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Abstract
We show that the number of 1’s in the first N digits of the binary expansion ofp

2 is at least
p

2N(1 + o(1)) and show that this bound can be improved to around
2
p

N/
p

2
p

2� 1 infinitely often.

1. Introduction

It has long been a folklore conjecture that
p

2 is a normal number in any given
base—that is, the limiting frequency of any string of digits in the base-b expansion
of
p

2 is the same as any other string of the same length. If
p

2 were normal in base
2, then we would expect that

nz(N) =
N

2
(1 + o(1)) (1)

where nz(N) is the number of non-zero digits in the first N binary digits after the
decimal point of

p
2.

However, we cannot yet prove a result of the strength of (1). Indeed, the strongest
result we have available is

nz(N) � N1/2(1 + o(1)),

due to Bailey, Borwein, Crandall, and Pomerance [2]. Although their result was
significantly more general (looking at arbitrary algebraic irrationals and arbitrary
bases), and although several papers have been written improving the bounds in
these general cases [1, 4, 6], the bound in this “simplest” case of

p
2 in base 2 has

been unchanged. A survey article by Kaneko [5] has many related results.
Our main theorem of this paper is the following.

Theorem 1. As N tends to infinity, we have nz(N) �
p

2N1/2(1 + o(1))

Our proof will largely follow the methods of Bailey, et al, but we also owe thanks
to Bugeaud’s exposition of their proof in his book [3].

We can o↵er occasional improvements to the above theorem.
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Theorem 2. For any ✏ > 0 and infinitely many N , we have

nz(N) �
 

2p
2
p

2� 1
� ✏

!
N1/2.

We note that
p

2 ⇡ 1.41421, while 2/
p

2
p

2� 1 ⇡ 1.47908. And the constant
here could be improved further, possibly up to

p
8/⇡ ⇡ 1.59577, but in the interest

of expediency, we only include the simpler proof.
We conclude the paper with two ideas, which, while interesting, do not improve

the results given above. In section 8, we look at the nonzero digits ai along odd
and even indices i. In section 9, we compare the nonzero digits of

p
2 and 3

p
2 and

see they can’t simultaneously both be too rare.
We use standard asymptotic notation in this paper. By f(x) = O(g(x)) we mean

that there exists a constant C > 0 such that |f(x)|  C · |g(x)|. By f(x) = o(g(x))
we mean that as x !1, f(x)/g(x) tends to 0.

2. The T and r Functions

Again, we borrow the notation from the Bailey, et al, paper, with minor changes.
We consider ai 2 {0, 1} to be the binary digits of

p
2, so that

p
2 =

X
i

ai

2i

We let
r(n) = #{(i, j) : i + j = n, ai = 1, aj = 1}.

In particular, this definition means that

2 =

 X
i

ai

2i

!2

=
X

n

r(n)
2n

.

We now also define
T (R) =

X
m�1

r(m + R)
2m

. (2)

as the “tail component.” We may think of this in the following way: when squaringp
2 to obtain 2 digit by digit, the T (R) function measures the contribution from

digits at the R + 1st place, including any carries that occur.
Now it is clear that r is always a non-negative function, and must be positive

infinitely often. Hence, T (R) is always positive.
Moreover, it is a trivial consequence of (2) that

2T (R� 1) = T (R) + r(R). (3)
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Thus, in particular, since T (�1) = 1/2 is a half-integer and r(R) is always integer-
valued, T (R) is always an integer for all non-negative values of R.

The key idea of the original proof of Bailey, et al, is to have a lower bound and
an upper bound on

PN
R=1 T (R), and the upper bound relies on having a certain

size of nz(N).

