mod 10) t =06
p(1200k — 16,t) =0 (mod 10) t =06
p(1200k — 17,t) =0 (mod 10) t =06
p(1200k — 18,t) =0 (mod 10) t=6
p(1200k — 19,t) =0 (mod 10) t=6
p(1200k — 20,t) =0 (mod 10) ¢ =6.
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