3. A Simple Lower Bound on
P

T (R)

Consider the facts that r is always non-negative, T is always positive, and (3).
Combined, these tell us that

T (R� 1) >
r(R)

2
,

and thus

T (R� 1) �
(

r(R)
2 + 1 if r(R) is even

r(R)
2 + 1

2 if r(R) is odd
(4)

We expect that odd values of r(R) to be a (reasonably) rare event, since, by sym-
metry, the only way for r(R) to be odd is if R = 2m and am = 1. This happens at
most nz(N) times up to N .

Thus, we have

N�1X
R=0

T (R) �
NX

R=1

✓
r(R)

2
+ 1
◆

+ O (nz(N)) =
1
2

NX
R=1

r(R) + N + O (nz(N)) . (5)

4. A Simple Upper Bound on
P

T (R)

Suppose that N is su�ciently large and let K = K(N) be a function dependent on
N to be defined shortly.

By (2) we have

N�KX
R=0

T (R) =
N�KX
R=0

X
m�1

r(m + R)
2m


1X

R=1

r(R) ·
1X

m=max{R�N+K,1}

1
2m


NX

R=1

r(R) +
1X

R=N+1

r(R)
2R�N+K

.
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Now we make use of the fact that by definition, r(n)  n + 1. So

N�KX
R=0

T (R) 
NX

R=1

r(R) +
N + 3

2K
.

So if we choose K = blog2 Nc, then

N�KX
R=0

T (R) 
NX

R=1

r(R) + O(1). (6)

5. Proving nz(N) � N1/2(1 + o(1))

Now, we can easliy reprove the bound of Bailey, et al. It is clear that

NX
R=1

r(R)  (nz(N))2, (7)

since the latter can be interpreted as #{(i, j) : i  N, j  N, ai = aj = 1}, whereas
the former can be interpreted as #{(i, j) : 1  i + j  N, ai = aj = 1}. Combining
this with (5) and (6), we get N�K+O (nz(N �K))  (nz(N))2. Noting that nz(N)
is a non-decreasing function that tends to infinity with N and that K = o(N), we
have N1/2(1 + o(1))  nz(N).

6. The Proof of Theorem 1

First, note that T (R) is a positive integer and expressible as 2T (R � 1) � r(R).
Thus T (R) is only odd if r(R) is odd, and r(R) is only odd if R = 2m for some m
with am = 1. So T (R) � 2 unless R is twice the index i of some non-zero digit ai

of which there are at most nz(N) many up to N , and thus we get

NX
R=1

T (R) � 2N + O (nz(N)) . (8)

Again combining this with 6 and 7 gives the bound
p

2N1/2(1 + o(1))  nz(N).

7. The Proof of Theorem 2

Our upper bound (7) is suboptimal because it implicitly assumes that every pair
(i, j) with ai = aj = 1 and i, j  N also satisfies i+j  N . In fact, if i, j 2 (N/2, N ]
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then they cannot possibly contribute to the sum of r(R)’s with R  N . Thus, we
could consider the improved upper bound

NX
R=1

r(R)  (nz(N/2))2 + 2nz(N/2) (nz(N)� nz(N/2)) (9)

This bound comes about because each sum i + j  N must come about because
either both i, j are in [0, N/2] or one of them is in [0, N/2] and the other is in
(N/2, N ].

Suppose that Theorem 2 is not true, so there exists some ✏ > 0 such that for all
su�ciently large N ,

nz(N) <

✓q
2/(2

p
2� 1)� ✏

◆
N1/2.

Let � = 2/(2
p

2� 1)� ✏.
Then, by a standard argument, we can find functions g1(N), g2(N) that are both

o(N), positive constants �1,�2 that are both at most �, and an increasing sequence
{Ni}1i=1 of positive integers such that

nz(N/2) = �1

p
N + g1(N)

nz(N) = �2

p
2N + g2(N),

for N belonging to the sequence of Ni’s.
By using (6), (8), and (9), we see that for each N belonging to the sequence of

Ni’s, we have

2(N �K(N)) + O(nz(N �K(N)))  (�2
1N + 2�1(�2

p
2� �1)N)(1 + o(1))

= �1(2
p

2 · �2 � �1)N(1 + o(1)).

We may assume that nz(N�K(N)) = o(N) as otherwise we obtain a much stronger
result than Theorem 2. Therefore, we may simplify this inequality to

2  �1(2
p

2 · �2 � �1),

since the contributions of (1+o(1)) are no longer relevant without N in the equation.
Since �2  �, we have that

2  �1(2
p

2 · �� �1).

Moreover, by taking the derivative with respect to �1 on the right-hand side, we see
that this is an increasing function in �1 for �1 

p
2�, and since �1  �, we have

2  (2
p

2� 1)�2.

However, this is a clear contradiction to the definition of �.
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Remark 1. This method can be extended considerably. We used only two intervals
[0, N/2] and (N/2, N ]. By breaking into m intervals and letting m tend to infinity,
it appears that we can show that for any ✏ > 0 there exist infinitely many integers
N such that

nz(N) �
 r

8
⇡
� ✏

!
N1/2.

The appearance of the
p

⇡ is due to the resulting sums coming closer and closer to
an integral that resembles

p
1/x(1� x). However, given the increased di�culty of

the proof and the negligible improvement it o↵ers, we do not write it here.

8. Odd and Even Indices

There’s no necessary reason why we have to look at
PN

R=1 T (R) on its own. We
could weight this sum or look at sums along certain sequences. For example, we
could look along arithmetic progressions, such as all even numbers. If we did that,
we would get a result that looks like

N�KX
R=0

T (2R) <
NX

R=1

✓
r(2R + 1) +

1
2
r(2R)

◆
+ o(1).

Now suppose we let nz0(N) denote the number of i  2N + 1 such that i is even
and ai = 1, and we let nz1(N) denote the number of i  2N + 1 such that i is odd
and ai = 1. Then it is clear that

NX
R=0

r(2R)  nz0(N)2 + nz1(N)2

and
NX

R=0

r(2R + 1)  2 nz0(N) · nz1(N).

Now we combine the three lines above with a variant of (8) to get

2N + O(nz(2N + 1)) <
1
2
�
nz0(N)2 + nz1(N)2

�
+ 2nz0(N) nz1(N)

=
1
2

nz(2N + 1)2 � nz0(N)2 + nz(2N + 1) · nz0(N).

This is interesting because the last part of the inequality is maximized when nz0(N) =
nz(2N + 1)/2, leading to

2N + O(nz(2N + 1))  3
4

nz(2N + 1)2.
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If the non-zero digits are not evenly distributed between even and odd indices, we
could get even stronger results, although none of them would surpass the bound
found in Theorem 1. Perhaps a di↵erent subsequence or a clever weighting of the
sum of T (R)’s would produce improved results.

9. Comparing Two Di↵erent Expansions

The argument we have given for the number of non-zero digits in the expansion ofp
2 works just as well for bounding the number of non-zero digits in 3

p
2. However,

if we see the string 0100 starting in the nth position in the expansion of
p

2, then
we must see 1’s at the nth and n + 1st position in the expansion of 3

p
2.

So if both
p

2 and 3
p

2 have close to the same number of 1’s in their expansions,
it must be because we see the strings 11 or 101 (or, possibly, 111) appear in the
expansion of

p
2 a lot. This is quite useful, since if an, an+k, am, am+k = 1, with

n 6= m, then a better than trivial bound can be placed on r(n+m+k). In particular,
it will count the pairs (n,m + k), (m + k, n), (n + k,m), (m,n + k) and thus be at
least 4, so that T (m + n + k� 1) is at least 3 by (4), rather than the 2 we typically
assume. If one could show this happens often enough, one would get a non-trivial
improvement in the lower bound.

However, in our attempts to use this technique, we could not do better than the
results given in Theorem 2, and so we leave it here as an idea in the hope that it
inspires someone else to push the results further.
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